
Citation: Zeng, Q.; Nan, Z.; Zhou, S.

Adaptive Privacy-Preserving Coded

Computing with Hierarchical Task

Partitioning. Entropy 2024, 26, 881.

https://doi.org/10.3390/e26100881

Academic Editor: T. Aaron Gulliver

Received: 25 August 2024

Revised: 11 October 2024

Accepted: 15 October 2024

Published: 21 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Adaptive Privacy-Preserving Coded Computing with
Hierarchical Task Partitioning
Qicheng Zeng , Zhaojun Nan * and Sheng Zhou

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
zengqc19@mails.tsinghua.edu.cn (Q.Z.); sheng.zhou@tsinghua.edu.cn (S.Z.)
* Correspondence: nzj660624@mail.tsinghua.edu.cn

Abstract: Coded computing is recognized as a promising solution to address the privacy leakage
problem and the straggling effect in distributed computing. This technique leverages coding theory
to recover computation tasks using results from a subset of workers. In this paper, we propose the
adaptive privacy-preserving coded computing (APCC) strategy, designed to be applicable to various
types of computation tasks, including polynomial and non-polynomial functions, and to adaptively
provide accurate or approximated results. We prove the optimality of APCC in terms of encoding
rate, defined as the ratio between the computation loads of tasks before and after encoding, based
on the optimal recovery threshold of Lagrange Coded Computing. We demonstrate that APCC
guarantees information-theoretical data privacy preservation. Mitigation of the straggling effect
in APCC is achieved through hierarchical task partitioning and task cancellation, which further
reduces computation delays by enabling straggling workers to return partial results of assigned
tasks, compared to conventional coded computing strategies. The hierarchical task partitioning
problems are formulated as mixed-integer nonlinear programming (MINLP) problems with the
objective of minimizing task completion delay. We propose a low-complexity maximum value
descent (MVD) algorithm to optimally solve these problems. The simulation results show that
APCC can reduce the task completion delay by a range of 20.3% to 47.5% when compared to other
state-of-the-art benchmarks.

Keywords: coded computing; privacy preservation; hierarchical task partitioning; task cancellation;
MINLP

1. Introduction

Under the vision of “Internet of Everything”, intelligence-enabled applications are
essential, leading to a variety of crucial computation tasks, such as the training and inference
of complex machine learning models based on extensive datasets [1–3]. However, executing
these computation-intensive tasks on a single device with limited computation capability
and power resources presents significant challenges. To this end, distributed computing
emerges as a practical solution, where a central node, referred to as master, manages task
division, assignment, and result collection, while multiple distributed computing nodes,
called workers, process the assigned partial computation tasks in parallel [4].

Nevertheless, while distributed computing accelerates the computation process by
employing multiple workers for parallel processing, the total delay is dominated by the
slowest worker, as the master must wait for all workers to complete their assigned tasks [5].
As demonstrated in the experimental results of [6], the delay of the slowest worker can
exceed five times that of the others, which significantly prolongs the total delay. Moreover,
due to the randomness of delays, identifying slow workers in advance is challenging.
To tackle this so-called straggling effect, coded computing has emerged as a promising
solution [6–12]. As Figure 1 shows, this approach combines coding theory with distributed
computing and reduces delays by introducing structured computational redundancies.

Entropy 2024, 26, 881. https://doi.org/10.3390/e26100881 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26100881
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0007-1829-9628
https://orcid.org/0000-0003-1487-2179
https://doi.org/10.3390/e26100881
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26100881?type=check_update&version=1

Entropy 2024, 26, 881 2 of 26

Through the incorporation of redundancy during the encoding process, computation tasks
can be completed using results from a subset of workers, thereby reducing total delays.

Master

Subtasks

…

…
Stragglers

Workers

Colluders
…

…Task
Encoded

Subtasks

Figure 1. The concept of coded computing.

In coded computing, workers are tasked with processing input data and returning
results, but the involved tasks may contain sensitive information, such as patient medical
data, customer personal information, and proprietary company data [13,14]. Consequently,
it is essential to maintain the data privacy against colluding workers, those who return
correct results but may communicate with one another to share input data from the master,
so as to infer some private information of the master. Recent research studies have aimed
to develop coded computing strategies that address not only the straggling effect but also
privacy concerns, such as combining additional random data insertion with prevalent
polynomial coded computing methods [15–25]. This approach enhances the robustness
of the system against straggling workers while also improving privacy and security by
obscuring the original data.

In the majority of existing studies, matrix multiplication is treated as the primary
application of coded computing, and its performance has been extensively validated. How-
ever, real-world computation tasks are often more diverse than mere matrix multiplication.
For instance, in a linear regression task, the iterative process of solving weights involves
calculating previous weights multiplied by the quadratic power of the input data. This
implies that coded computing schemes for matrix multiplication must be executed twice in
each step, and computation becomes considerably more complex when considering other
tasks, such as inference tasks of neural networks.

In terms of extending the applicability of coded computing, one state-of-the-art ap-
proach is Lagrange Coded Computing (LCC) [15]. LCC employs Lagrange polynomial
interpolation to transform input data before and after encoding into interpolation points
on the computation function. This allows the recovery of desired results through the recon-
struction of the interpolation function. LCC is compatible with various computation tasks,
ranging from matrix multiplication to polynomial functions, and offers an optimal recovery
threshold concerning the degree of polynomial functions. In [21,25,26], the problem of
using matrix data as input and polynomial functions as computation tasks is also explored.

However, LCC still suffers from several shortcomings [27]. First, its recovery thresh-
old is proportional to degrees of polynomial functions, which can be prohibitively large
for complex tasks and thereby make it difficult to achieve successful recovery. Second,
Lagrange polynomial interpolation can be ill-conditioned, making it challenging to ensure
numerical stability, unless one embeds the computation to a finite field. In [27], Berrut’s
Approximated Coded Computing (BACC) is proposed to address these shortcomings and
further expand the scope of computation tasks to arbitrary functions. However, BACC only
yields approximated computing results and does not guarantee privacy preservation. Other
related works [28–32] also focus on approximated results while attempting to maintain the
numerical stability of coded computing. As far as we know, there is still a lack of a versatile
coded computing strategy suitable for various computational tasks. This strategy should

Entropy 2024, 26, 881 3 of 26

be capable of achieving privacy preservation while providing accurate or approximated
results based on specific demands.

On the other hand, opportunities exist to enhance mitigation of the straggling ef-
fect and further reduce delays. This is because prior studies commonly discard results
from straggling workers, leading to the inefficient utilization of computational resources.
In [11], a hierarchical task partitioning structure is proposed, where divided tasks are
further partitioned into multiple layers, and workers process their assigned tasks in the
order of layer indices. Consequently, straggling workers can return results from lower
layers instead of none, while fast workers can reach higher layers and return more results.
Similar performance improvements are achieved through multi-message communications
(MMC) [33–35], where workers are permitted to return partial results of assigned tasks in
each time slot, enabling straggling workers to contribute to the system.

Essentially, three ways exist to alleviate the straggling effect, given the total number of
workers. First, minimize the recovery threshold of coded computing schemes, as a smaller
recovery threshold implies fewer workers to wait for [9,10,15,16,36–39]. As a result, the
master can recover desired computing results even with more straggling workers. Second,
the computation loads for each worker should be carefully designed to allow them to
complete varying amounts of computation based on their capabilities, which is formulated
as optimization problems in [4,40–43]. This approach narrows the gap between the delays
of fast and slow workers. Third, workers should be capable of returning partial results of
assigned tasks, rather than the scenario where fast workers complete all assigned tasks,
leaving straggling workers to contribute virtually nothing. The third point aligns with the
idea of a hierarchical task partitioning structure and MMC.

In this work, we consider a distributed system with one master and multiple work-
ers, and propose an adaptive privacy-preserving coded computing (APCC) strategy. The
strategy primarily focuses on the applicability for diverse computation tasks, the privacy
preservation of input data, and the mitigation of the straggling effect. Moreover, based on
the hierarchical task partitioning structure in APCC, we propose an operation called cancel-
lation to prevent slower workers from processing completed tasks, reducing resource waste
and improving delay performance. Specifically, the main contributions are summarized
as follows:

• We propose the APCC framework, which effectively mitigates the straggling effect
and fully preserves data privacy. APCC is applicable to various computation tasks,
including polynomial and non-polynomial functions, and can adaptively provide
accurate results or approximated results with controllable error.

• We rigorously prove the information-theoretical privacy preservation of the input data
in APCC, as well as the optimality of APCC in terms of the encoding rate based on the
optimal recovery threshold of LCC. The encoding rate is defined as the ratio between
the computation loads of tasks before and after encoding, serving as an indicator of
the performance of coded computing schemes in mitigating the straggling effect.

• Considering the randomness of task completion delay, we formulate hierarchical task
partitioning problems in APCC, with or without cancellation, as mixed-integer nonlin-
ear programming (MINLP) problems with the objective of minimizing task completion
delay. We propose a maximum value descent (MVD) algorithm to optimally solve the
problems with linear complexity.

• Extensive simulations demonstrate improvements in delay performance offered by
APCC when compared to other state-of-the-art coded computing benchmarks. No-
tably, APCC achieves a reduction in task completion delay ranging from 20.3% to
47.5% compared to LCC [15] and BACC [27]. Simulations also explore the trade-off
between task completion delay and the level of privacy preservation.

The remainder of the paper is structured as follows. Section 2 presents the system
model. In Section 3, we propose the adaptive privacy-preserving coded computing strategy,
namely APCC. In Section 4, the performance of APCC is further analyzed in terms of en-
coding rate, privacy preservation, approximation error, numerical stability, communication

Entropy 2024, 26, 881 4 of 26

costs, and encoding and decoding complexity. In Section 5, we proposed the MVD algo-
rithm to address the hierarchical task partitioning optimization problem with or without
cancellation. The simulation results are provided in Section 6, and conclusions are drawn
in Section 7.

2. System Model

As shown in Figure 2, we consider the distributed computing system consisting of
one master and N workers. The goal is to complete a computation task on the master with
the help of N workers. The task is represented by a function f , operating over an equally
pre-divided input dataset D = {Dk ∈ Rp×q|k ∈ [0 : K − 1]}. The master aims to evaluate
the results { f (Dk)}K−1

k=0 , whose dimensions are decided by the task function f . To achieve
this, we employ the proposed APCC strategy. Note that we consider the computation of
{ f (Dk)}K−1

k=0 as the entire task and the computation of f (Dk) as a subtask.

Workers

Colluders

Master Stragglers

……

…

(a) System Model

… …

…

K subtasks

… …

r original sets r encoded sets

Master

…

…
Worker

Worker

…

…

…

set index
…

Worker 0

1
set index

Master

… …

… …

…

…

…

…

(b) APCC
Figure 2. System model and the proposed Adaptive Privacy-preserving Coded Computing (APCC).

In APCC, the K equally pre-divided input data {Dk}K−1
k=0 are not directly encoded like

conventional coded computing strategies. Instead, they are firstly partitioned into r sets.
Subsequently, the input data in each set are encoded into N parts, which are then assigned
to N workers for parallel computation. This hierarchical task partitioning structure enables
workers to return partial results of assigned subtasks, further mitigating the straggling effect
and reducing delays. After the task assignment, the master leverages the results obtained
from a subset of workers in each set and employs interpolation methods to reconstruct
the original function f , thereby achieving the recovery of { f (Dk)}K−1

k=0 . A comprehensive
description of the APCC strategy is presented in Section 3.

Taking into account the unreliable channels and uncertain computation capabilities of
workers, some of them may fail to return results to the master in time. These straggling
workers are referred to as stragglers. Additionally, we assume that workers are honest but
curious. This means they will send back the correct computation results, but there could be
up to L (L < N) colluding workers who can communicate with each other and attempt to
learn information about the input data {Dk}K−1

k=0 . These workers are called colluders.

Entropy 2024, 26, 881 5 of 26

3. Adaptive Privacy-Preserving Coded Computing

In this section, we propose the adaptive privacy-preserving coded computing (APCC)
strategy, which is suitable for diverse computation tasks including polynomial functions
and non-polynomial functions, and can adaptively provide accurate results or approxi-
mated results. We begin with a general description to explain how APCC works and then
provide an illustrative example for accurate results case without loss of generality. Lastly,
we introduce the hierarchical task partitioning structure of APCC, and the cancellation of
completed subtasks based on this hierarchical structure.

3.1. General Description

In this subsection, we provide a general description of the proposed APCC strategy.
As shown in Figure 2, the inputs of the function f are first equally pre-divided into K
parts {Dk}K−1

k=0 , and K corresponding subtasks { f (Dk)}K−1
k=0 are formed. The APCC strategy

then follows three steps: (1) Encoding; (2) Assignment; (3) Decoding, and obtains accurate or
approximated computing results of { f (Dk)}K−1

k=0 .

3.1.1. Encoding

In the initialization step, the K subtasks are further partitioned into r sets, with set
i (i ∈ [0 : r − 1]) containing Ki subtasks { f (Di,j}

Ki−1
j=0 , where Di,j ∈ {Dk|k ∈ [0 : K − 1]}.

Consequently, the desired results of the master are

{ f (Dk)}K−1
k=0 =

{
{ f (Di,j)}

Ki−1
j=0 |i ∈ [0 : r − 1]

}
, (1)

where Ki should satisfy ∑r−1
i=0 Ki = K. The specific values of {Ki}r−1

i=0 will be formulated as
optimization problems in Section 5. We refer to the partition of these sets as hierarchical
task partitioning.

Inspired by Barycentric polynomial interpolation [27,44], the input data {Di,j}
Ki−1
j=0 for

set i is linearly encoded through function gi(x) as:

gi(x) =
Ki−1

∑
j=0

wi,j ∏Ki+L−1
k=0,k ̸=j(x − αi,k)

∑Ki+L−1
k=0 wi,k ∏Ki+L−1

l=0,l ̸=k (x − αi,l)
Di,j

+
Ki+L−1

∑
j=Ki

wi,j ∏Ki+L−1
k=0,k ̸=j(x − αi,k)

∑Ki+L−1
k=0 wi,k ∏Ki+L−1

l=0,l ̸=k (x − αi,l)
Zi,j, (2)

where {Zi,j ∈ V|j ∈ [Ki : Ki + L − 1]} are L random matrices added to preserve the privacy,
each element in Zi,j follows a uniform distribution, and x ∈ R is the encoding parameter.

{αi,j}
Ki+L−1
j=0 are distinct values selected as Chebyshev points of the first kind:

αi,j = cos
(2j + 1)π
2(Ki + L)

, j ∈ [0 : Ki + L − 1]. (3)

wi,j is a constant related to αi,j and calculated as:

wi,j =
1

∏Ki+L−1
k=0,k ̸=j(αi,j − αi,k)

, j ∈ [0 : Ki + L − 1]. (4)

Note that the form of gi(x) is a Barycentric polynomial [27,44], which can avoid
overflows and underflows in floating-point arithmetic and requires a lower computation

Entropy 2024, 26, 881 6 of 26

complexity compared to its similar form of Lagrange polynomial in LCC [15]. Furthermore,
Equation (2) guarantees that

gi(αi,j) = Di,j, j ∈ [0 : Ki − 1]. (5)

because the coefficient term before Di,j and Zi,j

wi,j ∏Ki+L−1
k=0,k ̸=j(x − αi,k)

∑Ki+L−1
k=0 wi,k ∏Ki+L−1

l=0,l ̸=k (x − αi,l)
=

{
1, if x = αi,j,
0, if x = αi,k, k ̸= j.

(6)

The encoded input data {D̃i,n}N−1
n=0 are obtained as:

D̃i,n = gi(βn), n ∈ [0 : N − 1]. (7)

{βn}N−1
n=0 are selected as Chebyshev points of the second kind:

βn = cos
nπ

N − 1
, n ∈ [0 : N − 1]. (8)

3.1.2. Assignment

For set i, the encoded data D̃i,n = gi(βn) is assigned to worker n. Consequently, as
Figure 2 shows, each worker receives r encoded subtasks { f (D̃i,n)}r−1

i=0 and executes them
in the order of set indices. Once completed, the result of each encoded subtask f (D̃i,n) is
returned to the master. In other words, after the original K subtasks are partitioned into
multiple sets, each set is transformed into N encoded subtasks assigned to N workers
for processing.

3.1.3. Decoding

For set i, the master decodes using function ri(x), which is constructed by interpola-
tion [27,44] as:

ri(x) =
Ri−1

∑
n=0

w̃n
x−x̃n

∑Ri−1
m=0

w̃m
x−x̃m

f (gi(x̃n)), (9)

where { f (gi(x̃n))|n ∈ [0 : Ri − 1]} are the first Ri received results in { f (D̃i,n)}N−1
n=0 for set i,

x̃n is the corresponding encoding parameter that belongs to {βn|n ∈ [0, N − 1]}, and the
parameter w̃n is adaptive for different cases, as follows.

Case 1: Accurate results. If f is a polynomial function of degree d, where the degree d
of a polynomial function is defined as the maximum order of its monomials, the adaptive
parameters w̃n is determined as:

w̃n =
1

∏Ri−1
m=0,m ̸=n(x̃n − x̃m)

, n ∈ [0 : Ri − 1]. (10)

In this case, ri(x) is a Barycentric polynomial interpolation function [44] for f (gi(x)). The
degree of gi(x) equals (Ki + L − 1), so that f (gi(x)) remains a polynomial function, and
its degree satisfies deg f (gi(x)) ≤ d(Ki + L − 1). Consequently, if the number of received
results Ri for set i satisfies:

Ri = d(Ki + L − 1) + 1, (11)

Entropy 2024, 26, 881 7 of 26

it implies that sufficient interpolation points have been obtained to precisely recover
f (gi(x)) through ri(x), and the entire computation process is completed with

f (Di,j) = f (gi(αi,j)) = ri(αi,j), (12)

for any i ∈ [0 : r − 1], j ∈ [0 : Ki − 1].
Note that Equation (11) means that the accurate result case of APCC has the same

recovery threshold as LCC [15]. Furthermore, similar to LCC, when there is no need for
privacy preservation, which means L = 0, we can also provide an uncoded version of APCC
by selecting the value of {βn} from {αi,j}. Thus, the new recovery threshold becomes:

Ri = N −
⌊

N
Ki

⌋
+ 1. (13)

Case 2: Approximated results. If f is an arbitrary function, the adaptive parameter w̃n
is calculated as:

w̃n = (−1)n, n ∈ [0 : Ri − 1]. (14)

In this case, ri(x) is a Berrut’s rational interpolation function for f (gi(x)), as discussed
in [27,45]. The computed results f (gi(x̃n)) serve as the interpolation points of f (gi(x)), and
they satisfy ri(x̃n) = f (gi(x̃n)) due to the property of Berrut’s rational interpolation [45].
Therefore, the master can regard ri(x) as an approximation of f (gi(x)), which means that

f (Di,j) = f (gi(αi,j) ≈ ri(αi,j), (15)

for any i ∈ [0 : r − 1], j ∈ [0 : Ki − 1]. In addition, the approximation using ri(x) becomes
more accurate as Ri increases. Thus, if the master desires more accurate computations, it
simply needs to wait for more results.

3.2. An Illustrating Example

In this subsection, we present an illustrative example for the case of accurate results
without loss of generality. Specifically, we consider a linear regression problem. The feature
data D ∈ R12000×10 contains 12,000 data samples with 10 features, and the label vector
is denoted by y ∈ R12000×1. The objective is to find the weighting vector w ∈ R10×1

that minimizes the loss ||Dw − y||2. To solve this problem, the gradient descent method
updates the weights iteratively along the negative gradient direction as follows:

w(t+1) = w(t) − 2η

p′
DT(Dw(t) − y), (16)

where η is the learning rate and t represents the iteration index.
In order to apply the aforementioned update process to a distributed system with one

master and N = 10 workers, for instance, the feature data D is first equally divided into
K = 12 sub-matrices (D0, D1, . . . , D11)

T , Dk ∈ R1000×10, k ∈ [0 : 11]. As w(t) is known by
the workers and DTy can be precomputed by the master, the computation function (subtask)
of the master in each iteration can be expressed as f (Dk) = DT

k Dkw ∈ R10×1, k ∈ [0 : 11].
After obtaining the results of the entire task { f (Dk)}11

k=0, the gradient update is computed
as DT Dw = ∑11

k=0 DT
k Dkw.

We now illustrate how APCC can be applied in the above problem, to obtain
f (Dk) = DT

k Dkw, k ∈ [0 : 11].

3.2.1. Encoding

As depicted in Figure 3a, since there are 12 subtasks f (Dk), k ∈ [0 : 11], the master
further partitions them into r = 3 sets before encoding input data, and set i (i = 0, 1, 2)
contains Ki subtasks. Here, for instance, we assume that K0 = 5, K1 = 4, and K2 = 3, and

Entropy 2024, 26, 881 8 of 26

they satisfy K0 + K1 + K2 = K = 12. After this hierarchical task partitioning, the input of
the j-th subtask in set i is denoted as Di,j ∈ R1000×10 instead of the previous Dk.

Next, the Ki input data {Di,j ∈ R1000×10|j = 0, . . . , Ki − 1} in set i are encoded into
N = 10 parts {D̃i,n ∈ R1000×10|n = 0, . . . , 9} through gi(x), where D̃i,n = gi(βn), n ∈ [0 : 9].
Moreover, gi(x) is a polynomial function with a degree of (Ki + L − 1), and its form ensures
that the parameters {αi,j} satisfy gi(αi,j) = Di,j.

Master

12 subtasks 3 sets 3 encoded sets

(a) Encoding

Master

…

…

Worker

Worker

set index

Worker 0

set index

Master

(b) Assignment and Decoding
Figure 3. The three-step process of APCC.

3.2.2. Assignment

As Figure 3b shows, for each set, the 10 encoded input data {D̃i,n}9
n=0 are assigned to

the 10 workers. Subsequently, each worker applies function f to compute and return the
results to the master. As can be observed, the Ki original subtasks in set i are transformed
into 10 subtasks performed on the 10 workers in parallel. Since there are 3 sets, each worker
is assigned 3 subtasks. These subtasks are executed in the order of set indices, which
implies f (D̃0,n) is computed first, followed by f (D̃1,n), and so on.

3.2.3. Decoding

As illustrated in Figure 3b, following the assignment of encoded input to workers, the
master continuously awaits the subtask results from workers and creates a decoding func-
tion ri(x) for set i. This decoding function is constructed using interpolation to recover the
original function f (Di,j) = f (gi(αi,j)). Consequently, each received result, f (gi(βn)), can
be regarded as an interpolation point for f (gi(x)), and ri(x) is precisely the interpolation
function of f (gi(x)).

Presently, f (Di,j) = DT
i,jDi,jw is a polynomial function of degree d = 2, where the

degree d of a polynomial function f is defined as the maximum order of its monomials. We
have illustrated how to complete the decoding process in Subsection III.A. By setting the
number of received results to Ri = d(Ki + L − 1) + 1, sufficient interpolation points are
obtained to accurately recover f (gi(x)) through ri(x), i.e., f (Di,j) = f (gi(αi,j)) = ri(αi,j),
for any i ∈ [0 : 2] and j ∈ [0 : Ki − 1]. To further illustrate APCC, we also provide a
corresponding pseudo-code, as presented in Algorithm 1.

Entropy 2024, 26, 881 9 of 26

Algorithm 1: APCC
Input: f , Dk, r, Ki, N, L
Output: { f (Dk)}K−1

k=0 .

1 (1) Encoding:
2 The master partitions K subtasks { f (Dk)}K−1

k=0 into r sets, and set i consists of Ki

subtasks { f (Di,j)}
Ki−1
j=0 ;

3 for i = 0 : r − 1 do
4 The master encodes {Di,j}

Ki−1
j=0 into {D̃i,n}N−1

n=0 according to D̃i,n = gi(βn)

through Barycentric polynomial, similar to the Lagrange polynomial of LCC;

5 (2) Assignment:
6 for n = 0 : N − 1 do
7 The master assigns {D̃i,n}r−1

i=0 to worker n, and { f (D̃i,n)}r−1
i=0 are computed in

the order of set indices;
8 Workers return f (D̃i,n) to the master once completing computation;

9 (3) Decoding:
10 for i = 0 : r − 1 do
11 The master decodes for set i according to the first Ri received results;
12 if f is a polynomial function of degree d then
13 Accurate results: f (gi(x)) = ri(x), ri(x) is obtained from Barycentric

polynomial interpolation, similar to the Lagrange polynomial
interpolation of LCC;

14 if f is an arbitrary function then
15 Approximated results: f (gi(x)) ≈ ri(x), ri(x) is obtained from Berrut’s

rational interpolation;

16 Set i is completed with f (Di,j) = f (gi(αi,j));

3.3. Hierarchical Task Partitioning and Cancellation

In Figure 3, the hierarchical task partitioning in APCC aims to maximize the utility
of computing results from straggling workers. This is achieved through a well-designed
structure and appropriate choice of Ki values. Although the same number of encoded
subtasks are assigned to all workers, the number of successfully returned results from
each worker can differ due to varying processing speeds. As a result, straggling workers
may return fewer computing results than faster workers, but they can still make valuable
contributions to task completion instead of being completely discarded.

Furthermore, the illustration in Figure 3 suggests that Ki−1 should exceed Ki [11].
This assertion is explained as follows: The “completion time” of set i” is defined as the
moment when a sufficient number of encoded subtask results within set i are obtained.
The overarching objective is to minimize the delay in completing the entire task, which
must necessarily exceed the “completion time” of any set since the entire task remains
incomplete until all r sets are recovered. Given that subtasks are executed in order of set
indices, when set r is recovered, the master must have acquired results for the smaller-index
sets equal to or greater than Ki. Opting for smaller values of Ki for the smaller-index sets
would result in more workers experiencing straggling, a situation that should be averted.
Further details are expounded in Section 5.

Based on the hierarchical structure, we propose an alternative method to further
accelerate the coded computing process. As depicted in Figure 4, the subtasks { f (D̃i,n)}r−1

i=0
to be computed on each worker form an execution sequence. Once enough results for set i
are obtained, the master can instruct workers that have not completed the computation of
f (D̃i,n) to terminate or skip this part of the computation and proceed to compute the next
subtasks f (D̃i+1,n) of the subsequent set. This operation, called “Cancellation”, prevents

Entropy 2024, 26, 881 10 of 26

computation resources from being wasted on completed sets. Considering the presence of
non-persistent stragglers, cancellation increases the probability of them overcoming the
previous straggling effect and avoiding becoming stragglers again.

Master

…

…

Worker

Worker

…

…

set index

…

…

Worker

index

Worker

…

…

…

…

…

…

Figure 4. Hierarchical structure and the cancellation operation.

4. Performance Analysis

In this section, we first define a metric called encoding rate to evaluate the efficiency
performance of coded computing schemes, in terms of utilizing computation resources
of workers as efficiently as possible. Then, based on the optimal recovery threshold of
LCC [15], we rigorously prove APCC for accurate results is also an optimal polynomial
coding in terms of the encoding rate. Furthermore, an information-theoretic guarantee to
completely preserve the privacy of input data {Dk}K−1

k=0 in APCC is proved. Subsequently,
we present an analysis of the approximation error for Case 2 of APCC, along with a
discussion of numerical stability. At the end of this section, we provide an analysis of
encoding and decoding complexity for APCC and compare it with other state-of-the-art
strategies.

4.1. Optimality of APCC in Terms of Encoding Rate

To evaluate the performance of various coded computing schemes, a metric known as
the encoding rate Rencode is used. This metric is defined as:

Rencode =
K

N − S
, (17)

where K is the number of subtasks before encoding, N is the number of subtasks after
encoding (which is equivalent to the number of workers), and S represents the number
of straggling workers that failed to return results before the task was completed. Similar
metrics, such as those found in [17,20,46], have also been developed.

Furthermore, since the recovery threshold, denoted by H, is defined as the mini-
mum number of results needed to guarantee decodability, we have H = N − S and thus
Rencode = K

H . It is important to note that the encoding rate only applies when decodability
is guaranteed.

The physical significance of the encoding rate is the ratio between the computation
load of tasks before encoding and that required after encoding. For instance, given a task
with a computation load of O(γ), each subtask has a corresponding load of O(γ

K). As

(N − S) subtasks are successfully completed, the required computation load is O(γ(N−S)
K).

Since coded computing essentially trades computation redundancy for reduced delay to
mitigate the straggling effect, it is reasonable to use this metric to evaluate the efficiency of
different schemes.

Before demonstrating the optimality of APCC in terms of encoding rate, we present
the definitions of capacity and linear coded computing schemes.

Entropy 2024, 26, 881 11 of 26

Definition 1. A linear coded computing scheme is one in which the encoded data is a linear
combination of the original input data as follows:

D̃n =
K−1

∑
j=0

Gn,jDj + Z̃n, n ∈ [0 : N − 1], (18)

where G = {Gn,j} ∈ RN×K is the encoding matrix and Z̃n are additive random real matrices.

For example, according to Equation (2) in APCC, Gn,j =
wi,j ∏

Ki+L−1
k=0,k ̸=j (βn−αi,k)

∑
Ki+L−1
k=0 wi,k ∏

Ki+L−1
l=0,l ̸=k (βn−αi,l)

are

the coefficient terms before Di,j, and Z̃n = ∑Ki+L−1
j=Ki

wi,j ∏
Ki+L−1
k=0,k ̸=j (βn−αi,k)

∑
Ki+L−1
k=0 wi,k ∏

Ki+L−1
l=0,l ̸=k (βn−αi,l)

Zi,j, represents

the sum of added random matrices in gi(x). The index i corresponds to the set index of
the hierarchical task partitioning structure of APCC and can be discarded in other coded
computing strategies.

Definition 2. For a coded computing problem (N, S, L, f), where N is the number of workers, S
and L denote the number of stragglers and colluders, respectively, and the computation function f
on the master is a polynomial function of degree d, the capacity C is defined as the supremum of the
encoding rate Rencode as:

C = sup Rencode(N, S, L, d), (19)

over all feasible linear coded computing schemes that can address up to L colluders and S stragglers.

As illustrated in Section 3, APCC is a linear coded computing scheme and its hierar-
chical structure results in different Ki and Si for each set, with Ki and Si representing the
number of subtasks before encoding and that of straggling workers, respectively. For set i,
Ri represents the number of workers that have successfully returned results in time, imply-
ing that the number of stragglers is Si = N − Ri. Moreover, according to Equation (11), set
i is considered complete when Ri = d(Ki + L − 1) + 1. Hence, the encoding rate of APCC
can be calculated as:

R[APCC]
encode =

Ki
N − Si

=
N − Si − d(L − 1)− 1

d(N − Si)
, (20)

or the uncoded version for L = 0 :

R[APCC]
encode =

Ki
N − Si

≤ N
(N − Si)(Si + 1)

, (21)

where the equality holds when N can be divided by Ki.
The following theorem shows that the encoding rate of APCC achieves the capacity,

thereby establishing its optimality. In fact, the optimality of APCC in encoding rate is
attributed to its identical polynomial coding structure when compared to LCC [15], despite
having different function expressions. Specifically, for the accurate results case of APCC,
the encoding and decoding processes are achieved through Barycentric polynomial inter-
polation; for LCC, the processes are achieved through Lagrange polynomial interpolation.
Although these two formats can be transformed into each other, the Barycentric polynomial
format requires less computational complexity and has stronger numerical stability [27,44].
For the sake of clarity, we omit the set index i in APCC and focus on a specific set, without
loss of generality.

Entropy 2024, 26, 881 12 of 26

Theorem 1. For a coded computing problem (N, S, L, f), where N is the number of workers, S and
L denote the number of stragglers and colluders, respectively, and the computation function f on
the master is an arbitrary polynomial function of degree d, the capacity C is given by:

C =

{ N−S−d(L−1)−1
d(N−S) , if L > 0,

max{N−S+d−1
d(N−S) , N

(N−S)(S+1)} if L = 0.
(22)

Proof. To prove Theorem 1, a lower bound on the capacity C is first established, which
follows the encoding rate of APCC in (20) and (21). To establish the upper bound, we
leverage the optimality statement of LCC, as illustrated in Theorems 1 and 2 of [15], which
shows that polynomial coded computing strategies are able to decode returned computing
results successfully only if the following condition is met:

N ≥
{

d(K + L − 1) + 1 + S, if L > 0,
min{d(K − 1) + 1 + S, K(S + 1)} if L = 0.

(23)

Therefore, we have:

K ≤
{

N−S−1
d − L + 1, if L > 0,

max{N−S+d−1
d , N

(S+1)} if L = 0. (24)

Equation (24) presents the maximum number of task divisions permissible to ensure
decodability, given the numbers of workers N, stragglers S, and colluders L. The reason
is that the more divisions there are, the more results are needed from workers. However,
there are at most N workers, including S stragglers, to return results. Based on (24), an
upper bound on the encoding rate can be derived as:

Rencode =
K

N − S

≤
{ N−S−d(L−1)−1

d(N−S) , if L > 0,

max{N−S+d−1
d(N−S) , N

(N−S)(S+1)} if L = 0.
(25)

Since the capacity C is the supremum of Rencode, it also has the same upper bound. With
the lower bound provided previously, we can conclude that APCC is an optimal coded
computing strategy that can reach the capacity in (22).

To enhance clarity, the fundamental proof for the derivation of (23) is briefly introduced
in Appendix A, following the same steps as outlined in [15].

Please note that the conclusion presented in this subsection pertains only to accurately
coded computing. For approximated coded computing, the use of different approximation
methods can lead to varying errors, making it challenging to compare and analyze their
impact on the encoding rate and capacity in a qualitative manner.

4.2. Guarantee of the Privacy Preservation

Recall that colluders are those workers who can communicate with each other and
attempt to learn something about the original input data. Since the system can tolerate
at most L colluders, we assume that there are L′ colluders, where L′ ≤ L and the user
does not know which workers are colluding. We use the index set L = {l0, l1, . . . , lL′−1} ⊆
{0, . . . , N − 1} to denote the colluding workers, where |L| = L′.

Assuming that the input data {Di,j}
Ki−1
j=0 are independent of each other, we denote the

encoded input data sent to workers in the colluding set L for set i as:

D̃i,L ≜ (D̃i,l0 , D̃i,l1 , . . . , D̃i,lL′−1
). (26)

Entropy 2024, 26, 881 13 of 26

Therefore, the information-theoretic privacy-preserving constraint can be expressed as:

I(Di,0, Di,1, . . . , Di,Ki−1; D̃i,L) = 0, ∀i ∈ [0, r − 1], (27)

where I(·) represents the mutual information function.
With the assumption of finite precision floating point arithmetic, the values of elements

in the data matrices such as Di,j, D̃i,n, and Zi,j come from a sufficiently large finite field F.
Assuming that the size of these data matrices is m × m′, we have

I(Di,0, Di,1, . . . , Di,Ki−1; D̃i,L) = H(D̃i,l0 , . . . , D̃i,lL′−1
)

− H(D̃i,l0 , . . . , D̃i,lL′−1
|Di,0, . . . , Di,Ki−1)

(a)
= H(D̃i,l0 , . . . , D̃i,lL′−1

)− H(Zi,Ki , . . . , Zi,Ki+L−1)

(b)
= H(D̃i,l0 , . . . , D̃i,lL′−1

)− Lmm′ log |F|

≤ H(D̃i,l0) + · · ·+ H(D̃i,lL′−1
)− Lmm′ log |F|

(c)
≤ L′mm′ log |F| − Lmm′ log |F| = 0, ∀i ∈ [0, r − 1], (28)

where (a) is due to the fact that all random matrices {Zi,j}
Ki+L−1
j=Ki

are independent of the

input data {Di,j}
Ki−1
j=0 . (b) is because the entropy of each element in the random matrices

equals log |F|, and (c) follows from the upper bound of the entropy of each element in D̃i,l(·)
being log |F|. Since the mutual information is non-negative, it must be 0, which guarantees
complete privacy preservation.

Note that the analysis in this subsection is applicable to both accurate and approxi-
mated cases. This is because the analysis only involves the encoding and assignment steps
of APCC, and both cases require the same two initial steps. The key difference between
the two aforementioned cases is reflected in the decoding functions with distinct adaptive
parameters w̃n, which correspond to Barycentric polynomial interpolation and Berrut’s
rational interpolation, respectively.

4.3. Analysis of Approximation Error for Case 2

According to the discussion in [27], the approximation error of Berrut’s rational
polynomial interpolation used for Case 2 in APCC is provided as the following theorem:

Theorem 2 ([27]). Let the interpolating objective function hi(x) = f (gi(x)) have a continuous
second derivative on [−1, 1], and the number of received results Ri > 3, the approximation error is
upper bounded as:

||ri(x)− hi(x)|| ≤

2(1 + Γ) sin
(N − Ri + 1)π

2(N − 1)
||h′′i (x)||, (29)

if Ri is even, and

||ri(x)− hi(x)|| ≤

2(1 + Γ) sin
(N − Ri + 1)π

2(N − 1)
(||h′′i (x)||+ ||h′i(x)||), (30)

if Ri is odd, where Γ ≜ (N−Ri+1)(N−Ri+3)π2

4 .

Consequently, for set i and a fixed total number of workers N, the approximation
using ri(x) becomes more accurate as the number of received results Ri increases.

Entropy 2024, 26, 881 14 of 26

4.4. Numerical Stability

In coded computing, the issue of numerical stability typically arises from the decoding
part, which is based on solving a system of linear equations involving a Vandermonde
matrix. As previously discussed, Cases 1 and 2 of APCC employ Barycentric polynomial
interpolation and Berrut’s rational interpolation as decoding methods, respectively. For
Case 1, Barycentric polynomial interpolation demonstrates good performance in addressing
errors caused by floating-point arithmetic [44]. Regarding Case 2, it has been shown in [27]
that the Lebesgue Constant of Berrut’s rational interpolation grows logarithmically with the
number of received results from workers, rendering it both forward and backward stable.

4.5. Encoding and Decoding Complexity

In this subsection, we provide the analysis of encoding and decoding complexity.
Intuitively, APCC utilizes the hierarchical task partitioning structure to enhance delay
performance. However, it does so at the cost of requiring multiple encoding and decoding
operations, specifically r times for the r sets, when compared to LCC [15] and BACC [27].

In LCC and BACC, the encoding operations take N times, corresponding to the number
of workers, while the decoding operations take K′ times, equivalent to the number of task
divisions. On the other hand, in the case of APCC, which features r partitioned sets, the
encoding and decoding operations entail Nr and ∑r

i=0 Ki = K, respectively. When the
computation loads per worker in all strategies are equal, i.e., K′ = K

r , it can be deduced
that the encoding and decoding operations in APCC are r times those of LCC and BACC.

5. Hierarchical Task Partitioning

In this section, the hierarchical task partitioning is formulated as an optimization
problem with the objective of minimizing the task completion delay. The problem is divided
into two cases for consideration: with and without cancellation. Through derivations, two
mixed integer non-linear programming problems are obtained, and we propose a maximum
value descent (MVD) algorithm to obtain the optimal solutions with low computational
complexity. Moreover, after analysis, it is found that the MVD algorithm can be quickly
executed by selecting the appropriate input. Detailed explanations are provided as follows.

5.1. Problem Formulation

In the context of negligible encoding and decoding delays, with the computation delays
of workers being the dominant component, the delay for a worker to complete a single sub-
task, denoted as T can be represented by a shifted exponential distribution [4,7,11,12,40,41],
whose cumulative distribution function (CDF) is given by:

FT(t) = P[T ≤ t] =
{

1 − e−µ(t−a), if t ≥ a,
0, otherwise,

(31)

where a > 0 is a parameter indicating the minimum processing time and µ > 0 is a
parameter modeling the computing performance of workers. All N workers follow a
uniform computation delay distribution defined in (31).

Recall that in the hierarchical structure, the completion of a particular set is dependent
on the successful receiving of a sufficient number of results from its encoded subtasks. The
overall completion of the entire task is achieved only when all r sets have been completed.
Notably, Hi is defined as the threshold number of successful results needed to ensure the
completion of set i.

Following the discussion in Section 3 and assuming that privacy preservation is
required which means L > 0, the threshold for Case 1 of APCC can be expressed as
Hi = d(Ki + L − 1) + 1 according to (11). For Case 2 of APCC, the threshold Hi can be
determined based on the desired approximation precision, with higher values of Hi leading
to more accurate approximations.

Entropy 2024, 26, 881 15 of 26

The completion time of sets is defined as t ≜ {ti, i ∈ [0 : r − 1]}, where ti denotes the
time interval from the initial moment 0 of the entire task to the recovery moment of set i.
The entire task is considered completed when all r sets have been recovered. Therefore, we
denote the entire task completion delay as

T[e] = max
i∈[0:r−1]

ti. (32)

Note that while each worker executes the assigned subtasks in the order of set indices, the
order in which these sets are recovered may not be the same. The completion time of sets is
influenced not only by the set indices but also by the recovery thresholds Hi determined
by Ki.

Due to the randomness of delay, our objective is to minimize the entire task completion
delay T[e] = maxi∈[0:r−1] ti, upon which the probability of the master recovering desired
results for all sets is higher than a given threshold ρs, as expressed by the following inequality:

P[R0(t0) ≥ H0, . . . , Rr−1(tr−1) ≥ Hr−1] ≥ ρs, (33)

where Ri(t) is defined as the number of returned results for set i until time t.
However, to derive (33), we first need to obtain the distribution of the delay required

to receive the last non-straggling result in each set and then derive their joint probability
distribution, which is intractable, especially when considering the cancellation of completed
sets. As a result, the problem with the constraint (33) is hard to solve.

In the following, we consider substituting (33) with an expectation constraint (34d)
and formulate the problem as:

P1 − 1 : min
{K}

max
i∈[0:r−1]

ti (34a)

s.t.
r−1

∑
i=0

Ki = K, (34b)

Hi ≤ N, ∀i ∈ [0, r − 1] (34c)

E[Ri(ti)] ≥ Hi, ∀i ∈ [0, r − 1] (34d)

Ki, Hi ∈ Z+, ∀i ∈ [0, r − 1], (34e)

where K ≜ {Ki|i ∈ [0 : r − 1]} is the partitioning scheme.
Constraint (34b) corresponds to the hierarchical task partitioning, and (34c) indicates

that the threshold for each set should be smaller than the number of workers. In con-
straint (34e), Z+ represents the set of positive integers. Constraint (34d) states that the
master is expected to receive sufficient results of encoded subtasks from workers to recover
f (Di,j)

Ki−1
j=0 in set i. Similar approximation approaches are also used in [4,12,40,41], and the

performance gap can be bounded [12].
As previously shown, Hi = d(Ki + L − 1) + 1 for Case 1 of APCC. Additionally, the

maximum of ti for all sets can be replaced with an optimization variable z by adding an
extra constraint. Consequently, for Case 1 of APCC, P1 − 1 can be equivalently written as:

P1 − 2 : min
{K,z}

z (35a)

s.t. ti − z ≤ 0, ∀i ∈ [0, r − 1], (35b)

d(Ki + L − 1) + 1 −E[Ri(ti)] ≤ 0, ∀i ∈ [0, r − 1], (35c)

d(Ki + L − 1) + 1 − N ≤ 0, ∀i ∈ [0, r − 1], (35d)

Ki ∈Z+, ∀i ∈ [0, r − 1], (35e)

Constraint (34b). (35f)

Entropy 2024, 26, 881 16 of 26

For Case 2 of APCC, one only needs to adjust constraints (35c) and (35d) according
to the relationship between Ki and Hi, which does not affect the subsequent methods
employed. Consequently, for the sake of convenience in expression, we will focus on Case 1
of APCC in the following parts of this section, without loss of generality.

5.2. APCC without Cancellation

If the cancellation of completed sets is not considered, we first denote the delay of one
worker to continuously complete m subtasks as Tm, and derive its CDF from (31) as:

P[Tm ≤ t] =

{
1 − e−µ(t

m −a), if t ≥ ma,
0 otherwise.

(36)

Since computations on workers are independent, E[Ri(ti)] can be written as:

E[Ri(ti)] =
N−1

∑
n=0

E[I{Ti+1≤ti}] = N · P[Ti+1 ≤ ti], (37)

where I{x} denotes the indicator function that equals 1 if event x is true and equals 0
otherwise. P[Ti+1 ≤ ti] is given by (36).

Substituting (37) into P1− 2, we find (35d) is covered by (35c) and obtain the following
optimization problem:

P2 − 1 : min
{K,z}

z (38a)

s.t. d(Ki + L − 1) + 1 − N[1 − e−µ(
ti

i+1−a)] ≤ 0,

∀i ∈ [0, r − 1], (38b)

Constraints (34b), (35b), (35e). (38c)

As P2 − 1 shows, it is a mixed integer non-linear programming (MINLP) problem, which
is usually NP-hard. Although its optimal solution can be found by the Branch and Bound
(B&B) algorithm [47], the computational complexity is up to O

(
(N

d)
r
)

, which means the
B&B algorithm becomes extremely time-consuming when either N or r are large.

Accordingly, to efficiently obtain an optimal solution, we propose the maximum value
descent (MVD) algorithm shown in Algorithm 2. The key idea of the MVD algorithm is
to iteratively update the input solution K = {Ki, i ∈ [0 : r − 1]} by adjusting Ki for the set
that corresponds to the maximum value descent of the objective function z. In the MVD
algorithm, each do-while loop can be regarded as one update, and Kj in Step 7 constantly
approaches the optimal K∗

j . Once reduced in an update, Kj will not increase because the
objective function z must decrease in each update. When the updating process terminates,
the optimal solution K∗ is exactly the obtained K in the last update. Furthermore, the MVD
algorithm has a computational complexity of O

(
Nr
d

)
, as the number of do-while loops is

determined by constraint (35d).
Furthermore, the MVD algorithm can be executed quickly by selecting a sufficiently

good partitioning solution as input. It should be noted that after relaxation and cancellation
of the integer constraint in (35e), P2 − 1 can be transformed into a convex problem as
follows:

P2 − 2 : min
{K,z}

z (39a)

s.t. Constraints (38b), (34b), (35b), (39b)

Ki > 0, ∀i ∈ [0, r − 1]. (39c)

Entropy 2024, 26, 881 17 of 26

and the optimal solution is given in Proposition 1 according to the Karush–Kuhn–Tucker
(KKT) conditions.

Algorithm 2: MVD
Input: An arbitrary feasible solution: K = {Ki, i ∈ [0, r − 1]}
Output: The optimal solution: K∗ = {K∗

i , i ∈ [0, r − 1]}
1 do
2 Substitute K into the original problem and obtain the following convex

optimization problem.

P : min
{t,z}

z s.t. (35b), (38b).

3 Obtain the solution {t∗, z∗} to P by solving the Karush–Kuhn–Tucker (KKT)
conditions.

4 Derive z∗ = maxi∈[0:r−1] t∗i and assume t∗j = z∗, j ∈ [0 : r − 1] without loss of
generality.

5 Initialization: KMVD = K and zMVD = z∗.
6 for l = [0 : r − 1], l ̸= j do
7 Ktemp = K, Ktemp

j = Kj − 1, Ktemp
l = Kl + 1.

8 Substitute Ktemp into the original problem and obtain the corresponding
ztemp like Step 2-3.

9 if ztemp < zMVD then
10 KMVD = Ktemp, zMVD = ztemp.

11 K = KMVD.
12 while zMVD < z∗;

Result: K∗ = K is the optimal solution.

Proposition 1. For given (N, K, L, d, r, µ, a), the optimal solution K[Prop1] and corresponding
delay t[Prop1] to P2 − 2 are

∑r−1
i=0 e−µ(z∗

i+1−a) = r − d(K+rL−r)+r
N ,

t[Prop1]
i = z∗, K[Prop1]

i = N
d [1 − e−µ(z∗

i+1−a)]− 1
d − L + 1.

(40)

Due to the convexity of P2 − 2, the Euclidean distance between K[Prop1] and the
optimal solution K∗ of P2 − 1 is small. Therefore, it is recommended to use a rounded
result of K[Prop1] as the input for the MVD algorithm.

5.3. APCC with Cancellation

If the cancellation of completed sets is considered, a worker may be canceled in a
certain set but successfully return results in time for the subsequent sets. For example,
worker n may be a straggler for set i but completes its assigned subtask and returns the
result in time for the next set (i + 1) due to the cancellation. Such situations make it
quite difficult to derive and analyze the expectation of Ri(t) as in the previous Section 5.2,
because the impact of the cancellation of the previous set on the delay of non-straggling
workers in subsequent sets needs to be considered. Therefore, we provide the following
alternative perspective to simplify this problem.

Note that if set i is the last completed one, the entire task is completed when the last
needed result for this set is received. Thus, we define the delay of set i as T[e]

i and aim to

minimize maxi∈[0:r−1] E[T
[e]
i]. To derive E[T[e]

i], consider that there are still N − Hi + 1 =
N − d(Ki + L − 1) workers computing the last result for set i when other sets are finished.

Entropy 2024, 26, 881 18 of 26

Once any one of these workers returns the first result, this set and the entire task will be
completed. Accordingly, the CDF of T[e]

i can be written as follows:

P
[

T[e]
i ≤ t

]
= 1 − (1 − P[Ti+1 ≤ t])N−d(Ki+L−1)

=

{
1 − e−µ(N−d(Ki+L−1))(t

i+1−a), if t ≥ (i + 1)a,
0 otherwise,

(41)

where Ti+1 is the delay needed to complete (i + 1) subtasks for one worker, shown previ-
ously in (36). Then we have

E[T[e]
i] =

i + 1
µ[N − d(Ki + L − 1)]

+ a(i + 1). (42)

By further adding an extra optimization variable z to substitute maxi∈[0:r−1] E[T
[e]
i], the

optimization problem can be formulated as:

P3 − 1 : min
{K,z}

z (43a)

s.t.
i + 1

µ[N − d(Ki + L − 1)]
+ a(i + 1)− z ≤ 0,

∀i ∈ [0 : r − 1], (43b)

Constraints (34b), (35d), (35e). (43c)

Note that P3− 1 is a MINLP problem similar to P2− 1 and has an O
(
(N

d)
r
)

computa-
tional complexity to solve if using B&B algorithm. However, after relaxation and canceling
the integer constraint in (35e), P3 − 1 can also be transformed into a convex problem as:

P3 − 2 : min
{K,z}

z (44a)

s.t. Constraints (43b), (34b), (35d), (44b)

Ki > 0, ∀i ∈ [0, r − 1], (44c)

and optimal solution is given in Proposition 2 according to the KKT conditions.

Proposition 2. For given (N, K, L, d, r, µ, a), the closed-form expression of the optimal solution
K[Prop2] to P3 − 2 is

r−1

∑
i=0

i + 1
z∗ − a(i + 1)

= µ[rN − d(K + rL − r)], (45a)

K[Prop2]
i =

N
d
− i + 1

dµ[z∗ − a(i + 1)]
− L + 1. (45b)

Consequently, the MVD algorithm is used again to solve P3 − 1 with a computational
complexity of O(Nr

d), and the rounded result of K[Prop2] is recommended to be used as
the input.

6. Simulation Results

In this section, we leverage simulation results to evaluate the performance of APCC in
terms of task completion delay and compare it with other state-of-the-art coded computing
strategies, including LCC [15], LCC with multi-message communications (LCC-MMC) [35],
and BACC [27]. Additionally, we analyze the impact of the number of partitioned sets r
and the number of colluding workers L on the task completion delay of APCC.

Entropy 2024, 26, 881 19 of 26

In simulations, the entire task is given, leading to a constant computation load for the
entire task. In this scenario, we aim to compare the entire task completion delay across
various task divisions and coded computing strategies, illustrating the delay performance
improvements introduced by APCC. We assume that the computation delay T0 of a single
worker to complete the entire task follows a shifted exponential distribution, which is
modeled as:

P[T0 ≤ t] =
{

1 − e−µ0(t−a0), if t ≥ a0,
0 otherwise,

(46)

then the computation delay T of a single worker to complete one subtask follows:

P[T ≤ t] =
{

1 − e−µ0(Kt−a0), if t ≥ a0
K ,

0 otherwise,
(47)

where K denotes the task division number, which may vary depending on the chosen
coded computing strategies. The parameter a0 is set to 0.5 s, and µ0 is set as 1

10a0
. In APCC,

{Ki}r−1
i=0 corresponds to the number of subtasks in each set before encoding, and their

values are obtained using the MVD algorithm. Then, 5 × 104 Monte Carlo realizations are
run to obtain the average completion delay of the entire task, and the simulation codes
are shared here (code link: https://github.com/Zemiser/APCC, accessed on 24 August
2024). Note that by comparing (47) with (31), we have µ = Kµ0 and a = a0

K , and can further
derive the distribution of Tm in (36).

The benchmarks involved in this section are as follows:
(1) APCC: APCC is our proposed coded computing strategy in this paper. It first

divides the entire task into K subtasks and then partitions them into r sets with different
sizes. The number of subtasks in set i, i ∈ [0, r − 1] is denoted as Ki, which satisfies
∑r−1

i=0 Ki = K. After that, each set is encoded into N subtasks assigned to the N workers.
Consequently, each worker is assigned r subtasks. For Case 1 of APCC, the set i is recovered
when the master has received d(Ki + L − 1) + 1 results, and the entire task is completed
when all sets are recovered.

(2) LCC: LCC proposed in [15] divides the entire task into K′ subtasks and then encodes
them into N subtasks assigned to N workers. Each worker in LCC is assigned one subtask.
Therefore, the entire task is completed when the master has received d(K′ + L − 1) + 1
results. L = 0 means the absence of a requirement for privacy preservation. We assume that
the number of workers N is greater than dK′ − 1 to facilitate our analysis. Consequently,
when L = 0, the recovery threshold is defined as d(K′ − 1) + 1 instead of N −

⌊
N
K′

⌋
+ 1

according to [15].
(3) LCC-MMC: MMC proposed in [35] is another approach to utilize the computing

results of straggling workers except for the hierarchical structure. It also achieves a partial
return of results from workers through a more granular task division. Specifically, LCC-
MMC divides the entire task into KLM subtasks and then encodes them into Nr subtasks.
Each worker in LCC-MMC is assigned r subtasks and the entire task is completed when
the master has received d(KLM − 1) + 1 results. However, LCC-MMC cannot preserve the
privacy of input data because multiple encoded data from the same encoding function are
sent to a worker, which is different from the case of APCC where r subtasks assigned to the
same worker are generated by r different encoding functions {gi(x)}r−1

i=0 .
(4) BACC: The BACC strategy, as introduced in [27], offers approximated results with

improved precision achievable by increasing the number of return results from workers.
It shares a task division structure identical to LCC, partitioning the task into K′ subtasks
and then further encoding them into N subtasks. Each worker in BACC is assigned one
such subtask.

To ensure fairness, all strategies employ an identical number of workers and distribute
an equivalent computation load for a single worker. Assuming that the computation loads

https://github.com/Zemiser/APCC

Entropy 2024, 26, 881 20 of 26

of the entire task are O(γ), then each subtask f (Dk) in APCC has a computation load of
O(γ

K), and the computation loads of each worker in APCC are O(γr
K) because there are r

partitioned sets. Similarly, we can derive that the computation loads of each worker in
LCC, BACC and LCC-MMC are O(γ

K′), O(γ
K′) and O(γr

KLM), respectively. In order to ensure
that each worker in these schemes performs an identical fraction of the entire task as APCC,
we have

K′ =
KLM

r
=

K
r

. (48)

Due to the different applicability of various coded computing strategies, we will first
conduct a comprehensive analysis and comparison of APCC alongside other strategies
within the following three scenarios: (1) Accurate results with L colluding workers (L > 0);
(2) Accurate results without colluding workers (L = 0); (3) Approximated results. Finally,
we study the impact of the parameters r and L on the delay performance of APCC.

6.1. Accurate Results with L Colluding Workers (L > 0)

In this scenario, we consider the following three benchmarks: LCC, APCC without
cancellation, and APCC with cancellation. For fair comparison, the computation load of
workers should be set the same, so we have K′ = K

r .
As shown in Figure 5, the average completion delay of the entire task { f (Dk)}K−1

k=0
first decreases and then increases with the task division number K, indicating the existence
of an optimal division that minimizes the delay. This trade-off arises from balancing the
computation load of each worker and the minimum number of workers needed to recover
{ f (Dk)}K−1

k=0 . On the one hand, as the division number decreases, the computation load of
each subtask increases, which leads to longer computation delays for each worker due to
the increased workload. Although the number of workers waiting for results decreases,
the increase in load negates this advantage. On the other hand, while the division number
approaches the maximum, as illustrated in the inequality (24), the number of workers that
the master needs to wait for approaches N, making the straggling effect a bottleneck for
performance and increasing the delay. The zigzag fluctuations in the curve are mainly due
to the integer values of the partitioning numbers.

0 5 10 15 20 25 30

K'=K/r, the number of task divisions

0

100

200

300

400

500

600

700

800

T
a

s
k
 c

o
m

p
le

ti
o

n
 d

e
la

y
 (

m
s
)

APCC w/o Cancel, r=8

APCC w/ Cancel, r=8

APCC w/o Cancel, r=16

APCC w/ Cancel, r=16

LCC

Figure 5. Delay performance comparison between APCC and LCC for accurate results with L
colluding workers (L > 0). Settings: N = 200, L = 20, d = 4. The partitioning strategy {Ki} of APCC
is obtained by the proposed MVD algorithm. r is the number of partitioned sets.

Note that the primary metric for evaluating different schemes in our study is the
minimum task completion delay under different division numbers, as depicted in Figure 5.
This is because the division number K′ = K

r corresponds to the division of computation
function inputs, which is typically a high-dimensional matrix. As such, K′ can be adjusted
flexibly in most cases. Therefore, the minimum achieved task completion delay is the main
focus of our analysis.

Figure 6 compares APCC and LCC in terms of the minimum task completion delay. In
these benchmarks, ‘Brute-Force’ refers to a partitioning strategy derived from an exhaustive

Entropy 2024, 26, 881 21 of 26

search across all possible values of {Ki}. Due to the highly complex traversal search, the
brute-force results are only provided for scenarios with a smaller number of sets (r = 4).
Figure 6 illustrates that both APCC with and without cancellation yield sufficient reductions
in task completion delay compared to LCC. For instance, when N = 100, L = 10, d = 2,
r = 16, and the partitioning strategy obtained from the MVD algorithm is utilized, APCC
with and without cancellation achieve delay reductions of 41.4% and 47.5%, respectively,
compared to LCC. Moreover, the comparison with the ‘Brute-Force’ benchmarks shows
that the partitioning strategy {Ki} obtained through the MVD algorithm is near-optimal.

N=100,L=10,d=2 N=200,L=20,d=4
0

100

200

300

400

500

600

M
in

im
u
m

 t
a
s
k
 c

o
m

p
le

ti
o
n
 d

e
la

y
 (

m
s
)

245.2

174
152.2

192.7 184.3 180.2 175.9

406.2

238
213.3

275.2 270.4 266 260.9

LCC

APCC w/o Cancel, MVD, r=16

APCC w/ Cancel, MVD, r=16

APCC w/o Cancel, MVD, r=4

APCC w/ Cancel, MVD, r=4

APCC w/o Cancel, Brute-Force, r=4

APCC w/ Cancel, Brute-Force, r=4

Figure 6. APCC vs. LCC. Minimum task completion delay achieved by all possible task divisions
K′ = K

r , applied to accurate results with L colluding workers (L > 0).

6.2. Accurate Results without Colluding Workers (L = 0)

In this scenario, we evaluate four benchmarks: LCC, LCC-MMC, and APCC with and
without cancellation. Among these, only LCC does not consider partial results from strag-
gling workers. Similar to Subsection IV.A, we set K′ = KLM

r = K
r , with KLM representing

the task division number for LCC-MMC.
In Figure 7, both LCC-MMC and APCC effectively reduce task completion delay

compared to LCC. Specifically, when r is large enough, APCC with cancellation closely
approaches the performance of LCC-MMC. This similarity arises because, in both APCC
and LCC-MMC, the master utilizes nearly all computing results from workers when divided
subtasks are sufficiently small. Figure 7 also illustrates that when privacy is not a concern,
MMC is a viable method to reduce the delay in coded computing.

N=100,L=0,d=2 N=200,L=0,d=4
0

50

100

150

200

250

300

M
in

im
u

m
 t

a
s
k
 c

o
m

p
le

ti
o

n
 d

e
la

y
 (

m
s
)

146.4 144.1

116.1 115.9

140.6 139.2133.9
127.9

110.9 110.9

135.3 134.7

116.7 119.7

LCC

LCC-MMC, r=4

APCC w/o Cancel, MVD, r=4

APCC w/ Cancel, MVD, r=4

LCC-MMC, r=16

APCC w/o Cancel, MVD, r=16

APCC w/ Cancel, MVD, r=16

Figure 7. APCC vs. LCC and LCC-MMC. Minimum task completion delay achieved by all possible
task divisions K′ = KLM

r = K
r , applied to accurate results without colluding workers (L = 0).

Compared to Figure 6, we observe that the absence of colluding workers limits the
potential for delay optimization. For instance, with parameters N = 100, L = 0, d = 2, and
r = 16, APCC with cancellation achieves only a 20.3% delay reduction compared to LCC.

6.3. Approximated Results

In this subsection, we compare the task completion delay of BACC and case 2 of
APCC, which can both provide approximated results with fewer workers than the recovery

Entropy 2024, 26, 881 22 of 26

threshold. To ensure uniform worker computation load, we also set K′ = K
r , as in our

previous analysis. Furthermore, since BACC shares an identical task division structure
with LCC, we employ a smaller recovery threshold of the same form as LCC to evaluate its
delay performance. For instance, when the recovery threshold d(K′ + L − 1) + 1 exceeds
N, a reduced uniform recovery threshold d

2 (K
′ + L − 1) + 1 below N can be employed for

both BACC and APCC.
As shown in Figure 8, the hierarchical task partitioning and the cancellation of com-

pleted sets in APCC yield sufficient delay performance improvement. Compared to BACC,
the proposed MVD algorithm for APCC achieves up to 42.9% delay reduction. Note that
in this scenario, both APCC and BACC can obtain approximated results with fewer re-
turned results, while LCC for accurate computation fails to work when K′ is larger than
20 in the two cases of Figure 8, as the recovery threshold of LCC needs to be larger than
d(K′ + L − 1) + 1.

N=500,d=25 N=700,d=35
0

50

100

150

200

250

300

M
in

im
u
m

 t
a
s
k
 c

o
m

p
le

ti
o
n
 d

e
la

y
 (

m
s
)

190.2

136.7

121.7

87.3

108.7

78

136.8

98.2

128.2

92.3

128.7

93.1

121.9

87.9

BACC

APCC w/o Cancel, MVD, r=16

APCC w/ Cancel, MVD, r=16

APCC w/o Cancel, MVD, r=4

APCC w/ Cancel, MVD, r=4

APCC w/o Cancel, Brute-Force, r=4

APCC w/ Cancel, Brute-Force, r=4

Figure 8. APCC vs. BACC. Minimum task completion delay achieved by all possible task divisions
K′ = K

r , applied to approximated results.

6.4. Impact of r and L on the Performance of APCC

The impact of the hierarchical partitioning number of sets r on the task completion
delay of APCC is illustrated in Figure 9a. It is observed that a larger number of sets
r results in a smaller computation delay, which is consistent with the results shown in
previous figures. The reduction in delay can be attributed to the fact that a larger r implies
a smaller computation load for each subtask in the hierarchical structure, and the difference
in computation load between fast and slow workers can be described more precisely.
Consequently, the proposed MVD algorithm can better utilize the computing results of
straggling workers to reduce delay. Furthermore, Figure 9a indicates that the benefit
of increasing r has a boundary effect, which corresponds to the upper bound of benefit
brought by the granularity refinement of task divisions.

Recall that L denotes the maximum number of colluding workers that a coded com-
puting scheme can tolerate. The value of L can serve as an indirect indicator of the level of
privacy preservation offered by the scheme. Specifically, a larger value of L corresponds to
more stringent privacy protection and a higher tolerance for colluders. It is demonstrated
in Section 4.2 that complete data privacy can be achieved as long as the number of colluders
remains below L.

Figure 9b illustrates the impact of the number of colluding workers L on the trade-off
between delay and privacy preservation. It is worth noting that, for a fixed K′, increasing
the value of L leads to a larger recovery threshold H for the original subtasks, which results
in a longer task completion delay. Moreover, as demonstrated in (24), choosing a larger
value of L restricts the maximum number of task divisions. Consequently, the range of K′

values corresponding to the plotted curves in Figure 9b varies with L.

Entropy 2024, 26, 881 23 of 26

5 10 15 20 25 30

r, the number of sets

140

160

180

200

220

240

260

280

M
in

im
u

m
 t

a
s
k
 c

o
m

p
le

ti
o

n
 d

e
la

y
 (

m
s
)

N=200, L=20, d=4, w/o Cancel

N=200, L=20, d=4, w/ Cancel

N=100, L=10, d=2, w/o Cancel

N=100, L=10, d=2, w/ Cancel

(a) Delay of APCC vs. r

5 10 15 20 25 30 35 40

K'=K/r, the number of task divisions

0

500

1000

1500

2000

T
a

s
k
 c

o
m

p
le

ti
o

n
 d

e
la

y
 (

m
s
) LCC, L=20

APCC w/ Cancel, MVD, L=20

APCC w/ Cancel, MVD, L=10

APCC w/ Cancel, MVD, L=30

(b) N = 200, d = 4, r = 12
Figure 9. Delay performance of APCC with different r and L.

7. Conclusions

In this paper, we have investigated a distributed computing system that consists of one
master and multiple workers. We have first proposed an adaptive privacy-preserving coded
computing (APCC) strategy, which is suitable for diverse task scenarios and computation
functions. APCC adaptively provides accurate or approximated results with controllable
error according to the form of computation functions, and the computation process remains
numerically stable. We have rigorously proved the optimality of APCC in terms of encoding
rate based on the optimal recovery threshold of LCC. The complete privacy preservation of
input data has also been proved.

We have further provided a low-complexity maximum value descent algorithm to
optimally solve the hierarchical task partitioning problem in APCC, with and without
considering cancellation, aiming at minimizing task completion delay. The cancellation is
our proposed operation aiming to further accelerate computation by timely canceling the
completed tasks. Extensive simulations have demonstrated that APCC outperforms the
state-of-the-art coded computing strategies by a range of 20.3% to 42.9% in terms of task
completion delay.

Author Contributions: Conceptualization, Q.Z. and S.Z.; Methodology, Q.Z. and Z.N.; Software,
Q.Z.; Validation, Z.N.; Formal analysis, Z.N.; Resources, S.Z.; Writing—original draft, Q.Z.; Writing—
review & editing, S.Z.; Project administration, S.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China un-
der Grants 62341108; in part by the China Postdoctoral Science Foundation under Grant 2023M742011;
and in part by the Fundamental Research Funds for the Central Universities under Grant 2242022k60006.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Entropy 2024, 26, 881 24 of 26

Appendix A. Proof of the Inequality (23)

In this appendix, the proof for the optimal recovery threshold of LCC [15] to guarantee
decodability is briefly introduced to enhance the clarity of the inequality (23). To achieve
this, a weakened result under the condition of multilinearity is first derived. After that, in
order to extend to the case of a general polynomial function, a construction of multilinear
functions based on polynomial functions is provided.

The definition of the multilinear function is as follows:

Definition A1. For a multilinear function f (D1, D2, . . . Dd) with degree d, D1, D2, . . . Dd are its
d input variables, and f is linear with respect to each variable.

Under the assumption of the multilinearity of f , the optimal recovery threshold is
provided in Lemma 1 of [15] as:

Lemma A1 ([15]). Consider an (N, S, L, f) coded computing problem, where N is the number of
workers, S, L is the maximum number of stragglers and colluding workers that can be tolerated,
respectively. f is a multilinear function, the degree of f is d, and the number of the equally divided
input data is K. The optimal recovery threshold for linear coded computing schemes, denoted by H∗,
is defined as:

H∗ ≜

{
d(K + L − 1) + 1, if L > 0,
min{d(K − 1) + 1, N −

⌊
N
K

⌋
+ 1} if L = 0.

(A1)

In order to generalize to the case of polynomial functions, a construction method of
multilinear functions is given in Lemma 4 of [15] as follows:

Lemma A2 ([15]). For a general polynomial function f of degree d, f ′ is a function constructed
based on f and satisfies:

f ′(D1, D2, . . . , Dd) = ∑
T ⊆[1:d]

[(−1)|T | f (∑
k∈T

Dk)]. (A2)

Then, f ′ is multilinear with respect to the d inputs. Here, T is a subset of the set [1 : d] and the
degree of f ′ also equals d because it is a linear combination of f .

Based on the above two lemmas, Lemma A1 can be extended to the case of general
polynomial [15]. Moreover, the actual number of results returned by workers equals
(N − S), which must be larger than the recovery threshold. Consequently, to guarantee the
decodability for general polynomial coded computing, N − S ≥ H∗ should hold, and thus
the Formula (23) is derived.

References
1. Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.; Yang, K.; et al. Large

scale distributed deep networks. In Proceedings of the NIPS’12: Proceedings of the 25th International Conference on Neural
Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 1, p. 25.

2. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A
System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

3. Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; López García, Á.; Heredia, I.; Malík, P.; Hluchỳ, L. Machine learning and deep
learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 52, 77–124. [CrossRef]

4. Sun, Y.; Zhang, F.; Zhao, J.; Zhou, S.; Niu, Z.; Gündüz, D. Coded computation across shared heterogeneous workers with
communication delay. IEEE Trans. Signal Process. 2022, 70, 3371–3385. [CrossRef]

5. Dean, J.; Barroso, L.A. The tail at scale. Commun. ACM 2013, 56, 74–80. [CrossRef]
6. Tandon, R.; Lei, Q.; Dimakis, A.G.; Karampatziakis, N. Gradient coding: Avoiding stragglers in distributed learning.

In Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017;
pp. 3368–3376.

http://doi.org/10.1007/s10462-018-09679-z
http://dx.doi.org/10.1109/TSP.2022.3185905
http://dx.doi.org/10.1145/2408776.2408794

Entropy 2024, 26, 881 25 of 26

7. Lee, K.; Lam, M.; Pedarsani, R.; Papailiopoulos, D.; Ramchandran, K. Speeding Up Distributed Machine Learning Using Codes.
IEEE Trans. Inf. Theory 2018, 64, 1514–1529. [CrossRef]

8. Li, S.; Maddah-Ali, M.A.; Yu, Q.; Avestimehr, A.S. A Fundamental Tradeoff Between Computation and Communication in
Distributed Computing. IEEE Trans. Inf. Theory 2018, 64, 109–128. [CrossRef]

9. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. Polynomial codes: An optimal design for high-dimensional coded matrix multiplica-
tion. In Proceedings of the NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems,
Long Beach, CA, USA, 4–9 December 2017; p. 30.

10. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. Straggler mitigation in distributed matrix multiplication: Fundamental limits and
optimal coding. IEEE Trans. Inf. Theory 2020, 66, 1920–1933. [CrossRef]

11. Ferdinand, N.; Draper, S.C. Hierarchical coded computation. In Proceedings of the 2018 IEEE International Symposium on
Information Theory, Vail, CO, USA, 17–22 June 2018; pp. 1620–1624.

12. Reisizadeh, A.; Prakash, S.; Pedarsani, R.; Avestimehr, A.S. Coded computation over heterogeneous clusters. IEEE Trans. Inf.
Theory 2019, 65, 4227–4242. [CrossRef]

13. Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: Promise and potential. Health Inf. Sci. Syst. 2014, 2, 1–10.
[CrossRef]

14. McAfee, A.; Brynjolfsson, E.; Davenport, T.H.; Patil, D.; Barton, D. Big data: The management revolution. Harv. Bus. Rev. 2012,
90, 60–68.

15. Yu, Q.; Li, S.; Raviv, N.; Kalan, S.M.M.; Soltanolkotabi, M.; Avestimehr, S.A. Lagrange coded computing: Optimal design for
resiliency, security, and privacy. In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics,
AISTATS 2019, Naha, Japan, 16–18 April 2019; pp. 1215–1225.

16. Yang, H.; Lee, J. Secure Distributed Computing With Straggling Servers Using Polynomial Codes. IEEE Trans. Inf. Forensics Secur.
2019, 14, 141–150. [CrossRef]

17. Chang, W.T.; Tandon, R. On the capacity of secure distributed matrix multiplication. In Proceedings of the 2018 IEEE Global
Communications Conference, Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.

18. Aliasgari, M.; Simeone, O.; Kliewer, J. Private and secure distributed matrix multiplication with flexible communication load.
IEEE Trans. Inf. Forensics Secur. 2020, 15, 2722–2734. [CrossRef]

19. Kim, M.; Lee, J. Private secure coded computation. In Proceedings of the 2019 IEEE International Symposium on Information
Theory (ISIT), Paris, France, 7–12 July 2019; pp. 1097–1101.

20. Kakar, J.; Ebadifar, S.; Sezgin, A. On the capacity and straggler-robustness of distributed secure matrix multiplication. IEEE
Access 2019, 7, 45783–45799. [CrossRef]

21. Nodehi, H.A.; Najarkolaei, S.R.H.; Maddah-Ali, M.A. Entangled polynomial coding in limited-sharing multi-party computation.
In Proceedings of the 2018 IEEE Information Theory Workshop (ITW), Guangzhou, China, 25–29 November 2018; pp. 1–5.

22. Yu, Q.; Avestimehr, A.S. Entangled polynomial codes for secure, private, and batch distributed matrix multiplication: Breaking
the “cubic” barrier. In Proceedings of the 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA,
USA, 21–26 June 2020; pp. 245–250.

23. Chang, W.T.; Tandon, R. On the upload versus download cost for secure and private matrix multiplication. In Proceedings of the
2019 IEEE Information Theory Workshop (ITW), Visby, Sweden, 25–28 August 2019; pp. 1–5.

24. D’Oliveira, R.G.; El Rouayheb, S.; Karpuk, D. GASP codes for secure distributed matrix multiplication. IEEE Trans. Inf. Theory
2020, 66, 4038–4050. [CrossRef]

25. Akbari-Nodehi, H.; Maddah-Ali, M.A. Secure Coded Multi-Party Computation for Massive Matrix Operations. IEEE Trans. Inf.
Theory 2021, 67, 2379–2398. [CrossRef]

26. Tahmasebi, B.; Maddah-Ali, M.A. Private Function Computation. In Proceedings of the 2020 IEEE International Symposium on
Information Theory (ISIT), Los Angeles, CA, USA, 21–26 June 2020; pp. 1118–1123.

27. Jahani-Nezhad, T.; Maddah-Ali, M.A. Berrut Approximated Coded Computing: Straggler Resistance Beyond Polynomial
Computing. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 111–122. [CrossRef]

28. Jahani-Nezhad, T.; Maddah-Ali, M.A. CodedSketch: A coding scheme for distributed computation of approximated matrix
multiplication. IEEE Trans. Inf. Theory 2021, 67, 4185–4196. [CrossRef]

29. Soleymani, M.; Ali, R.E.; Mahdavifar, H.; Avestimehr, A.S. ApproxIFER: A model-agnostic approach to resilient and robust
prediction serving systems. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Virtual
Event, 22 February–1 March 2022; Volume 36, pp. 8342–8350.

30. Fahim, M.; Cadambe, V.R. Numerically stable polynomially coded computing. IEEE Trans. Inf. Theory 2021, 67, 2758–2785.
[CrossRef]

31. Ramamoorthy, A.; Tang, L. Numerically Stable Coded Matrix Computations via Circulant and Rotation Matrix Embeddings.
IEEE Trans. Inf. Theory 2022, 68, 2684–2703. [CrossRef]

32. Charalambides, N.; Mahdavifar, H.; Hero, A.O. Numerically stable binary gradient coding. In Proceedings of the 2020 IEEE
International Symposium on Information Theory, Los Angeles, CA, USA, 21–26 June 2020; pp. 2622–2627.

33. Buyukates, B.; Ulukus, S. Timely distributed computation with stragglers. IEEE Trans. Commun. 2020, 68, 5273–5282. [CrossRef]
34. Hasırcıoğlu, B.; Gómez-Vilardebó, J.; Gündüz, D. Bivariate polynomial coding for efficient distributed matrix multiplication.

IEEE J. Sel. Areas Inf. Theory 2021, 2, 814–829. [CrossRef]

http://dx.doi.org/10.1109/TIT.2017.2736066
http://dx.doi.org/10.1109/TIT.2017.2756959
http://dx.doi.org/10.1109/TIT.2019.2963864
http://dx.doi.org/10.1109/TIT.2019.2904055
http://dx.doi.org/10.1186/2047-2501-2-3
http://dx.doi.org/10.1109/TIFS.2018.2846601
http://dx.doi.org/10.1109/TIFS.2020.2972166
http://dx.doi.org/10.1109/ACCESS.2019.2908024
http://dx.doi.org/10.1109/TIT.2020.2975021
http://dx.doi.org/10.1109/TIT.2021.3050853
http://dx.doi.org/10.1109/TPAMI.2022.3151434
http://dx.doi.org/10.1109/TIT.2021.3068165
http://dx.doi.org/10.1109/TIT.2021.3050526
http://dx.doi.org/10.1109/TIT.2021.3137266
http://dx.doi.org/10.1109/TCOMM.2020.3001873
http://dx.doi.org/10.1109/JSAIT.2021.3105365

Entropy 2024, 26, 881 26 of 26

35. Ozfatura, E.; Ulukus, S.; Gündüz, D. Straggler-aware distributed learning: Communication–computation latency trade-off.
Entropy 2020, 22, 544. [CrossRef] [PubMed]

36. Dutta, S.; Fahim, M.; Haddadpour, F.; Jeong, H.; Cadambe, V.; Grover, P. On the Optimal Recovery Threshold of Coded Matrix
Multiplication. IEEE Trans. Inf. Theory 2020, 66, 278–301. [CrossRef]

37. Yang, C.S.; Avestimehr, A.S. Coded computing for secure Boolean computations. IEEE J. Sel. Areas Inf. Theory 2021, 2, 326–337.
[CrossRef]

38. Tang, T.; Ali, R.E.; Hashemi, H.; Gangwani, T.; Avestimehr, S.; Annavaram, M. Adaptive verifiable coded computing: Towards
fast, secure and private distributed machine learning. In Proceedings of the 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Lyon, France, 30 May–3 June 2022; pp. 628–638.

39. Soleymani, M.; Ali, R.E.; Mahdavifar, H.; Avestimehr, A.S. List-decodable coded computing: Breaking the adversarial toleration
barrier. IEEE J. Sel. Areas Inf. Theory 2021, 2, 867–878. [CrossRef]

40. Zhang, F.; Sun, Y.; Zhou, S. Coded computation over heterogeneous workers with random task arrivals. IEEE Commun. Lett.
2021, 25, 2338–2342. [CrossRef]

41. Wu, F.; Chen, L. Latency optimization for coded computation straggled by wireless transmission. IEEE Wirel. Commun. Lett. 2020,
9, 1124–1128. [CrossRef]

42. Van Huynh, N.; Hoang, D.T.; Nguyen, D.N.; Dutkiewicz, E. Joint Coding and Scheduling Optimization for Distributed Learning
Over Wireless Edge Networks. IEEE J. Sel. Areas Commun. 2022, 40, 484–498. [CrossRef]

43. Kim, D.; Park, H.; Choi, J.K. Optimal Load Allocation for Coded Distributed Computation in Heterogeneous Clusters. IEEE
Trans. Commun. 2021, 69, 44–58. [CrossRef]

44. Berrut, J.P.; Trefethen, L.N. Barycentric lagrange interpolation. SIAM Rev. 2004, 46, 501–517. [CrossRef]
45. Berrut, J.P. Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl.

1988, 15, 1–16. [CrossRef]
46. Zeng, Q.; Zhou, S. On the Capacity of Privacy-Preserving and Straggler-Robust Distributed Coded Computing. In Proceedings of

the 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 28–30 July 2021; pp. 664–669.
47. Lawler, E.L.; Wood, D.E. Branch-and-bound methods: A survey. Oper. Res. 1966, 14, 699–719. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/e22050544
http://www.ncbi.nlm.nih.gov/pubmed/33286316
http://dx.doi.org/10.1109/TIT.2019.2929328
http://dx.doi.org/10.1109/JSAIT.2021.3055341
http://dx.doi.org/10.1109/JSAIT.2021.3102956
http://dx.doi.org/10.1109/LCOMM.2021.3067888
http://dx.doi.org/10.1109/LWC.2020.2983359
http://dx.doi.org/10.1109/JSAC.2021.3118432
http://dx.doi.org/10.1109/TCOMM.2020.3030667
http://dx.doi.org/10.1137/S0036144502417715
http://dx.doi.org/10.1016/0898-1221(88)90067-3
http://dx.doi.org/10.1287/opre.14.4.699

	Introduction
	System Model
	Adaptive Privacy-Preserving Coded Computing
	General Description
	Encoding
	Assignment
	Decoding

	An Illustrating Example
	Encoding
	Assignment
	Decoding

	Hierarchical Task Partitioning and Cancellation

	Performance Analysis
	Optimality of APCC in Terms of Encoding Rate
	Guarantee of the Privacy Preservation
	Analysis of Approximation Error for Case 2
	Numerical Stability
	Encoding and Decoding Complexity

	Hierarchical Task Partitioning
	Problem Formulation
	APCC without Cancellation
	APCC with Cancellation

	Simulation Results
	Accurate Results with L Colluding Workers (L>0)
	Accurate Results without Colluding Workers (L=0)
	Approximated Results
	Impact of r and L on the Performance of APCC

	Conclusions
	Appendix A
	References

