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Abstract: Assuming the underlying statistical distribution of data is critical in information theory, as
it impacts the accuracy and efficiency of communication and the definition of entropy. The real-world
data are widely assumed to follow the normal distribution. To better comprehend the skewness
of the data, many models more flexible than the normal distribution have been proposed, such
as the generalized alpha skew-t (GAST) distribution. This paper studies some properties of the
GAST distribution, including the calculation of the moments, and the relationship between the
number of peaks and the GAST parameters with some proofs. For complex probability distributions,
representative points (RPs) are useful due to the convenience of manipulation, computation and
analysis. The relative entropy of two probability distributions could have been a good criterion for the
purpose of generating RPs of a specific distribution but is not popularly used due to computational
complexity. Hence, this paper only provides three ways to obtain RPs of the GAST distribution,
Monte Carlo (MC), quasi-Monte Carlo (QMC), and mean square error (MSE). The three types of RPs
are utilized in estimating moments and densities of the GAST distribution with known and unknown
parameters. The MSE representative points perform the best among all case studies. For unknown
parameter cases, a revised maximum likelihood estimation (MLE) method of parameter estimation
is compared with the plain MLE method. It indicates that the revised MLE method is suitable for
the GAST distribution having a unimodal or unobvious bimodal pattern. This paper includes two
real-data applications in which the GAST model appears adaptable to various types of data.

Keywords: entropy; generalized alpha skew-t distribution; kernel density estimation; maximum
likelihood estimation; moments; quasi-Monte Carlo; representative points

1. Introduction

Statistical distributions play a crucial role in information theory since they describe
the probability characteristics of data or signals, and hence directly affect the accuracy
and efficiency of the representation, transmission, compression, and reconstruction of
information. Entropy, as the most important measure in the field of information theory,
depends on the statistical distribution of the random variable. In many applications of
information theory, it requires the assumption of the statistical distribution of the data.
Although assumed to follow the normal distribution in most statistical analyses due to
mathematical convenience and generality, real-world data frequently exhibit skewness,
leading to the demand for more flexible models. The geometric Brownian motion (GBM) as
a popular model of stochastic processes assumes that its solutions follow the log-normal
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distribution. Gupta et al. (2024) [1] indicated that the GBM yields trajectories significantly
deviated from the reference distribution when the data do not meet the log-normal assump-
tion. To deal with the limitations in such a scenario, some may consider correcting the
model as in [1]. Constructing alternative distributions of the normal distribution has been
a common concern.

The skew-normal (SN) distribution is an extension of the normal distribution that
allows for skewness, capable of modeling asymmetric data. It was first introduced by
Azzalini (1985) [2]. If a random variable Z has a probability density function (pdf) given by

ϕ(z; s) = 2ϕ(z)Φ(sz), z ∈ R, s ∈ R, (1)

where ϕ(·) and Φ(·) are the pdf and cumulative distribution function (cdf) of the standard
normal distribution, then Z follows the SN distribution, denoted as Z ∼ SN(s). The
parameter s controls the skewness of the distribution. When s = 0, the SN distribution
reduces to the standard normal distribution. With s > 0, the SN distribution is right-skewed,
while s < 0 implies left skewness.

The skew-t (ST) distribution is an intriguing example among scale mixtures of SN
distributions. It was first formulated by Branco and Dey (2001) [3] and later extensively
studied by Azzalini and Capitanio (2003) [4]. An ST random variable, Y ∼ ST(s, ν), can be
represented as

Y =
Z√
V/ν

, (2)

where Z ∼ SN(s) and V ∼ χ2
ν, i.e., chi-square distribution with ν degrees of freedom,

are independent of each other. The moment of Y exists only when the order is less than
ν, which is the same condition required as the Student’s t-distribution with ν degrees
of freedom, denoted by tν. The construction method from the SN distribution to the ST
distribution is similar to the approach used to derive the Student’s t-distribution from the
normal distribution. The pdf of the ST distribution is given by

f (y; s, ν) = 2t(y; ν)T

(√
1 + ν

y2 + ν
sy; ν + 1

)
, y ∈ R, s ∈ R, (3)

where t(·) is the pdf of tν, and T(·) is the cdf of tν+1. The parameter ν controls the tail
heaviness. As ν approaches infinity, the ST distribution approaches the SN distribution.
Lower values of ν result in heavier tails, providing robustness against outliers. Similar to
the SN distribution, the parameter s controls the skewness. When s = 0, the ST distribution
reduces to the Student’s t-distribution. Azzalini and Genton (2008) [5] conducted a quite
extensive numerical exploration, demonstrating that the ST distribution can adapt well
to various empirical problems. They utilized an autoregressive model of order one,
Y(t) = β0 + β1Y(t− 1) + ϵ(t) with β0 ∈ R and |β1| ≤ 1, to fit the 91 monthly interest rates
of an Austrian bank. Their results clearly showed that the error components ϵ(t) have
an ST distribution, where the small degrees of freedom parameter signifies heavy tails in
the error distribution, allowing the ST model to better manage outliers than the normal
distribution. The ST distribution, which combines the characteristics of the Student’s t-
distribution and the SN distribution, is particularly suitable for the applications in finance
that need to model returns with skewness and excess kurtosis, as well as in environmental
studies where the focus is on modeling extreme events. Martínez-Flórez et al. (2020) [6] also
mentioned other kinds of skew distributions like skew-Student-t distribution, skew-Cauchy
distribution, skew-logistic distribution and skew-Laplace distribution. They summarized
those distributions as skew-elliptical distributions since those distributions have a unified
expression form of the density function as

hY(y; s) = 2 f (y)F(sy), y, s ∈ R,

where f (·) is a symmetric pdf, and F(·) is the corresponding cdf.
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Another type of skew distribution is to add a coefficient function with an α argument
to the density function. Elal-Olivero (2010) [7] proposed a distribution called alpha-skew-
normal (ASN), with a pdf defined as

f (x; α) =
(1− αx)2 + 1

2 + α2 ϕ(x), x ∈ R, α ∈ R. (4)

If a random variable X has the pdf as (4), we denote it as X ∼ ASN(α). This distribution
is more flexible than SN and ST distributions since it can be unimodal or multimodal by
adjusting the α parameter. When α = 0, the ASN distribution reduces to the standard
normal distribution, X ∼ N(0, 1).

Although the ASN distribution is able to model both skew and bimodal data, it has
limitations when data have tails thinner or thicker than the normal distribution. In order to
fit stock data more accurately, Altun et al. (2018) [8] introduced a new generalized alpha
skew-t (GAST) distribution combining the approaches of [4,7]. They combined the GAST
distribution with the generalized autoregressive conditional heteroskedasticity (GARCH)
model to build a new Value-at-Risk (VaR) prediction model for forecasting daily log returns
in three years. They compared the failure rates of the GARCH models under different
distribution assumptions including normal, Student’s t, ST and GAST. The results showed
that the GAST distribution performs the best in the backtesting. The definition of GAST
distribution and its properties with proof will be elaborated in the next section.

For an unknown continuous statistical distribution, an empirical distribution of a
random sample is a traditional way to approximate the target distribution. However, it
often leads to low accuracy, and hence the support points for the discrete approximation,
also known as representative points (RPs), are explored in order to preserve the information
of the target distribution as much as possible. Representative points have a big potential
for applications in statistical simulation and inference, see Fang and Pan (2023) [9] for a
comprehensive review. Various kinds of representative points of different statistical distri-
butions have been explored in the literature. Especially for complex distributions, the study
on the representative points is necessary. The concept of representative points is to simplify
complex probability distributions with discrete points easier to manipulate, facilitating
efficient computations and analyses. These points serve as a finite set that approximates
the distribution of a random variable that can be either discrete or continuous and either
univariate or multivariate. In this paper, we focus on the study of the representative points
of the GAST distribution and applications. We first introduce the concepts of three kinds of
RPs here, while the specific construction procedures are included in Section 4 with their
applications on the estimation of moments and densities.

There are many existing criteria for choosing RPs of a distribution, such as Monte
Carlo RPs (MC-RPs), quasi-Monte Carlo RPs (QMC-RPs) and mean square error RPs (MSE-
RPs) that will be introduced as follows. In fact, the Kullback–Leibler (KL) divergence or
relative entropy of two probability distributions is a good criterion for this purpose. The
entropy has been utilized as a measure of the experimental design, for example, Lin et al.
(2022) [10]. Due to computational complexity, entropy is not popularly used in generating
RPs in applications. Therefore, in this article, we study MC-RPs, QMC-RPs, and MSE-RPs
of the Generalized alpha skew-t distribution only.

1.1. Monte Carlo Representative Points

Let X be the population random variable with the cdf F(x) = P{X ≤ x}, x ∈ R.
Various Monte Carlo methods provide ways to generate independent identically distributed
(i.i.d.) samples {x1, . . . , xn} from the population, and p(xi) =

1
n , i = 1, . . . , n. The empirical

distribution of the random sample is defined as follows:

Fn(x) =
1
n

n

∑
i=1

I{xi≤x},
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where IA is the indicator function of A. The empirical distribution Fn(x) should be close
to F(x) in the sense of consistency. Hence, Fn(x) can be regarded as an approximation of
F(x). We denote this empirical distribution of random samples generated by the Monte
Carlo method as FMC. Traditional statistical inference is based on the empirical distribution.
Efron (1979) [11] proposed a resampling technique, the bootstrap method, with which we
can take a set of random samples from FMC instead of F. Combined with bootstrap, the
MC-RPs have proven to be useful in statistical inference, such as parameter estimation,
density estimation and hypothesis testing. However, the MC method has many limitations
since the convergence rate of Fn(x)→ F(x) in distribution as n→ ∞, given by O( 1√

n ), is
too slow. The following two kinds of RPs improve the convergence rate nicely.

1.2. Quasi-Monte Carlo Representative Points

For a high-dimensional integration problem:

I( f ) =
∫ 1

0
· · ·

∫ 1

0
f (y1, . . . , yd)dy1 · · · dyd =

∫
Cd

f (y)dy,

where f is a continuous function on Cd = [0, 1]d. Suppose that Y = {y1, . . . , yn} is a set of
n points uniformly scattered in Cd, we can estimate I( f ) by

f (y) =
1
n

n

∑
i=1

f (yi), yi ∈ Y .

If we generate Y by the MC method, the convergence rate of f (y)→ I( f ) is O(1/
√

n) as
n→ ∞. The quasi-Monte Carlo (QMC) method provides many ways for the construction
of Y to increase the convergence rate. Through the QMC method, the convergence rate can
reach O(n−1logdn) according to Fang et al. (1994) [12]. For further theory studies, readers
can refer to Hua and Wang (1981) [13] and Niederreiter (1992) [14]. In the study of [12], the
F-discrepancy is used to measure the uniformity of Y in Cd, which is defined by

D(F, Fn) = sup
x∈Rd
|F(x)− Fn(x)|, (5)

where F(x) is the cdf of uniform distribution U(Cd) and Fn(x) is the empirical distribution
of Y . The Y that minimizes D(F, Fn) is called QMC-RPs which have equal probability 1/n.

For the univariate distribution of this paper, the QMC method is designed to sample
points that are uniformly distributed on the interval [0, 1]. If the inverse function of F exists,
then the set of n points: {

bj = F−1
(

2j− 1
2n

)
, j = 1, . . . , n

}
, (6)

has been proved to have the minimal F-discrepancy of 1/2n from F(x) [12]. Therefore, the
set of points B = {b1, . . . , bn} is called the QMC-RPs of F(x). Fang et al. (1994) [12] gave
a comprehensive study on QMC methods and their applications in statistical inference,
experimental design, geometric probability, and optimization.

1.3. Mean Square Error Representative Points

The concept of MSE-RPs was independently proposed by Cox (1957) [15], Flury
(1990) [16] and many others. In the literature, “MSE-RPs” have been called by different
names, such as “quantized” and “principal points”. Let a random variable X ∼ F(x) with
finite mean µ and variance σ2. To provide the best representation of F for a given number
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n, we select a set of n representative points having the least mean square error from F(x),
and form a discrete distribution F(n)

MSE. Denote Y(n)
MSE ∼ F(n)

MSE defined as

F(n)
MSE(y) =

n

∑
i=1

p(n)i I
{b(n)i ≤y}

,

with the probability mass function

f (y = b(n)i ) = p(n)i , i = 1, · · · , n, (7)

where −∞ < b(n)1 < b(n)2 < · · · < b(n)n < ∞ are MSE-RPs of X and p(n)1 , · · · , p(n)n are the
corresponding probabilities with respect to

MSE(YMSE) = MSE
(

b(n)1 , · · · , b(n)n

)
=
∫ ∞

−∞
min

i=1,··· ,n

(
x− b(n)i

)2
f (x)dx, (8)

and

p(n)1 =
∫ (b(n)1 +b(n)2 )/2

−∞
f (x)dx,

p(n)i =
∫ (b(n)i +b(n)i+1)/2

(b(n)i−1+b(n)i )/2
f (x)dx, i = 2, . . . , n− 1,

p(n)n =
∫ +∞

(b(n)n−1+b(n)n )/2
f (x)dx.

The MSE-RPs have many useful properties. Graf and Luschgy (2007) [17], and Fei (1991) [18]
proved that

E
[
Y(n)

MSE

]
= E[X], lim

n→∞
E
[
(X−Y(n)

MSE)
2
]
= lim

n→∞

[
Var(X)−Var(Y(n)

MSE)
]
= 0. (9)

Hence, Y(n)
MSE converges to X in distribution.

In this paper, Section 2 begins by reviewing the definition and properties of the
GAST distribution. To explore the relationship between the classification of the GAST
distribution and the three parameters α, s, ν, we apply the uniform design (Wang and
Fang 1981 [19]) to arrange the values of parameter combinations, and then depict the
corresponding density plots. Section 2 also classifies the GAST distribution according
to the number of peaks in the density function with some proofs. The first four order
moments and stochastic representation of the GAST distribution are shown in this section.
Section 3 mainly introduces a maximum likelihood estimation (MLE) method with a
distribution-free quantile estimator: QMC-MLE (Li and Fang 2024 [20]). In this QMC-MLE
method, the estimated quantiles of the sample are used to replace the original sample, and
then the MLE is performed on the estimated quantiles to obtain the parameter estimates.
We explore the parameter estimation effectiveness of QMC-MLE for small samples by
simulation in this section. In order to cover both unimodal and bimodal cases, we choose
the GAST distribution with different parameter settings as the underlying distributions.
In this section, we find that the effectiveness of QMC-MLE in parameter estimation is
influenced by the number of peaks of sample. Section 4 calculates the three types of RPs,
MC-RPs, QMC-RPs, and MSE-RPs, of the GAST distribution for different sample size n.
For MSE-RPs, the calculation process requires a parametric k-means algorithm (Stampfer
and Stadlober 2002 [21]). We will compare the estimates of four statistics (mean, variance,
skewness and kurtosis) by the three types of RPs of the underlying distributions. Another
application of RPs is density estimation. Section 4 combines the kernel density method
(Rosenblatt 1956 [22]) and the three types of RPs to estimate the density of the underlying
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GAST distributions. Section 5 applies the RPs to real data samples to show the outstanding
performance of MSE-RPs under the assumption of a GAST model.

2. Generalized Alpha Skew-t Distribution

In this section, we give the definition of the density function of the GAST distribu-
tion (Altun et al., 2018 [8]) and list some of its commonly used subdistributions. We set
the parameter values by the uniform design method (Wang and Fang 1981 [19]) to fully
demonstrate the influence of parameters on the shape of the density function. Section 2.2
discusses how the parameters influence the number of peaks of density under four con-
ditions. Sections 2.3 and 2.4 give the moments and stochastic representation of the GAST
distribution, respectively.

2.1. Definition of the GAST Distribution

Definition 1. (GAST distribution). A random variable X is said to follow the GAST distribution,
denoted as X ∼ GAST(α, s, ν), if it has the following pdf

f (x; α, s, ν) =
(1− αx)2 + 1

c(α, s, ν)
t(x; ν)T

(√
1 + ν

x2 + ν
sx; ν + 1

)
, ν > 2, x ∈ R, (10)

where

c(α, s, ν) = 1− α

[
s√

1 + s2

( ν

π

)1/2
Γ
(

ν− 1
2

)
/Γ
(ν

2

)]
+

α2

2

(
ν

ν− 2

)
. (11)

Proposition 1. If a random variable Y ∼ ST(s, ν), the c(α, s, ν) in (11) can be written as

c(α, s, ν) = 1− αE[Y] +
α2

2
E
[
Y2
]
. (12)

Proof. We set a random variable Z ∼ SN(α). From the Equation (2), the moments of the
ST distribution are given by

E[Ym] =
(ν/2)m/2Γ

(
ν−m

2
)

Γ( ν
2 )

E[Zm]. (13)

Henze (1986) [23] has given the general expression of the odd moments of Z, which is

E
[

Z2k+1
]
=

√
2
π

δ

(1 + s2)k
(2k + 1)!

2k

k

∑
i=0

i!(2s)2i

(2i + 1)!(k− i)!
, k = 0, 1, · · · , n, (14)

where δ = s/
√

1 + s2. The even moments coincide with the standard normal distribution,
because Z2 ∼ χ2

1. Hence, the first two moments of ST distribution are, respectively, given by

E[Y] =

(
ν
π

)1/2Γ
(

ν−1
2

)
Γ
(

ν
2
) δ,

E
[
Y2
]
=

ν

ν− 2
.

Then the Equation (12) is proved.

The GAST distribution involves several popular useful distributions:

• If α = 0, the GAST distribution reduces to the skew-t (ST) distribution.
• If s = 0, the GAST distribution reduces to the alpha-skew-t (AST) distribution.
• If α = 0 and s = 0, the GAST distribution reduces to the Student’s-t distribution.
• If ν→ ∞, the GAST distribution reduces to the alpha-skew-normal (ASN) distribution.
• If ν→ ∞, α = 0, the GAST distribution reduces to the skew-normal (SN) distribution.
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• If ν→ ∞, α = 0 and s = 0 the GAST distribution reduces to the normal distribution.

In order to depict the GAST densities, especially the characteristics of unimodal or
multimodal with different combinations of parameters, the experimental design is used to
arrange the parameter values. The uniform design is a number-theoretic method, proposed
by Wang and Fang (1981) [19]. As a robust experimental design method, the uniform design
has been widely applied in various fields. A uniform design table provides a scientific
arrangement of experiments by tabulating the level combinations of factors of interest. Let
Un(qs) denote a uniform design with n experimental runs and s factors each having q levels.
The uniform design table, U16(163), adopted in this paper is derived from the website
Uniform-Design-Tables (https://fst.uic.edu.cn/isci/research/Uniform_Design_Tables.htm
(accessed on 15 September 2024)). In uniform design tables, the levels of factors are
labeled by positive integers. For a unit hypercube experimental region [0, 1]s, the levels
{1, 2, . . . , q} usually take values { 1

2q , 3
2q , . . . , 2q−1

2q }. For any hyperrectangle experimental

region [a, b]s, a linear transformation a + (b− a) i
2q , i = 1, 3, . . . , 2q− 1 is applied. Table 1

lists the arrangement of the uniform design table U16(163) for the parametric region,
α× s× ν : [−2.6, 3.8]× [−3, 3.4]× [2.5, 18.5], indicating the 16 kinds of parameter settings.

Figure 1 shows the density plots corresponding to eight parameter settings in Table 1,
which are enough to represent the plot of GAST density. As shown in Figure 1, there are
four cases in which the pdfs are bimodal and the No. XII and XIV GAST distributions are
AST and ST distributions, respectively.

Table 1. The parameter settings according to a uniform design table U16(163).

No. α s ν No. α s ν

I −2.4 1.6 9 IX 3.2 −2 16
II −0.8 0.4 3 X 1.2 1.2 15
III −1.6 −1.6 6 XI 3.6 0.8 11
IV 1.6 −2.4 4 XII 0.4 0 18
V −1.2 2.4 17 XIII 0.8 −1.2 10
VI 2.4 −0.4 8 XIV 0 3.2 7
VII −2 −0.8 14 XV −0.4 −2.8 12
VIII 2.8 2 5 XVI 2 2.8 13

Figure 1. Some plots of GAST densities with parameters in Table 1.

In Section 2.2, we will show how the parameters α, s and ν affect the number of peaks
of two special types of the GAST distribution, the AST and ST distributions, leading to
the two categories, unimodal and bimodal. The number of peaks in the distribution may
affect the parameter estimation. For instance, if the sample size is small and the density
function presents a bimodal shape, then the sample is likely to miss the turning points,
which will affect the parameter estimation to a certain extent. In addition, the calculation of
representative points will also be affected, and the accuracy of derivative density estimation
may be reduced.

https://fst.uic.edu.cn/isci/research/Uniform_Design_Tables.htm
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2.2. Unimodal and Bimodal Properties

Since the density plots of the GAST distribution are varied, we will divide the GAST
distribution into two categories: unimodal and bimodal. The number of peaks is deter-
mined by the number of zeros of the first derivative of (10). If it has one zero, then the
density function is unimodal. If it has three zeros, then the density function is bimodal.
To simplify the analysis, we consider the situations under four different parameter com-
binations of α and s, (α = 0, s = 0), (α = 0, s ̸= 0), (α ̸= 0, s = 0) and (α ̸= 0, s ̸= 0). The
discussion is as follows:

(1) α = 0, s = 0 and X ∼ t(ν)

The Student’s t-distribution is a well-known unimodal distribution.

(2) α = 0, s ̸= 0 and X ∼ ST(s, ν)

The pdf of X ∼ ST(s, ν), f (x; s, ν), is given by (3), ν > 2.

Proposition 2. The skew-t distribution is always unimodal.

Proof. We derive the first derivative of (3) as follows:

f ′(x; s, ν) = 2t′(x; ν)T

(
sx
√

ν + 1
ν + x2 ; ν + 1

)
+ 2t(x; ν)T′

(
sx
√

ν + 1
ν + x2 ; ν + 1

)
, (15)

where

t(x; ν) =
Γ
(

ν+1
2

)
√

πνΓ( ν
2 )

(
1 +

x2

ν

)− ν+1
2

≡ c
(

1 +
x2

ν

)− ν+1
2

, (16)

t′(x; ν) = −c
(

2x
ν

)(
ν + 1

2

)(
1 +

x2

ν

)− ν+1
2 −1

= t(x; ν)(−x)
(

ν + 1
ν + x2

)
, (17)

T′(·) =
(

s
√

ν + 1
ν + x2

)(
ν

ν + x2

)
t

(
sx
√

ν + 1
ν + x2 ; ν + 1

)
. (18)

Substituting (17) and (18) in Equation (15), we obtain that

f ′(x; s, ν) = 2(−x)t(x; ν)

(
ν + 1

ν

)(
ν

ν + x2

)
T(·)

+ 2t(x; ν)

(
s
√

ν + 1
ν + x2

)(
ν

ν + x2

)
t

(
sx
√

ν + 1
ν + x2 ; ν + 1

)

= 2t(x; ν)

(
ν

ν + x2

)[
(−x)

(
ν + 1

ν

)
T(·) +

(
s
√

ν + 1
ν + x2

)
t

(
sx
√

ν + 1
ν + x2 ; ν + 1

)]
.

As 2t(x; ν)
(

ν
ν+x2

)
> 0, the solution to f ′(x; s, ν) = 0 can be evaluated by solving the

next equation:

g(x) = (−x)
(

ν + 1
ν

)
T(·) +

(
s
√

ν + 1
ν + x2

)
t

(
sx
√

ν + 1
ν + x2 ; ν + 1

)
= 0. (19)

Since f (x; s, ν) is symmetric with respect to s:

f (x; s, ν) = f (−x;−s, ν).
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The number of peaks is not affected by the sign of s such that we assume s > 0. From
the expression of (19), we can see that g(x) > 0, when x ∈ (−∞, 0]. When x ∈ (0,+∞),
we have (

sx
√

ν + 1
ν + x2

)′
=

(
s
√

ν + 1
ν + x2

)(
ν

ν + x2

)
> 0.

Hence, T(·) is monotonically increasing, while t(·) is monotonically decreasing. Therefore,
we can deduce that g(x) is decreasing when x ∈ (0,+∞), i.e., g(x) → −∞, as x →
+∞. Hence, there is only one solution x1, s.t. g(x1) = 0. And the ST distribution must
be unimodal.

(3) α ̸= 0, s = 0 and X ∼ AST(α, ν)

The pdf of X ∼ AST(α, ν) is given by

f (x; α, ν) =
(1− αx)2 + 1

2c(α, 0, ν)
t(x; ν) , ν > 2. (20)

Proposition 3. The pdf of the AST distribution, f (x; α, ν) as (20), is bimodal if and only if

g(x1) < 0 < g(x2) and α /∈
(
−
√

ν2−3
3ν2−3ν

,
√

ν2−3
3ν2−3ν

)
, where

g(x) = (1− ν)α2x3 + 2ανx2 + (2α2ν− 2ν− 2)x− 2αν,

x1, x2 =
−4αν∓

√
∆

2α2(3− 3ν)
, ∆ = 8α2

[
(3ν2 − 3ν)α2 + (3− ν2)

]
.

(21)

Otherwise, it is unimodal. It is worth mentioning that a sufficient condition for f (x; α, ν) to be
unimodal is

α ∈

−
√

ν2 − 3
3ν2 − 3ν

,

√
ν2 − 3

3ν2 − 3ν

. (22)

Proof. Differentiating (20), we obtain

f ′(x; α, ν) =
1

2c(α, 0, ν)

[
(−2α)(1− αx)t(x; ν)− (ν + 1)x

ν + x2 t(x; ν)
(
(1− αx)2 + 1

)]
.

Since 1
2c(α,0,ν) is a constant, and t(x; ν) > 0, we obtain the equivalent relation expression

f ′(x; α, ν) = 0 ⇐⇒ (−2α)(1− αx)(ν + x2)− (ν + 1)x((1− αx)2 + 1) = 0

⇐⇒ g(x) ≡ (1− ν)α2x3 + 2ανx2 + (2α2ν− 2ν− 2)x− 2αν = 0. (23)

Now our problem is transformed into studying the number of zeros of the function g(x).
The first derivative of (23) is

g′(x) = (3− 3ν)α2x2 + 4ανx + 2α2ν− 2ν− 2 , ν > 2.

This is a quadratic function with a downward opening. The discriminant ∆ of g′(x) is
as follows:

∆ = 8α2
[
(3ν2 − 3ν)α2 + (3− ν2)

]
.

If ∆ < 0, namely

−

√
ν2 − 3

3ν2 − 3ν
< α <

√
ν2 − 3

3ν2 − 3ν
,
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then g(x) is monotonically decreasing. Since limx→−∞ g(x) = +∞, limx→+∞ g(x) = −∞,
there must be only one root of g(x) = 0, i.e., f (x; α, ν) is unimodal. It is worth mentioning
that the parameter setting of No.XII in Table 1 fits this condition.

If ∆ > 0, then

∃ x1 < x2, s.t. g′(x1) = g′(x2) = 0, where x1, x2 =
−4αν∓

√
∆

2α2(3− 3ν)
.

We can obtain that

g′(x) > 0, x ∈ (x1, x2),

g′(x) < 0, x ∈ (−∞, x1) ∪ (x2, ∞).

Hence, when x ∈ (x1, x2), g(x) is monotonically increasing. When x ∈ (−∞, x1) ∪ (x2, ∞),
g(x) is monotonically decreasing. If g(x1) < 0 < g(x2), then g(x) has three zeros, and
f (x; α, ν) is bimodal. If condition (22) is met, f (x; α, ν) is unimodal. To sum up, f (x; α, ν)
is bimodal if and only if ∆ > 0, i.e., condition (22) is not satisfied, and g(x1) < 0 < g(x2).
Otherwise, it is unimodal.

(4) α ̸= 0, s ̸= 0 and X ∼ GAST(α, s, ν)

Differentiating the pdf of the GAST distribution as (10), we obtain

f ′(x; α, s, ν) =
t(x; ν)

c(α, s, ν)

{
(−2α)(1− αx)T(·) +

(
−(ν + 1)x

ν + x2

)(
(1− αx)2 + 1

)
T(·)

+
(
(1− αx)2 + 1

)(
s
√

ν + 1
ν + x2

)(
ν

ν + x2

)
t

(
sx
√

ν + 1
ν + x2 ; ν + 1

)}
.

Let

g(x) =(−2α)(1− αx)T(·) +
(
−(ν + 1)x

ν + x2

)(
(1− αx)2 + 1

)
T(·)+

(
(1− αx)2 + 1

)(
s
√

ν + 1
ν + x2

)(
ν

ν + x2

)
t

(
sx
√

ν + 1
ν + x2 ; ν + 1

)
.

(24)

Then we have f ′(x; α, s, ν) = t(x;ν)
c(α,s,ν) g(x), and we obtain

f ′(x; α, s, ν) = 0 ⇐⇒ g(x) = 0.

Due to the complexity of the g(x), it is difficult to study its zeros. The discussion of such a
situation remains to be studied.

2.3. Moments of the GAST Distribution

From the pdf of the GAST distribution in (10), the kth moment of X ∼ GAST(α, s, ν)
is given by

E
[

Xk
]
=

E
[
Yk
]
− αE

[
Yk+1

]
+ α2

2 E
[
Yk+2

]
c(α, s, ν)

≡ Mk(α, s, ν)

c(α, s, ν)
, (25)

where Y ∼ ST(s, ν). Combined with (13) and (14), we have the first four moments of X in
which the Mk(α, s, ν) is given as follows
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M1(α, s, ν) =δ
( ν

π

)1/2 Γ
(

ν−1
2

)
Γ
(

ν
2
) − αν

ν− 2
+

α2

2

(ν

2

)3/2 Γ
(

ν−3
2
)

Γ
(

ν
2
) √ 2

π

(
3

1 + s2 δ + 2δ3
)

,

M2(α, s, ν) =
ν

ν− 2
− α

(ν

2

)3/2 Γ( ν−3
2 )

Γ( ν
2 )

√
2
π

(
3

1 + s2 δ + 2δ3
)
+

3α2ν2

2(ν− 2)(ν− 4)
,

M3(α, s, ν) =
(ν

2

)3/2 Γ
(

ν−3
2
)

Γ
(

ν
2
) √ 2

π

(
3

1 + s2 δ + 2δ3
)
− 3αν2

(ν− 2)(ν− 4)

+
α2

2

(ν

2

)5/2 Γ
(

ν−5
2
)

Γ
(

ν
2
) √ 2

π

(
15

(1 + s2)2 δ +
20

1 + s2 δ3 + 8δ5
)

,

M4(α, s, ν) =
3ν2

(ν− 2)(ν− 4)
− α

(ν

2

)5/2 Γ
(

ν−5
2
)

Γ
(

ν
2
) √ 2

π

(
15

(1 + s2)2 δ +
20

1 + s2 δ3 + 8δ5
)

+
15α2ν3

2(ν− 2)(ν− 4)(ν− 6)
.

2.4. Stochastic Representation the GAST Distribution

Altun (2018) [8] provided a stochastic representation of X ∼ GAST(α, s, ν) as follows.

Theorem 1. If the random variables W ∼ AST(α, ν) and Z ∼ t(ν + 1) are independent, then
we have

W

∣∣∣∣∣
{√

1 + ν

W2 + ν
sW > Z

}
∼ GAST(α, s, ν) (26)

According to (26) given by [8] , we can generate random samples from the GAST distribu-
tion by the following procedure:

Step 1. Generate W ∼ AST(α, ν) and Z ∼ t(ν + 1).
Step 2. If

√
(1 + ν)/(W2 + ν)sW > Z, then keep W. Otherwise, go to Step 1.

3. Parameter Estimation

In parameter estimation, the maximum likelihood estimation has been widely uti-
lized because of its transitivity. Let x = {x1, x2, . . . , xn} be a random sample from the
GAST(x; α, s, ν) distribution. The log-likelihood function is given by

ℓ(α, s, ν | x) =
n

∑
i=1

log
[
(1− αxi)

2 + 1
c(α, s, ν)

]
+

n

∑
i=1

log[t(xi; ν)]+

n

∑
i=1

log

[
T

(√
1 + ν

x2
i + ν

sxi; ν + 1

)]
.

(27)

By taking the partial derivatives with respect to α, s and ν, we have

∂ℓ

∂α
=

n

∑
i=1

(−2xi)(1− αxi)c(α, s, ν)− cα(α, s, ν)
[
(1− αxi)

2 + 1
]

[(1− αxi)2 + 1]c(α, s, ν)
,

∂ℓ

∂s
= n
−cs(α, s, ν)

c(α, s, ν)
+

n

∑
i=1

xi

√
ν + 1
x2

i + ν
ω∗i ,

∂ℓ

∂ν
= n
−cν(α, s, ν)

c(α, s, ν)
+

n

∑
i=1

τ∗i +
n

∑
i=1

sxi(x2
i − 1)

2
√

ν+1
x2

i +ν
(x2

i + ν)2
ω∗i ,

(28)
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where

ω∗i =

t
(√

1+ν
x2

i +ν
sxi; ν + 1

)
T
(√

1+ν
x2

i +ν
sxi; ν + 1

) , τ∗i =
tν(xi; ν)

t(xi; ν)
.

Remark that cα(α, s, ν), cs(α, s, ν), cν(α, s, ν), and tν(xi; ν) are the partial derivatives of
c(α, s, ν) and t(xi; ν). The solution (α̂, ŝ, ν̂) satisfying ∂ℓ

∂α = 0, ∂ℓ
∂s = 0, ∂ℓ

∂ν = 0 at the same
time is the MLE of (α, s, ν). To solve the system of nonlinear equations in (28), a numer-
ical method is required. In the following subsections, we introduce the algorithm for
solving MLE: L-BFGS-B (Byrd et al., 1995 [24]) in Section 3.1. In order to improve estima-
tion accuracy by enhancing sample representativeness, we incorporate a non-parametric
quantile estimation method (Harrell and Davis 1982 [25]) introduced in Section 3.2. In
Section 3.3, we evaluate the effectiveness of the algorithm and quantile estimation method
by simulation. In our study, we use R software version 4.4.1 to conduct simulation.

3.1. L-BFGS-B

L-BFGS-B (Byrd et al., 1995 [24]) is a limited-memory algorithm for solving large
nonlinear optimization problems subject to simple bounds on the variables. The essence
of the algorithm is a quasi-Newton method. At each iteration, a limited-memory BFGS
approximation to the Hessian matrix is updated. This limited-memory matrix is used to
define a quadratic model of the objective function, in our study indicating (27). Given a set
of samples x = {xi}n

i=1, the optimization problem can be formulated as follows:

max
α,s,ν

ℓ(α, s, ν | x).

We summarize the procedures of L-BFGS-B as following Algorithm 1.

Algorithm 1 L-BFGS-B for MLE

1: Input: Initial guesses for parameters α0, s0, ν0, tolerance ϵ, maximum number of itera-
tions N, bounds (αmin, smin, νmin) and (αmax, smax, νmax)

2: Output: Estimated parameters α̂, ŝ, ν̂
3: Initialize k← 0
4: Initialize parameters θ(0) ← (α0, s0, ν0)
5: repeat
6: Compute the gradient ∇ℓ(θ(k))
7: Compute the search direction p(k) using a two-stage approach [24]
8: Project the search direction p(k) to satisfy the bounds
9: Line search: find step size λ(k) that maximizes ℓ(θ(k) + λ(k)p(k))

10: Update parameters: θ(k+1) ← θ(k) + λ(k)p(k)

11: k← k + 1
12: until ∥∇ℓ(θ(k))∥ < ϵ or k ≥ N
13: (α̂, ŝ, ν̂)← θ(k)

We chose the L-BFGS-B algorithm because the degree of freedom ν must be greater
than 2 for the GAST distribution. If the unconstrained optimization method is used, missing
values are likely to appear in the optimization process.

3.2. QMC-MLE

In this subsection, we introduce a method for improving the accuracy of MLE. It is
well-known that the accuracy of MLE depends on the sample size to a certain extent. If
the sample misses the turning points of the population density, it is less representative,
which may lead to lower estimation accuracy. This situation is prone to occur in small
sized samples and especially bimodal cases. Fang and Wang (1994) [12] pointed out that
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the set of equal quantiles {pi = (2i− 1)/2n, i = 1, . . . , n} has the best representativeness
in the sense of F-discrepancy. In Section 1, we introduce a QMC method to generate the
RPs of a distribution with known parameters. However, for a distribution with unknown
parameters, how can we obtain the pth quantile of the distribution F? Harrell and Davis
(1982) [25] proposed a distribution-free method: the Harrell–Davis (HD) quantile estimator.
We use this estimator to calculate the set of equal quantiles of F, and then substitute these n
quantiles into the likelihood function ℓ(θ | x) for calculation. Li and Fang (2024) [20] called
the MLE method with HD quantile estimator as QMC-MLE, presented below.

Let x = {x1, . . . , xn} be a random sample of size n from the GAST distribution. Denote
X(i) as the ith largest value in x and F−1(p) as the pth population quantile.

Step 1: Generate a set of points uniformly scattered on (0, 1) through

pi =
2i− 1

2n
, i = 1, . . . , n.

Step 2: Use the Harrell–Davis quantile estimator to process sample:

Q(pi) =
n

∑
i=1

Wn,iX(i),

where

Wn,i =
1

β{(n + 1)pi, (n + 1)(1− pi)}

∫ i/n

(i−1)/n
y(n+1)pi−1(1− y)(n+1)(1−pi)−1 dy

= Ii/n{pi(n + 1), (1− pi)(n + 1)} − I(i−1)/n{pi(n + 1), (1− pi)(n + 1)},

and Ix{a, b} denotes the incomplete beta function.
Step 3: Let zi = Q(pi), for i = 1, . . . , n. Therefore, the x = (x1, . . . , xn) in the log-likelihood
function is replaced by z = (z1, . . . , zn) such that the objective function based on the revised
sample is

ℓ(θ|z) =
n

∑
i=1

ln( f (zi; α, s, ν)). (29)

Step 4: Use the L-BFGS-B algorithm to find the MLE of θ by maximizing (29).

3.3. Simulation

Before the simulation, we introduce four measures of the estimation accuracy: L2.pdf,
L2.cdf, absolute bias index (ABI) and Kullback–Leibler (KL) divergence. Denote the true
underlying distribution as F in cdf or f in pdf, and the estimated distribution as F̂ or f̂ . The
four measures are defined as follows:

• L2.pdf between two densities is defined as

L2

(
f , f̂
)
=

[∫ ∞

−∞

(
f (x)− f̂ (x)

)2
dx
]1/2

;

• L2.cdf between two cdf’s is defined as

L2
(

F, F̂
)
=

[∫ ∞

−∞

(
F(x)− F̂(x)

)2dx
]1/2

;

• Absolute bias index (ABI) is used to evaluate the overall estimation bias in parameters
in which µ̂ and σ̂ denote the estimated expectation and standard deviation of the GAST
distribution, defined as
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ABI =
1
2

(∣∣∣∣µ− µ̂

µ

∣∣∣∣+ ∣∣∣∣σ− σ̂

σ

∣∣∣∣);

• Kullback–Leibler (KL) divergence or the so-called relative entropy is used to measure
the difference from one probability distribution to another, defined as follows:

DKL(F || F̂) =
∫ ∞

−∞
f (x) log

(
f (x)
f̂ (x)

)
dx.

In the simulation, we generate samples by the inverse transformation method and
mainly focus on the small sample case. To study both unimodal and bimodal cases, we
choose five parameter settings, No.VII, VIII, IX, X and XI, of the GAST distribution from
Figure 1 as the underlying distributions, among which the No.VII, VIII, and XI distributions
are bimodal. The sample size n is set to be 25, 50, 100 and 300. After N = 100 times
of repetition, the average of (α̂, ŝ, ν̂) is set to be the parameters of the estimated GAST
distribution. The precision of the estimates is evaluated by L2.pdf, L2.cdf, ABI and KL,
summarized in Table 2, in which “plain” indicates the MLE resulting from the original
sample x = (x1, . . . , xn), and “qmc” uses the revised sample z = (z1, . . . , zn).

Table 2. The comparisons between the plain MLE and QMC-MLE in four measures (n =

25, 50, 100, 300; N = 100).

n = 25 n = 50 n = 100 n = 300
No. Method L2.pdf L2.cdf ABI KL L2.pdf L2.cdf ABI KL L2.pdf L2.cdf ABI KL L2.pdf L2.cdf ABI KL

VII plain 0.0326 0.0469 0.0730 0.0039 0.0133 0.0153 0.0207 0.0012 0.0064 0.0131 0.0260 0.0001 0.0041 0.0056 0.0098 0.0001

VII qmc 0.0446 0.0440 0.0552 0.0079 0.0201 0.0218 0.0307 0.0019 0.0163 0.0224 0.0326 0.0008 0.0076 0.0071 0.0078 0.0002

VIII plain 0.0896 0.1161 0.1822 0.0897 0.0575 0.0721 0.1026 0.0256 0.0178 0.0358 0.0809 0.0024 0.0077 0.0186 0.0436 0.0005
VIII qmc 0.0670 0.0923 0.1590 0.0830 0.0359 0.0496 0.0749 0.0181 0.0127 0.0286 0.0650 0.0019 0.0058 0.0160 0.0346 0.0004

IX plain 0.0317 0.0365 0.0321 0.0073 0.0185 0.0214 0.0230 0.0034 0.0110 0.0129 0.0172 0.0021 0.0047 0.0049 0.0092 0.0003
IX qmc 0.0302 0.0363 0.0306 0.0074 0.0108 0.0150 0.0160 0.0026 0.0056 0.0082 0.0101 0.0015 0.0029 0.0035 0.0057 0.0004

X plain 0.0691 0.0762 0.1443 0.0097 0.0453 0.0525 0.0967 0.0056 0.0172 0.0261 0.0525 0.0010 0.0066 0.0125 0.0272 0.0003
X qmc 0.0570 0.0663 0.1293 0.0104 0.0381 0.0476 0.0886 0.0041 0.0112 0.0207 0.0372 0.0003 0.0058 0.0113 0.0203 0.0002

XI plain 0.0689 0.0883 0.1073 0.0194 0.0398 0.0487 0.0576 0.0031 0.0134 0.0151 0.0265 0.0067 0.0058 0.0063 0.0087 0.0005
XI qmc 0.0563 0.0552 0.1043 0.0263 0.0390 0.0342 0.0525 0.0104 0.0279 0.0265 0.0196 0.0104 0.0041 0.0127 0.0069 0.0010

The best performance in the sense of each measure for each pair of distribution type
and sample size is highlighted in bold in Table 2. The QMC-MLE method performs
better than the plain MLE in most cases, especially for the No.VIII, IX and X distributions.
However, for the No.VII and XI distributions, the QMC-MLE has no obvious advantage.
The No.IX and X distributions are unimodal, but the No.VIII is bimodal. From the pdf plot
of No.VIII distribution, we can see that although it is bimodal, its first peak is not as obvious
as the peaks of No.VII and XI distributions. In the pdf plots of No.VII and XI distributions,
as x increases, the density function experiences a steep decline after the first peak, while for
the No.VIII distribution, the decline lasts only for a short distance before it begins to rise
again. Therefore, we have reasons to believe that the QMC-MLE method is more suitable
for unimodal functions or bimodal functions of which one peak is not obvious.

In addition, for No.XI GAST distribution, in the sense of KL divergence, the plain
MLE is better than the QMC-MLE for all sample sizes. As for the No.XI case under other
measures, although the QMC-MLE performs better when n = 25 and 50, it becomes less
effective for n = 100 and 300, which may be caused by the consistency of MLE. According
to the discussion above, when we conduct case studies in Section 5, the QMC-MLE will be
only used for unimodal samples in parameter estimation, while for bimodal samples, we
will use the plain MLE. Nevertheless, this simulation study reveals that the MLE method
(both plain and QMC) is appropriate for estimating the GAST parameters due to the small
values of four bias measurements.
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4. RPs of the GAST Distribution

Recall that in Section 1, we introduced three types of representative points: MC-RPs,
QMC-RPs, and MSE-RPs. In this section, we will find these three types of RPs of the GAST
distribution for different sample sizes n, and use them to estimate moments and densities
in Section 4.1 and Section 4.2, respectively.

4.1. Moment Estimation

For a given n, MC-RPs will be generated by the inverse transformation method. QMC-
RPs can be easily obtained by (6) while MSE-RPs are calculated through a parametric
k-means algorithm proposed by Stampfer and Stadlober (2002) [21]. We summarize the
computation procedure of the k-means algorithm for approximating MSE-RPs of the GAST
distribution as follows.

Step 1: For a given pdf f (x; α, s, ν), the number of RPs: n, and t = 0, input a set of initial

points b(t)1 < b(t)2 < · · · < b(t)n . Here we take n QMC-RPs as the initial values. Determine a
partition ofR as

I(t)i = (a(t)i−1, a(t)i ], i = 1, . . . , n− 1, I(t)n = (a(t)n−1, a(t)n ),

where
a(t)0 = −∞, a(t)i = (b(t)i−1 + b(t)i )/2, i = 1, . . . , n− 1, a(t)n = ∞.

Step 2: Calculate probabilities

p(t)j =
∫

I(t)j

f (x; α, s, ν)dx, j = 1, . . . , n;

and the condition means

b(t+1)
j =

∫
I(t)j

x f (x; α, s, ν)dx∫
I(t)j

f (x; α, s, ν)dx
=

∫
I(t)j

x f (x; α, s, ν)dx

p(t)j

.

Step 3: If two sets, {b(t)j } and {b(t+1)
j } are identical, the process stops and the outputs

{b(t)j } as the MSE-RPs of the distribution with probabilities {p(t)j }. Otherwise, let t := t + 1
and go back to Step 1.

Let Y be a discrete distribution with probability mass function P(Y = bj) = pj,
j = 1, . . . , n, which is an approximate distribution to the GAST distribution. Then, the
estimates of mean, variance, skewness and kurtosis can be calculated by

E[Y] =
n

∑
j=1

bj pj = µY, Var[Y] =
n

∑
j=1

(bj − µY)
2 pj = σ2

Y,

Sk[Y] =
1

σ3
Y

n

∑
j=1

(bj − µb)
3 pj, Ku[Y] =

1
σ4

Y

n

∑
j=1

(bj − µY)
4 pj − 3.

(30)

We use the No.IX, X and XI as the underlying distributions and consider n = 10, 20, 30.
It is clear that MC-RPs are random samples of size n. For fair comparisons, we generate
N samples of size n and then take the average of the estimated statistics as the results of
the MC(N) method. In our study, we choose N = 10, 100. The true parameters and four
statistics of the three underlying distribution are listed in Table 3. The bias of the estimated
results is summarized in Tables 4–6.
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Table 3. True parameters and statistics of the underlying distributions.

No. α s ν E(X) Var(X) Sk(X) Ku(X)

IX 3.2 −2 16 −1.5997 0.7971 −0.7117 1.4857
X 1.2 1.2 15 0.6272 1.7074 0.6258 0.3101
XI 3.6 0.8 11 1.2301 3.0124 −0.2293 0.0633

Table 4. Estimation bias of four statistics for the No.IX distribution GAST(3.2,−2, 16).

Statistics Category 10 20 30

Mean

MC(10) −0.1180 −0.1562 −0.0149
MC(100) −0.0291 0.0214 0.0132

QMC 0.0090 0.0031 0.0014
MSE 0.0000 0.0000 0.0000

Variance

MC(10) 0.1194 0.3288 0.0769
MC(100) −0.0024 −0.0212 −0.0044

QMC −0.1455 −0.0889 −0.0668
MSE −0.0231 −0.0063 −0.0029

Skewness

MC(10) 0.3486 0.1735 0.1472
MC(100) 0.3667 0.2676 0.2479

QMC 0.2740 0.1677 0.1227
MSE 0.0259 0.0045 0.0027

Kurtosis

MC(10) −2.4314 −1.3967 −0.7850
MC(100) −2.3704 −1.6857 −1.3343

QMC −2.0406 −1.6037 −1.3769
MSE −0.5136 −0.1855 −0.0942

The best performance within each statistic per sample size is highlighted in bold.

Table 5. Estimation bias of four statistics for the No.X distribution GAST(1.2, 1.2, 15).

Statistics Category 10 20 30

Mean

MC(10) −0.0472 0.0170 0.1001
MC(100) 0.0736 0.0219 −0.0217

QMC −0.0102 −0.0051 −0.0035
MSE 0.0000 0.0000 0.0000

Variance

MC(10) −0.0684 −0.1739 −0.1644
MC(100) 0.0757 0.1530 0.0124

QMC −0.2179 −0.1213 −0.0861
MSE −0.0394 −0.0109 −0.0051

Skewness

MC(10) −0.6435 −0.1809 −0.0803
MC(100) −0.2718 −0.1878 −0.1476

QMC −0.1634 −0.1104 −0.0873
MSE −0.0106 −0.0034 −0.0017

Kurtosis

MC(10) −1.4404 −0.5846 −0.5425
MC(100) −1.3711 −0.8694 −0.6661

QMC −1.0604 −0.7846 −0.6516
MSE −0.2881 −0.1005 −0.0514

The best performance within each statistic per sample size is highlighted in bold.

The results indicate that the estimates based on MSE-RPs perform the best for all
underlying distributions and sample sizes. The performance of MC-RPs is unstable. Some-
times the average estimates of moments based on MC-RPs are more accurate than those
based on QMC-RPs, but in general, appear less effective. In addition, we can observe that
with the increase in the number n, the overall effect of estimation is better. The estimates
of higher-order moments (skewness and kurtosis) are worse than those of lower-order
moments (mean and variance).
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Table 6. Estimation bias of four statistics for the No.XI distribution GAST(3.6, 0.8, 11).

Statistics Category 10 20 30

Mean

MC(10) 0.0529 −0.1639 0.0381
MC(100) −0.0581 −0.0778 0.0276

QMC −0.0189 −0.0082 −0.0032
MSE 0.0000 0.0000 0.0000

Variance

MC(10) 0.4662 0.1453 −0.3346
MC(100) 0.2882 −0.0598 −0.0723

QMC −0.3569 −0.2171 −0.1635
MSE −0.0705 −0.0200 −0.0093

Skewness

MC(10) −0.2932 −0.1673 −0.0959
MC(100) −0.0544 −0.0884 −0.1192

QMC −0.1259 −0.0954 −0.0829
MSE −0.0024 −0.0051 −0.0031

Kurtosis

MC(10) −0.9306 −0.7944 −0.6527
MC(100) −0.9915 −0.7274 −0.3822

QMC −0.9529 −0.7366 −0.6273
MSE −0.3395 −0.1294 −0.0702

The best performance within each statistic per sample size is highlighted in bold.

4.2. Kernel Density Estimation

Another application of representative points is density estimation. In the field of signal
transmission, the input signal is often converted into discrete data in the transmitter and
then reconstructed in the receiver. For a distribution with unknown parameters, how do
we use a set of data to construct its overall density function? Here, we introduce a kernel
estimation method proposed by Rosenblatt (1956) [22] and Parzen (1962) [26]. Given a
fixed number of points {x1, . . . , xn} from the original signal, the density estimation of f (x)
is given by

f̂h(x) =
1
n

n

∑
i=1

kh(x− xi) =
1

nh

n

∑
i=1

k
(

x− xi
h

)
,

where k(·) is the kernel function is the bandwidth and kh(y) = 1
h k( y

h ). The most popular
kernel is the standard normal density function

k(x) = ϕ(x) =
1√
2π

e−
1
2 x2

.

In our study, we employ the representative points {b1, . . . , bn} from the GAST distribution
as the samples with their corresponding probabilities pi, i = 1, . . . , n. The density estimation
of f (x) can be extended to

f̂h(x) =
n

∑
i=1

kh(x− xi)pi =
1
h

n

∑
i=1

k
(

x− xi
h

)
pi.

The choice of the bandwidth h is very important. Here, we set a search range {0.05, 0.06, . . . , 1}
for h. In the following comparisons, we utilize three types of RPs having sample sizes
n = 10, 20, 30 for the kernel density estimation of No.IX, X and XI distributions, and
evaluate the performances by the minimum L2.pdf between f̂h(x; α, s, ν) and f (x; α, s, ν).

Tables 7–9 show that the kernel density estimation based on MSE-RPs always has the
minimum L2.pdf, which decreases as n increases. For the underlying distribution No.IX,
we notice that the minimum L2.pdf based on the MSE-RPs with size 10 is only 0.0306,
which is even smaller than that based on the QMC-RPs with size 30 (0.0341). Figures 2–4
show the comparing fitting plots of different sets of representative points. It is obvious that
the fitting effect increases with n, and the MSE-RPs-based kernel estimation has the best
fitting effect, followed by the QMC-RPs-based estimation. It is worth mentioning that for
the MC-RPs-based density estimation, due to the randomness of the Monte Carlo method,
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the density curve fitted out each time differs greatly, and in many cases, it is not sufficient
to reconstruct the original density function.

Table 7. The minimum L2.pdf and the corresponding bandwidth h of the kernel density estimation
for No.IX distribution.

Method n h min L2.pdf

MC 10 0.50 0.2108
QMC 10 0.30 0.0583
MSE 10 0.24 0.0306

MC 20 0.60 0.1300
QMC 20 0.23 0.0418
MSE 20 0.15 0.0127

MC 30 0.48 0.1471
QMC 30 0.21 0.0341
MSE 30 0.13 0.0098

The best performance within each sample size is highlighted in bold.

Figure 2. Comparing plots of the fitted densities (in solid lines) by kernel density estimation and the
true densities (in dashed lines) for the No.IX distribution.

Table 8. The minimum L2.pdf and the corresponding bandwidth h of the kernel density estimation
for No.X distribution.

Method n h min L2.pdf

MC 10 0.90 0.2067
QMC 10 0.36 0.0563
MSE 10 0.29 0.0305

MC 20 0.46 0.1504
QMC 20 0.28 0.0379
MSE 20 0.18 0.0119

MC 30 0.53 0.1072
QMC 30 0.24 0.0295
MSE 30 0.15 0.0094

The best performance within each sample size is highlighted in bold.
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Figure 3. Comparing plots of the fitted densities (in solid lines) by kernel density estimation and the
true densities (in dashed lines) for the No.X distribution.

Table 9. The minimum L2.pdf and the corresponding bandwidth h of the kernel density estimation
for No.XI distribution

Method n h min L2.pdf

MC 10 0.71 0.1607
QMC 10 0.38 0.0628
MSE 10 0.35 0.0441

MC 20 0.57 0.1592
QMC 20 0.29 0.0481
MSE 20 0.22 0.0212

MC 30 0.76 0.1392
QMC 30 0.25 0.0382
MSE 30 0.17 0.0137

The best performance within each sample size is highlighted in bold.

Figure 4. Comparing plots of the fitted densities (in solid lines) by kernel density estimation and the
true densities (in dashed lines) for the No.XI distribution.
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5. Case Studies

In this section, we will utilize three types of RPs to study real data samples. Before
calculating the RPs, we incorporate two additional parameters in the GAST distribution,
the location parameter µ and the scale parameter σ, to fit the samples. The pdf is given by

f (x; α, s, ν, µ, σ) =

(
1− α

(
x−µ

σ

))2
+ 1

σc(α, s, ν)
t
(

x− µ

σ
; ν

)
T

√√√√ 1 + ν(
x−µ

σ

)2
+ ν

s
(

x− µ

σ

)
; ν + 1

,

where c(α, s, ν) is the same as that in Formula (11). For the sample data, we choose both
unimodal and bimodal types, which are the O3 data and the Faithful Geyser data.

5.1. O3 Data

These data are from the website (https://archive.ics.uci.edu/dataset/360/air+quality
(accessed on 15 September 2024)), which contains hourly averaged responses from an Air
Quality Chemical Multisensor Device in an Italian city. We selected the “PT08.S5(O3)”
(denoted as “O3” in this article) data as the study object. After setting the interception time
from September 1 to November 30 in 2004, and removing the missing values, we derive
90 observations. We summarize the parameter estimation results of GAST(α, s, ν, µ, σ)
obtained by the QMC-MLE in Table 10, providing the estimated GAST model as follows

GAST(−0.1518,−0.2030, 16.9607, 1219.228, 385.0162). (31)

Table 10. Parameter estimates of the GAST model based on O3 data.

Parameters α̂ ŝ ν̂ µ̂ σ̂

QMC-MLE −0.1518 −0.2030 16.9607 1219.228 385.0162

We present the histogram with the fitted density for O3 data in Figure 5a. After
calculating the {pi = (2i− 1)/2n, i = 1, . . . , n} quantiles of these data by the HD quantile
estimator introduced in Section 3.2, we obtain the associated QQ plot given in Figure 5b.
Figure 5 shows the good fitting effect of the GAST model on this unimodal data.

(a) (b)

Figure 5. (a) is the histogram of O3 data with fitted GAST density line. (b) is the associated QQ plot
by HD quantile estimator.

The mean, variance, skewness, kurtosis of the distribution (31) are as follows

(1209.544, 168359.9, 0.0362, 0.601).

https://archive.ics.uci.edu/dataset/360/air+quality
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We generate MC-RPs, QMC-RPs and MSE-RPs of size 30, from the GAST model (31) using
the methods discussed in Section 4.1. Table 11 summarizes the bias of the estimation of the
four statistics based on the MC, QMC, and MSE methods.

Table 11. The estimation bias of the four statistics for the fitted GAST model is based on three types
of RPs with size 30.

Method Mean Variance Skewness Kurtosis

MC 39.6251 −46,385.8384 −0.1111 −1.3819
QMC −0.1250 −10,554.1427 −0.0121 −0.7845
MSE 0.0048 −579.8522 0.0005 −0.0641

Although the bias of the estimated variance in Table 11 is large in value, it is relatively
small compared to the true variance of the model, which is 168,359.9. As shown in Table 11,
the MSE-RPs estimate the moments of the model more accurately than the other two types
of RPs.

The comparisons of the kernel density estimates based on MC, QMC, and MSE RPs
are presented in Figure 6.

Figure 6. Comparing plots of the fitted densities (in solid lines) by kernel density estimation and the
density of the distribution (31).

The corresponding minimum L2.pdf’s between the kernel estimates and the density
of the model (31) are 0.00237 for MC, 0.00026 for QMC and 0.00025 for MSE. As shown in
Figure 6, although the estimated kernel density based on the QMC method is well-fitted, it
is not as good as that based on the MSE method at the beginning and at the peak.

5.2. Faithful Geyser Data

The Faithful Geyser Data, a commonly used dataset in R software, is a record of the
waiting time between eruptions and the duration time of these eruptions for Old Faithful
Geyser in Yellow National Park, Wyoming, USA. In this study, we use the waiting-time
samples which include 299 observations.

Since these data are bimodal, we use the plain-MLE to estimate parameters. The
results are given in the Table 12, providing the GAST model as

GAST(−2.4016,−0.2322, 100, 70.6301, 8.7872). (32)

Table 12. Parameter estimates of the GAST model based on Faithful Geyser data

Parameters α̂ ŝ ν̂ µ̂ σ̂

Plain-MLE −2.4016 −0.2322 100 70.6301 8.7872

The histogram with the fitted density for Faithful Geyser data is given in Figure 7a.
Denoting X(1) < . . . < X(n) as the order statistics of this bimodal data, we calculate its
quantiles by the traditional estimator:

Qp = (1− g)X(j) + gX(j+1),
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where (n + 1)p = j + g and j is the integral part of (n + 1)p. The associated QQ plot is
given in Figure 7b.

(a) (b)

Figure 7. (a) is the histogram of Faithful Geyser data with fitted GAST density line. (b) is the
associated QQ plot by traditional quantile estimator.

Table 12 shows that the estimated ν is 100, which is the upper bound we set. From this
point of view, we can assume that ν→ ∞ in this fitting model. As described in Section 2.1,
this model is actually a subdistribution of the GAST: ASN, indicating that the GAST model
is flexible since it can adapt to different types of data. From the QQ plot in Figure 7, we
notice that when data are less than 50, the scatter point deviates far from the line, which
can also be observed from Figure 7a. The fitting curve rises slowly at the beginning, so the
sample quantiles will be larger than the GAST quantiles. When the data are greater than 50,
where more samples are located, this distribution fits the data well. Hence, the estimated
GAST model (32) is still acceptable.

The mean, variance, skewness, and kurtosis of the distribution (32) are

(72.3205, 192.9088, −0.4496, −0.8031).

We generate MC-RPs, QMC-RPs and MSE-RPs of size 50 from the model (32). The estima-
tion biases of the four statistics are summarized in Table 13.

Table 13. The estimation biases of the four statistics for the fitted GAST model based on three types
of RPs with size 50.

Method Mean Variance Skewness Kurtosis

MC 2.8239 −11.0749 0.02917 0.5070
QMC 0.0010 −2.5761 0.0010 −0.0907
MSE 0.0000 −0.1364 −0.0001 −0.0051

We observe that the MSE-RPs have the same mean as the population expectation,
which is described in (9). Compared to MC-RPs and QMC-RPs, the MSE method estimates
the moments of the model more accurately. The comparison of the kernel density plots is
presented in Figure 8.

The corresponding minimum L2.pdf’s between the kernel estimates and the density
of the model (32) are 0.0041 for MC, 0.0029 for QMC and 0.0027 for MSE. The MSE-RPs still
perform the best.
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Figure 8. Comparing plots of the fitted densities (in solid lines) by kernel density estimation and the
density of the distribution (32).

6. Conclusions

This paper mainly studies different types of representative points of the GAST distri-
bution and the applications of these RPs. The comparative analyses across various sample
sizes and both unimodal and bimodal GAST distributions reveal that the RPs obtained
by the MSE method consistently outperform the others in the applications of estimating
moments and densities. However, the performance on estimating higher-order moments,
such as skewness and kurtosis, shows the limitations of RPs on capturing higher-order
statistical properties. Therefore, the number of RPs n must adopt a larger value to reduce
the bias of higher-order moment estimation. This paper also incorporates QMC-MLE for
parameter estimation of the GAST distribution. For unimodal or bimodal data with an
unclear peak, the QMC-MLE method improves parameter estimation accuracy. However,
in bimodal cases, plain MLE is more effective. Combined with such property, we can model
different types of data accordingly.
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