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Abstract: When evaluating sensory stimuli, people tend to prefer those with not too little or not
too much complexity. A recent theoretical proposal for this phenomenon is that preference has a
direct link to the Observed Fisher Information that a stimulus carries about the environment. To
make this theory complete, one must specify the model that the brain has about complexities in the
world. Here, we develop this model by first obtaining the distributions of three indices of complexity
measured as normalized Shannon Entropy in real-world images from seven environments. We then
search for a parametric model that accounts for these distributions. Finally, we measure the Observed
Fisher Information that each image has about the parameters of this model. The results show that
with few exceptions, the distributions of image complexities are unimodal, have negative skewness,
and are leptokurtotic. Moreover, the sign and magnitude of the skewness varies systematically with
the location of the mode. After investigating tens of models for these distributions, we show that
the Logit-Losev function, a generalization of the hyperbolic-secant distribution, fits them well. The
Observed Fisher Information for this model shows the inverted-U-shape behavior of complexity
preference. Finally, we discuss ways to test our Fisher-Information theory.

Keywords: aesthetic preference for complexity; inverted U-Shape behavior; observed Fisher information;
statistics of image complexities; urban and natural environments

1. Introduction

Decision-making in all corners of our lives requires information [1–4]. Evidence that
the brain likes large amounts of information includes a dislike of too little complexity
in sensory signals [5–7] and addiction to tools designed to provide a lot of data to our
senses [8–10]. However, the brain has limited resources, and thus, it cannot deal with too
much information [11–13]. The brain, therefore, dislikes incoming sensory signals with too
much complexity [14–16]. Thus, one observes a ubiquitous relationship between complexity
and preference for sensory signals, that is, an inverted-U shape behavior [15,17,18]. This
behavior has been used to suggest that the brain continuously measures and monitors the
amount of incoming sensory information [4]. The brain may then use this amount to decide
how many resources to devote to the processing of the information [4,19–21]. Thus, this
amount may be a metacognitive signal related to aesthetic preference, like, for example,
processing fluency [22].

Different hypotheses try to explain the inverted-U-shape behavior as a function of com-
plexity or amount of information [15,23,24]. A simple hypothesis is that people like sensory
stimuli with the most common amounts of information in the surrounding environment.
However, people do not necessarily always prefer the most common complexities [25]. In
an alternate hypothesis, too little information has been called boring [23,24,26] and too
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much information has been called confusing [23,27,28]. However, none of these hypotheses
explain how the brain knows what is too little or too much. A recent theoretical proposal
has tried to overcome this limitation [4]. This theory begins with the observation that as the
environment changes (for example, through time or movement), the statistical properties of
the stimuli also vary. Imagine that the brain has a general parametric model of these prop-
erties across environments, except that as they vary, the best parameters do, too [22,29–31].
Thus, the brain should like stimuli that are especially informative about the parameters. The
suitability of a stimulus to inform about the parameters is best measured with Observed
Fisher Information [32,33]. The new proposal then suggests that stimuli eliciting the most
liked amount of information are those yielding the most Observed Fisher Information
about the parameters [4]. The authors of this proposal have suggested that it may account
for the inverted U-shape relationship between aesthetic pleasure and stimulus complexity.

If this Observed-Fisher-Information theory is correct, one must have a good guess
of the model that the brain may use to measure the amounts of information in sensory
stimuli. One way to answer this question is to study them in the world itself. For vision,
for example, one may measure the distributions of image complexities from different
environments [34–36]. From these measurements, one may try to reverse-engineer what
models may capture these statistical distributions. Such a statistical approach has been used
successfully in the study of sensory systems of the brain. For example, models generated
from such statistical studies of natural images have been successful in accounting for
various aspects of the organization of the brain’s visual system [37–41].

In this article, we test the possibility that Observed Fisher Information could be a useful
metric for aesthetic values related to amounts of information in visual stimuli. To perform
this test, we first measure visual complexity in hundreds of natural and human-made
scenes across seven environments. In this article, we focus on three types of complexity,
namely, luminance, chromatic, and spatial. Luminance complexity refers to the flatness
of the distribution of intensities across the pixels of an image, as measured by Shannon
Entropy. Similarly, chromatic complexity refers to the flatness of the distribution of hues
in the same pixels. Finally, spatial complexity refers to a two-dimensional distribution
of intensities, that is, considering the correlation between pixels in two locations. Then,
we design a general statistical model that captures the distribution of complexities across
environments. This model allows us to measure Observed Fisher Information for individual
images. Using this model, we test whether the Observed Fisher Information for images in
any environment shows an inverted-U-shape relationship with complexity.

2. Theory
2.1. Preliminaries

The goal of this article is to find a suitable model for the distribution of complexities
across environments. This model will underpin the Observed-Fisher-Information theoreti-
cal framework of aesthetic preference for complexity. We then assess whether the Observed
Fisher Information calculated from this model captures the inverted-U-shape preference
curve seen as complexity varies. To achieve this goal, the work in this article proceeds in
three steps (Figure 1):

a. In the first step, we compute three measures of the amount of information in images
from seven natural or human-made environments (Figure 1A). These measures use
Shannon Entropy, whose normalized versions are complexities [25,42]. In this article,
we measure complexities based on luminance, spatial, and chromatic information.
Therefore, because we have many images per environment, we can build theories for
each of the three estimated distributions (histograms or kernel-density distributions)
of the distributions of complexities.

b. We then fit analytical models of probability density functions to these estimated
distributions (Figure 1B). The goal is to find a single model that can fit all twenty-one
of them (three measures of complexity and seven environments) by simply selecting
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the right parameters. We make sure that the models are simple, having at most
two parameters.

c. Finally, we calculate the Observed Fisher Information for each of the three com-
plexities obtained for each image (Figure 1C). This measure supplies the amount of
information that the image has about the parameters of the model. Such a measure
is important. Without it, we cannot be sure what the best model parameters are for
the image that we currently see, because environments are constantly changing. We
also calculate in this article the expected Observed Fisher Information for each envi-
ronment and complexity type. This expectation is known as the Fisher Information,
providing a measure of how easily the environment can be understood.
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Figure 1. Theoretical framework for the connection between the amount of information and aesthetic
values. (A) Images can come from multiple environments in the world. Several types of complexities,
that is, amounts of information, are computed from each image. (B) The probability distribution for
each type of complexity and environment is built. A model of the likelihood function is fit to the
distribution to find the best parameters. (C) The Observed Fisher Information curve is computed
from the model. (D) Only the complexities yielding the largest observed fisher information have high
utility and thus good aesthetic value. Too little complexity creates a boring image, while too much
complexity creates a confusing image.
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2.2. Amount of Information

The first of our theoretical steps is to define complexity (Figure 1A). In some past
studies, visual complexity was defined in simple terms, such as the number of features or a
perceptual scale [14,17,43,44]. In this study, we follow other studies that wanted to define
complexity more rigorously and in a way that would be consistent across studies [4,25].
This is to define complexity as a normalized amount of information [25]. Here, we begin
with luminance complexity. For each Image Q, we first convert it to grayscale (the rec601
luma component) and then obtain the probability P(L)

Q (I) of Intensity I. Then, using
this probability and calculating the normalized expected Shannon entropy, we obtain the
luminance complexity

cL(Q) = −
I∗

∑
I=0

P(L)
Q (I)log

I∗+1

(
P(L)

Q (I)
)

, (1)

where I∗ is the maximally possible intensity (255 in this article). In this equation, I∗ + 1 is
the base of the logarithm, which is not in a natural base because of the normalization [25].
The normalization in luminance complexity is such that 0 ≤ cL(Q) ≤ 1. This index of
complexity is zero only for single-tone images (the simplest ones) and cL(Q) = 1 for images
whose intensities spread homogeneously and randomly through all values.

In turn, spatial complexity considers the amount of information due to both intensity
and spatial organization. We generalize the procedure used for Equation (1). This general-
ization first measures the probability P(S)

Q (I2|I1, T) in image Q that a pixel with intensity I1
is juxtaposed with a pixel with intensity I2 after the isometric transformation T. From this
measurement, we define spatial complexity following the same steps as for Equation (1)
to obtain

cS(Q, T) = −
I∗

∑
I1=0

P(L)
Q (I1)

I∗

∑
l2=0

P(S)
Q (I2|I1, T)logI∗+1

(
P(S)

Q (I2|I1, T)
)

. (2)

Again, because of the normalization, 0 ≤ cS(Q, T) ≤ 1. In the figures reporting spatial
complexity throughout the article, we follow the conventions that we reported elsewhere
and plot the mean of the overall possible transformation T [25].

Finally, we compute chromatic complexity, which we define here for the first time. For
each image Q, we first convert it from RGB to HSV and extract the probability P(C)

Q (h) of
hue h. We then generalize Equation (1) to obtain

cC(Q) = −
h∗

∑
h=1

P(C)
Q (h)log

I∗

(
P(C)

Q (h)
)

, (3)

where h∗ is the number of possible hues. Once more, 0 ≤ C(Q) ≤ 1.

2.3. Likelihood Models

The second step of our theoretical work is to find good analytical models of probability
density functions to fit the distributions of complexities (Figure 1B). We make sure that the
models are simple, having at most two parameters. We searched for these models broadly,
considering mathematically or computationally tens of different continuous, finite-support
probability distributions [45,46]. Among these distributions, the ones that came closest were
the Beta, Logit-Normal, and Logit-Losev distributions. We describe them in this section.

The probability density function of a Beta distribution of complexities is

PB(cx|α, β) =
cα−1

x (1 − cx)
β−1

B(α, β)
, (4)
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where cx is one of the three complexity types described in Equations (1)–(3), α > 0 and
β > 0 are the parameters, and

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
,

where Γ is the gamma function. Next, the Logit-Normal distribution of complexities is

PN(cx|µN , σ) =
1√

2πσcx(1 − cx)
e−

(logit(cx)−µN )2

2σ2 , (5)

where µN and σ are the parameters, and

logit(cx) = ln
(

cx

1 − cx

)
.

Finally, the Logit-Losev probability density function is a modification of a distribution
studied by Losev [47], itself a generalization of the hyperbolic-secant distribution [48]. The
modification is the transformation of the independent variable with the logit function,
making the outcome a finite-support distribution. This distribution is introduced in this
article for the first time. The general form of this distribution is

PL(cx|µ, a, b) =
N(a, b)

cx(1 − cx) (e−a(logit(cx)−µ) + eb(logit(cx)−µ) )
,

where µ, a > 0, and b > 0 are the parameters, and N(a, b) is the normalization constant.
Although this function has three parameters, we use here a simplified version with only
two parameters by making a = b, that is,

PL(cx|µ, a) =
N(a)

cx(1 − cx) (e−a(logit(cx)−µ) + ea(logit(cx)−µ) )
, (6)

where the normalization constant is N(a) = 2a/π.

2.4. Fisher Information

The last step of our theoretical work involves the computations of Observed Fisher
Information (Figure 1C). These computations use Equations (4)–(6), which define the
probability density distributions of complexities, Py(cx|θ1, θ2), where θ1 and θ2 are the two
parameters. Then, the log-likelihood of the parameters θ1 and θ2 given the data cx is

ly(θ1, θ2|cx) = ln
(

Py(cx|θ1, θ2)
)

.

The Observed Fisher Information matrix at θ∗1 and θ∗2 is

Fy(θ
∗
1 , θ∗2 , cx) = −

 ∂2

∂θ2
1

∂2

∂θ1∂θ2

∂2

∂θ2∂θ1
∂2

∂θ2
2

ly(θ1, θ2|cx)

∣∣∣∣∣∣∣
(θ1,θ2)=(θ∗1 ,θ∗2 )

, (7)

where the symbol ∂ marks partial differential equations of the log-likelihood by its param-
eters. In our case, one can interpret this equation as follows: If the current parameters
of the internal model for estimating the likelihood of an image with complexity cx are(
θ∗1 , θ∗2

)
, then the Observed Fisher Information is Fy. The diagonal components of Fy are

the curvature of the graph of the log-likelihood. Near the maximum-likelihood estimate,
low Observed Fisher information shows that the maximum is “blunt”. Conversely, high Ob-
served Fisher Information shows that the maximum is sharp. The off-diagonal components
of Fy show the co-dependence between the parameters.
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The application of Equation (7) to Equations (4)–(6) is important to understand the
results of this article. For example, the first diagonal element for the Beta distribution (that
for α) gives

FB,1,1(α, β, cx) = ψ1(α)− ψ1(α + β) , (8)

where ψ1 is the trigamma function. As we will discuss later, the importance of this result is
that it is independent of cx. A similar independence appears for the first diagonal element
for the Logit-Normal distribution (that for µN):

FN,1,1(µN , σ, cx) =
1
σ2 . (9)

However, when using the Logit-Losev distribution (Equation (6)), the first diagonal element
(that for µ) is dependent on cx:

FL,1,1(µ, a, cx) =
4a2

(e−a(logit(cx)−µ) + ea(logit(cx)−µ) )2
. (10)

As we will discuss later, this function shows an inverted-U-shape behavior as a function of
cx. This behavior is such that the optimal cx is

c(opt)
x =

1
1 + e−µ (11)

and at this complexity, the Observed Fisher Information is

FL,1,1

(
µ, a, c(opt)

x

)
= a2 . (12)

From Observed Fisher Information in Equation (7), we can also compute the full Fisher In-
formation matrix [49,50]. This is the expectation of the Observed Fisher Information matrix:

FL,1,1

(
µ, a, c(opt)

x

)
= a2 . (13)

3. Materials and Methods
3.1. Photography

We photographed 1000 images of natural and human-made environments randomly.
Because people are not very good at doing things randomly [51], we tried to orchestrate
this by photographing with a camera in-hand and without looking at the scene to frame
it. We did so to prevent the photographer from imposing their aesthetic biases on the
images. Without these biases, the distribution of complexities would be faithful to the
signals from the external world, not to the mind of the photographer. This would allow us
to test whether this distribution had a universal shape. If so, the brain could use this shape
as a likelihood distribution.

The camera was always placed in ‘landscape mode’ (horizontal pictures) and its
orientation varied from about −30◦ below the horizon (aimed towards the ground in
front of the photographer) to about +30◦ above it. Thus, we avoided capturing too much
of the sky. Finally, the height of the camera was at the human-eye level. Although we
photographed the images without framing, none of them were blurry or had overlapping
parts after inspection. The images fell into seven distinct environments based on location.
These environments were Parks (157 images), College Campuses (239 images), Small
Streets (185 images), Large Streets (180 images), Snowy Rural Settings (70 images), Malls
(94 images), and Forests (75 images). We chose these environments to make sure that we
obtain a high diversity of surroundings, from urban to rural to natural. Moreover, we
obtained images from a high variety of urban environments. All these images are available
in the supplementary information at https://osf.io/23auc (accessed on 14 November 2023).

https://osf.io/23auc
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The images were taken in two groups. The first was of pictures from Parks, Campuses,
and Street environments. We obtained these pictures with a Canon EOS 5D Mark II camera
(5616 × 3744 pixels) and a Canon Zoom Lens (EF 30 mm). All images were taken using a
manual setting to prevent automatic resetting by the camera from affecting our statistics.
The only setting that varied between environments was the camera’s shutter speed (1/500 s
to 1/2500 s). This change was necessary because different environments elicited dissimilar
light exposures. Therefore, if we kept a constant shutter speed, the quality of the images
would favor some environments over others in terms of image quality. We kept the ISO
constant (ISO = 200) across all environments and fixed the focal for each environment
(f4.0–f5.0). We captured the Campus environment at around 4 pm on 21 March 2022 at the
Lakeshore Campus of Loyola University Chicago. In turn, we captured the Small Street
environment in the Gold Coast neighborhood of Chicago at around 5 pm on 16 March
2022. The Large Street and Parks environments were captured between 4 and 6 pm on
15 June 2022 in downtown Chicago for the former and in Lincoln Park for the latter. The
second group of images, namely, in Malls, Farmland and Forests were all obtained in
analogous manner (same photographic settings) in the suburbs of Chicago between 9 and
11 am on 7 April 2022. We obtained these images using an Apeman A80 1080 p HD camera
(5120 × 3640 pixels).

A concern was whether image noise could affect our measurements of complexity.
However, we estimated the effect of noise on the various complexities to be so small that
we could neglect it. The estimation used measurements in the literature showing that if the
noise was imperceptible in an image, the signal-to-noise ratio was 40 dB or more [52], that
is, more than 100:1.

3.2. Quantitative Analysis

After separating the images into environments, we used a MATLAB (Mathworks, Nat-
ick, MA, USA) code written in-house to obtain the three complexity types for each image
(Equations (1)–(3)—Figure 1A). However, in our analysis of the Snowy Rural environment,
we could use only 55 of the 70 images for spatial complexity measurements. The limitation
in this environment was that sometimes there was not enough spatial information available
due to the snow. We then obtained the kernel-density distribution for each environment
with the geom_density function from the R-Studio ggplot Package [53]. Next, we used Har-
tigan’s Dip-Test [54] to evaluate whether the distributions of complexities were unimodal.
We had two reasons to apply this test: First, we wanted to make sure that the models were
simple. Therefore, we needed to know how complex we needed to build it. In this regard,
we felt that multimodality was a possibility for the model, and if so, it would have to
be more complex. Therefore, we assessed this possibility, using the best available probe,
namely, the Hartigan’s Dip test. Second, one cannot always visually assess the number of
modes in a sampled distribution. Even unimodal distributions can show a multimodal
density in their sampled representation, particularly when one uses samples limited in size.
Afterward, we obtained four descriptive statistics from the distribution by using various
R packages. We began with the median and median absolute deviation (MAD). We then
obtained the skewness and used the D’Agostino K2 test [55] to probe whether this statistic
was significantly different from zero. Finally, we measured excess kurtosis and whether it
was significantly different from zero by using Bootstrapping [56].

We then searched for good, analytic likelihood-function models to fit our distributions
of complexities, as described in Section 2 (Figure 1B). In this search, we used a MATLAB
code written in-house to fit the distributions, employing as a metric the χ2 distance between
the distributions and the models. We probed the significance of the fits with χ2 tests.

Finally, we used these fitted analytic likelihood-function models to calculate the Ob-
served Fisher Information for each environment and complexity type (Equation (7)—Figure 1C).
These calculations also used a MATLAB code written in-house. From the results of these
calculations, we obtained overall Fisher Information for each condition by computing the
expected Observed Information (Equation (11)).



Entropy 2024, 26, 901 8 of 21

4. Results
4.1. Distribution of Complexities in Natural and Human-Made Environments

The amount of information conveyed by a sensory stimulus appears to underlie an
aesthetic experience. However, to be aesthetic, this amount must be right, neither too
much nor too little. Thus, one sees a ubiquitous relationship between aesthetic preference
and sensory complexity (the latter being the proxy for the amount of information). This
relationship is commonly termed the inverted-U-shape behavior [15,17,18]. We have
hypothesized that this behavior stems from aesthetic pleasure following the Observed
Fisher Information conveyed by a sensory stimulus [4]. The goal of this article is to provide
a first test of this hypothesis by first building a good likelihood-function model of how
the brain estimates the probability of complexities in the world and then using this model
to estimate Observed Fisher Information. To be most useful to the brain, this model
should capture the statistics of complexities in the real world. We have thus measured the
distribution of visual complexities across seven different environments. In addition, we
used three types of complexity, namely, luminance, spatial, and chromatic complexities.
The distributions for the three types of complexities and seven environments appear in
Figures 2 and 3.
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Figure 2. Probability density distribution for seven environments (color-coded) and three types
of complexity. (a) Luminance complexity. (b) Spatial complexity. (c) Chromatic complexity. The
distributions of complexities are different across complexity types in terms of magnitudes, spread,
overlap, and order of peak complexities.

Figure 2 shows that each environment can be differentiated from the others based
on its unique set of complexity distributions. Nevertheless, the distributions in Figure 2
appear to have four important “universal” properties that any model must obey: First,
the distributions across environments are unimodal, that is, except for occasional noise
fluctuations, the curves only have a single peak complexity. This unimodality is confirmed
statistically with the Hartigan’s Dip Test. Second, no peak complexity falls below 0.5, aside
from the spatial and chromatic complexities of the snowy rural environment. Third, the
distributions tend to show skewness set by the position of the peak, such that when it
is above 0.5, the skewness is negative and vice versa. Fourth, the distributions tend to
show positive excess kurtosis, that is, they are leptokurtic. Hence, their peaks are narrow
(high curvature), and their tails are fat (long). The only significant exception is the spatial
complexity of snowy rural images, whose distribution is platykurtic. Another significant
feature of Figure 2 is that complexities vary systematically with the environment. For
example, forests, parks, and snowy rural settings tend to have the lowest complexities.
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In contrast, they are highest in urban streets. All the statistics confirming these trends of
the distributions of complexity are available in the supplementary information at https:
//osf.io/23auc (accessed on 14 November 2023).
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Figure 3 shows that the snowy rural environment is somewhat of an outlier. It is
the only environment whose distribution of spatial complexities peaks near zero. In
addition, such a near-zero peak causes the negative excess kurtosis of this distribution
(supplementary information, https://osf.io/23auc, accessed on 14 November 2023). This
environment also shows the most spread of density distributions for both spatial and
chromatic complexities.

Other important observations appear when reorganizing these data by environments
to compare complexity types (Figure 2). In all environments, the variable eliciting the
most amount of information on average is luminance. Spatial information comes second,
and chromatic information comes third. The only exception is snowy rural environments
where the mean amounts of spatial information are even lower than those yielded by color.
Another key observation from Figures 2 and 3 is that the distributions of complexities
are different across environments and complexity types in terms of magnitudes, spread,
overlap, and order of peak complexities. For example, the overlap between the distributions
of spatial and chromatic complexity is larger in streets than in other environments. And
the spread of the distribution of spatial complexities is smaller in malls.

4.2. A Model for the Distributions of Complexities

Next, we searched for a good likelihood model of how the brain processes amounts
of information across environments. We hoped that the model would be analytic and
parametrically simple, that is, have no more than three parameters. Furthermore, these
parameters should be enough to fit the distributions, how they change across environments,
and types of complexity (Figure 3). From the analyses in the last subsection and in Section 2,
this model also had to have the following properties:

a. Continuous Probability Density Distribution. Figures 2 and 3.

https://osf.io/23auc
https://osf.io/23auc
https://osf.io/23auc
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b. Finite Support. Complexities are bound between 0 and 1 (Equations (1)–(3)).
c. Unimodal with a Peak Neither at 0 nor at 1.
d. Skewed. The skewness is such that when the median > 0.5, the skewness is negative

and vice versa.
e. Leptokurtic

We searched for this model broadly, considering mathematically or computationally
tens of different continuous, finite-support probability distributions [45,46]. We even
allowed modifications of infinite-support distributions to make their support finite, such
as by using the logit transformation [57,58]. Almost all the distributions studied did not
fulfill all the requirements above. For example, some were multimodal or had peaks at
0 or 1 (for example, the Arcsine, U-quadratic, and Continuous Bernoulli distributions).
Others did not show skewness or had the wrong one (for example, the Irwin–Hall, Bates,
and Marchenko–Pastur distributions). However, others did not have enough positive
excess kurtosis (for example, the Beta, Logit-normal, and Kumaraswamy distributions).
And some were not parametrically simple (for example, the Logit-metalog). Among these
distributions, the ones that came closest but did not fully succeed were the Beta and Logit-
Normal distributions (Equations (4) and (5)). They had almost all the right properties,
but because of their insufficient leptokurtosis, the peak was not tall enough to capture
the observed distributions (Figure 4). The Beta distribution failed statistically to fit the
distributions in 7 out of 21 cases. The Logit-Normal distribution failed in five cases.
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Figure 4. (a) Probability density distribution of luminance complexities in the park environment with
best fits by the Logit-Losev, Logit-Normal, and Beta models. (b) Excess kurtoses for these three models.
This horizontal axis is organized by triplets of complexity type (luminance, spatial, and chromatic
in order) in the seven environments. The environments in order are parks and lakefronts, college
campuses, small streets, large streets, snowy rural settings, malls, and forests. Thus, the twenty-one
abscissas of Panel (b) are parks/luminance, parks/spatial, parks/chromatic, campus/luminance . . .
forest/chromatic. Taken together, Panels A and B show that the Logit-Losev distribution gives a better
fit because of its large positive excess kurtosis, implying more curvature at the peak. (c) Logit-Losev
curves parametric on µ with a = 2.5. (d) Logit-Losev curves parametric on a with µ = 0.
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The only distribution that had the right properties and fit the data well was what we
called the “Logit-Losev” distribution (Equation (6)—Figure 4a). This was a modification
of a distribution studied by Losev [47], itself a generalization of the hyperbolic-secant
distribution. The modification was the transformation of the independent variable with
the logit function, making the outcome a finite-support distribution. This distribution
was introduced in this article for the first time. The general Logit-Losev distribution had
three parameters. However, in this article, we used a simplified version with only two
parameters by making a = b (Equation (6)). The fits of this version of the model were
excellent (Table 1, Columns 6 and 7). Its success stemmed in part from the Logit-Losev
but not the other distributions, having a high positive excess kurtosis (Figure 4b). Another
reason for the success of the model was its ability to change skewness from positive to
negative as the optimal complexity crossed 0.5 as µ varied (Figure 4c). In turn, the width
and thus the amplitude of the distribution position were mostly controlled by a (Figure 4d).
When a became too large, the distribution turned bimodal.

Table 1. Fits and Observed Fisher Information with the Logit-Losev distribution. Columns 3 and 4
are the parameters (a and µ) of the fit. Columns 5–7 are the statistical test of the null hypothesis that
the fits are adequate. Column 8 is the complexity yielding the optimal Observed Fisher Information.
Column 9 is the optimal Observed Fisher Information.

Complexity
Type a µ DF χ2 p-Value

Complexity of Optimal
Observed Fisher

Information

Optimal Observed
Fisher Information

Parks

Luminance 2.78 1.75 47 33.8 0.92 0.851 7.73

Spatial 3.15 1.23 57 42.2 0.92 0.773 9.92

Chromatic 3.62 0.47 67 50.3 0.93 0.615 13.1

Campus

Luminance 1.92 1.94 67 74.9 0.23 0.897 6.05

Spatial 2.43 1.44 67 68.0 0.44 0.808 5.90

Chromatic 3.64 0.89 67 69.0 0.40 0.708 13.2

Small
Streets

Luminance 1.82 2.29 57 40.5 0.95 0.908 3.31

Spatial 2.37 1.73 67 76.0 0.21 0.849 5.62

Chromatic 3.41 1.27 57 46.5 0.83 0.780 11.6

Large
Streets

Luminance 2.40 2.04 57 46.6 0.83 0.884 5.76

Spatial 2.58 1.51 57 46.4 0.84 0.819 6.66

Chromatic 3.07 1.36 57 44.0 0.89 0.795 9.42

Snowy
Rural

Luminance 4.05 1.52 47 27.5 0.98 0.820 16.4

Spatial 0.768 −0.76 37 41.1 0.29 0.318 0.590

Chromatic 2.36 −0.18 37 30.3 0.77 0.455 5.57

Malls

Luminance 2.71 1.58 57 25.7 0.99999 0.822 7.34

Spatial 3.12 1.19 57 51.9 0.66 0.782 21.3

Chromatic 3.33 0.998 57 40.5 0.95 0.730 11.1

Forest

Luminance 2.73 1.34 57 32.3 0.996 0.792 7.45

Spatial 2.42 0.64 77 53.4 0.98 0.654 5.86

Chromatic 3.04 0.24 87 52.6 0.998 0.559 9.24

4.3. Fisher Information

We hypothesized that the Observed Fisher Information obtained from the likelihood
distribution is a measure of the aesthetic appraisal for the amount of information. Conse-
quently, if the Logit-Losev distribution was applicable for appraisals of complexities, its
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Observed Fisher Information had to capture their inverted-U-shape behavior. If so, we also
wanted to know what was special about the Logit-Losev distribution that allowed it to
have this property. Fisher Information for the Logit-Losev distribution is a 2 × 2 a matrix
(Equation (7)). However, not all components of this matrix are equally important. In this
article, we focus on the µ-diagonal component because this parameter has a coefficient of
variation 2.4 times larger than that of a (the ratio between coefficients from Columns 3 and
2 of Table 1). Thus, a can effectively be considered constant for each environment and type
of complexity (but not across them). Figure 5 shows the µ-diagonal of the Observed Fisher
Information for the Logit-Losev distribution for one illustrative environment. Summary
data across environments appear in Table 1.
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Figure 5. (a) Kernel-density distribution (shaded curve) for chromatic complexities in large streets and
the corresponding Observed Fisher Information Curve (red) for the optimal Logit-Losev distribution.
The curve is for the µ component of the Observed Fisher Information matrix (Equation (7)). (b) Four
examples of images (I–IV) with complexities as indicated in A. For this environment, the peak Fisher
Information is at a different complexity (II) than that yielding most images (III).

The most important observation from Figure 5a was arguably that the Observed
Fisher Information curve obtained from the Logit-Losev distribution obeyed an inverted-U-
shape behavior (Equation (10)). This behavior was consistent with the main hypothesis
of this article. We hypothesized that the aesthetic appraisal based on the complexity of
an image was due to how much it informed on the parameters of the brain model of
complexities. However, four other important conclusions would follow if we accepted
that the human inverted-U-shape behavior followed the Fisher Information: First, the
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peak of the distribution of complexities (Figure 5b(III); Complexity = 0.85) did not match
that of the Observed Fisher Information (Figure 5b(II); Complexity = 0.81). Instead, the
peak Observed Fisher Information complexities in Table 1 matched the medians of the
distributions of complexity (supplementary information, https://osf.io/23auc (accessed on
14 November 2023)). Therefore, because of the typical negative skewness of the complexity
distributions, peak Observed Fisher Information complexities were lower than the most
common ones. Thus, the peak complexity might not always be the most liked [25]. Second,
the Observed Fisher Information curve quantifies when the complexity is too little or too
much. To illustrate this point, in Figure 5a, we took the 10%-of-peak to be our threshold of
likeability. Thus, people would dislike images with complexities below 0.698 and above
0.872. Third, this range of complexities and thus the details of the inverted-U-shape curve
would depend on the environment (Table 1, Column 8). Fourth, different environments
would yield different amounts of maximal positive appraisal (Table 1, Column 9).

The Logit-Losev model gave a better fit to the distribution of complexities than the
other models that we tried and produced an inverted-U-shape behavior of the Observed-
Fisher-Information curve (for example, Figure 4a—Equation (10)). However, could the
other models give rise to the inverted-U-shape behavior? Figure 6 gives an answer for the
models that came closest in terms of our fits. These were the alternate models in Figure 4,
namely, the Beta and Logit-Normal distributions.
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Figure 6. Diagonal-component curves of the Observed Fisher Information matrices for the Logit-Losev
(a), Beta (b), and Logit-Normal (c,d). Distributions with optimal parameters for each environment
and type of complexity. For the Logit-Losev distribution, we only show the µ component because
it is what varies the most across environments. For the Beta distribution, the results for the α and
β components were identical, and thus, we only show Observed Fisher Information for the former.
Only the Logit-Losev distribution produces the inverted-U-Shape behavior.

Even the models that came closest to the Logit-Losev distribution in terms of quality
of fit could not produce the inverted-U-shape behavior (Figure 6). Figure 5 already showed
that this behavior was compatible with this distribution for large streets and the µ compo-
nent of the Observed Fisher Information matrix (Equation (7)). We extended this result

https://osf.io/23auc


Entropy 2024, 26, 901 14 of 21

to all environments and types of complexity (Figure 6a). In all these Logit-Losev results,
we saw the inverted-U-shape behavior. The optimal complexity of this behavior is shown
in mathematical form in Equation (11). Interestingly, this optimum depended only on pa-
rameter µ. In turn, the largest Observed Fisher Information in the behavior was governed
by the parameter a alone (Equation (12)). However, the inverted-U-shape behavior did
not apply to the other distributions. For the Beta distribution, we found that the Observed
Fisher Information was independent of complexity (Figure 6b—Equation (8)). In turn, for
the Logit-Normal distribution, the Observed Fisher Information was independent of com-
plexity for the µ component (Figure 6c—Equation (9)) but exhibited a non-inverted-U-shape
behavior for the µ component (Figure 6d).

4.4. Comparing Environments and Types of Complexity

Lastly, we compared the Fisher Information yielded by the distributions obtained
from our seven environments and three complexity types. The goal of the comparison
was to see if we could discern patterns across these conditions. Thus, for each of them,
we calculated the expectation of the Observed Fisher Information, namely, the full Fisher
Information. In Figure 7a, we group the expectations by environment parametric on
complexity type. In turn, in Figure 7b, we group the expectations by complexity type
parametric on environment.
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coded). Chromatic and luminance complexities tend to exhibit the most and the least Fisher Informa-
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We saw no clear systematic trends in environments and complexity types in Figure 7.
Hence, neither a single environment nor a complexity type was more informative than
the others overall. However, trends could be gleaned. Overall, luminance complexities
yielded less Fisher Information than the others, ending in last place in five of the seven
environments investigated (Figure 7a). In contrast, spatial and chromatic complexities were
more informative, with the latter being especially relevant for open urban settings. The only
outlier was the snowy rural environment for which only luminance complexity was helpful.
In terms of environments, two appeared especially informative in comparison to the others
across complexity types, namely, parks and malls (Figure 7b). Other environments tended
to be less informative for some complexity types but not others (for example, snowy rural
settings, and small and large streets).

5. Discussion

Multiple experiments have shown that the aesthetic preference for sensory inputs has
an inverted U-shape dependence on their complexities, that is, their amounts of information.
Why does the brain relate to the amount of information in this manner? We have previously
argued against the hypothesis that people like stimuli with the most common amounts
of information in the surrounding environment [25]. Instead, we hypothesize that the
brain likes sensory inputs that are illuminating about the parameters of its likelihood
model of amounts of information in the environment. This hypothesis anchored on the
likelihood distribution follows the Bayesian strategy for the brain [59]. Knowing the
right likelihood parameters may help the brain allocate the right volume of resources
for future inputs [4,19–21]. The process involved in preparing this allocation is similar to
the adaptation of likelihood parameters proposed by Brielmann and Dayan [22]. Such an
adaptation is also consistent with Friston’s free energy principle [60–62]. It proposes that the
brain lessens uncertainty through predictions made by internal models that improve over
time by using new sensory signals. The fastest way to find out what these parameters are
is to measure the Observed Fisher Information of the sensory input. We thus propose that
Observed Fisher Information captures the expected informational utility of the stimulus
(Figure 1A). Thus, too little or too much Observed Fisher Information would tend to be
disliked. Therefore, we show that likelihood models that capture the distribution of the
amount of information across environments lead to inverted-U-shape Observed-Fisher-
Information functions.

To summarize these points, our main innovative contributions to existing compu-
tational theories of aesthetic preference are as follows: (1) We propose the existence of
brain circuitry to estimate the distribution of the amounts of sensory-signal information
in the current environment. (2) This estimate helps the brain allocate the right volume of
resources to process future sensory signals. (3) The estimation uses a likelihood distribution
of complexities that captures their probabilities the real world. (4) Upon the arrival of a
sensory signal, its goodness in helping estimate the parameters of the likelihood distribu-
tion is obtained through the Observed Fisher Information. (5)The more Observed Fisher
Information the signal has, the more aesthetic pleasure will arise.

5.1. Limitations

Before continuing with a discussion of these findings on complexities across envi-
ronments, we address four limitations of our study. First, a limitation is that we only
sampled locations in the region around our university. One can imagine other locations
around the world whose Observed Fisher Information would not have an Inverted U-shape
dependence on complexities. However, we feel confident that our locations are a broad
first set. They cover exterior and interior urban images (such as streets and a mall) and
natural ones (such as a forest and snowy fields). Second, the inverted-U-shape relation-
ship for complexity and preference is not necessarily a given and could show individual
differences [63]. Our study focuses on the statistics of the environment and thus, does
not address individuality. However, individuals learn parameters of the environment
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differently [29,30], and thus, an extension of the model could capture individuality. Third,
the current data may not tell us something categorical about systematic differences between
environments. We only sampled one location per type of environment, for example, only
one forest. Other forests may behave differently than ours. Still, if they do, we believe
that we should not group them in a single environment. Fourth, the data in this article
only allow us to build the theory for the visual system. Nevertheless, that we show an
inverted-U-shape behavior with sound complexities [64,65] suggests that our theory may
extend to the auditory system too.

5.2. A Likelihood Function Fitting the Distribution of Complexities

Our efforts led us to search for and find a likelihood function model that could fit the
distribution of complexities across different environments well. The model that we found
was the Logit-Losev function. The process of finding this function taught us important
lessons about the best likelihood model for the brain. Most simple, standard, analytic
models that one finds in the literature cannot fit the distribution of complexities of real-
world environments. Good models must be continuous, smooth, unimodal, with finite
support, and with large skewness and positive excess kurtosis. Not only that, but the sign
of the skewness must vary systematically with the peak of the distribution. The skewness
is especially important because it causes the median of the distribution to be separate from
its mean and peak. As we report, the complexities yielding the most Observed Fisher
Information when using the Logit-Losev distribution are close to the median, not the
other statistics. However, one cannot generalize and conclude that our hypothesis predicts
that the preferred level of complexity is always near the median of the distribution. Our
search space includes many distributions, converging to Logit-Losev, but with broader
explorations, we may find other ones. Any of them should have the intricate properties
of the Logit-Losev in terms of, say, kurtosis and skewness. However, the Observed Fisher
Information depends on the parametric structure of the distribution. Consequently, we
cannot guarantee that its median would be close to the optimal complexity.

But is the fit of the Logit-Losev function too good? This concern arises because χ2

of the fit is lower than the degrees of freedom in many entries of Table 1. When the ratio
between these two quantities, the so-called reduced-χ2 statistic, is smaller than 1, we may
have overfitting [66]. Consequently, our model could correspond too closely to our data
and may thus fail to fit more observations reliably. However, we reject overfitting for our
results based on three arguments: First, our model has only two parameters to fit a complex
family of curves. Second, Table 1 is already a test of whether the model does not fit more
observations reliably after producing a fit with reduced-χ2 statistic smaller than 1. For
example, although such a result is seen for Parks with luminance complexity, a good fit
is also seen in other combinations of environments and complexities. Third, our model
has a nonlinear dependence on the parameters. However, one can only reject fits based on
reduced-χ2 statistics for linear models, that is, those that are linear superpositions of basis
functions [67]. We conclude that the Logit-Losev function does not overfit the distributions
of complexity across environments.

Distributions that, like the Logit-Losev function, have all these properties can be
“blueprints” for calculating the amount of Observed Fisher Information for each environ-
ment and complexity type. Such functions may thus allow us to differentiate useful from
useless information. Too little Fisher Information for low-complexity sensory inputs is
equivalent to being useless by being “boring” (Figure 1D). Too little Fisher Information for
high-complexity stimuli is equivalent to being useless by being “confusing” (Figure 1D).

5.3. Variation in the Distribution of Complexities

An important pattern appearing in our data is that different environments tend to
vary systematically in terms of their distributions of complexities. The most obvious
example is the snowy rural environment, whose complexities peak near zero. The main
reason for a near-zero peak is the high albedo of snow, which causes substantial amounts
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of light to reflect at all wavelengths. Such a near-zero peak causes the unique negative
excess kurtosis of this distribution. Moreover, this environment also shows the most
spread of density distributions of spatial and chromatic complexities. One reason for this
spread is that the snowy rural environment occasionally has woodlands, whose higher
complexities match those of forests. In contrast to snowy rural environments, streets have
the highest complexities, while forests and parks tend to have among the lowest values,
albeit still above those of snow. Forests have low complexities because they tend to be
monochromatic, isoluminant, and spatially simple. Curiously, parks, which are a result of
cultural evolution [68–70], tend to have some of the same properties of forests and thus,
relatively low complexities. Again, this is not surprising because parks are healthy, urban
green spaces [71–73], often reminiscent of forests.

5.4. Different Types of Complexities

Theoretically, different complexity types are possible. However, do humans perceive
distinct types of complexities or a single, composite one for the whole image? If the
latter possibility is correct, then how does the brain combine the different complexity
types that give rise to perception? Many possibilities exist, and of course, one can test
them experimentally. The simplest of these possibilities is a weighted computation of the
complexity types. One way to develop these weights would be to consider that, typically,
luminance complexity is higher than spatial complexity, which is higher than chromatic
complexity. Alternatively, one can weight according to Fisher Information. Thus, the
opposite ranking is true, with chromatic Fisher Information being typically the highest and
luminance Fisher Information being the lowest. A much more computationally complex
but mathematically sensible alternative to weight ranking would be to compute a single
complexity index. The brain could do this by combining the various variables (for example,
luminance, space, color, and others) into a single multidimensional one. The disadvantage
of such a combination is that it suffers from the curse of dimensionality [74,75].

Relatedly, the different complexity types could interact with other aesthetic variables.
In this article, we followed several other studies [5–7,15,24,44,76,77] and studied lumi-
nance, spatial, and chromatic complexities in isolation. However, recent studies have
looked at how complexity competes with other variables to find whether an image is
pleasant [25,29,78,79]. For example, an image with a lot of balance and symmetry is less
complex. However, balance and symmetry are also aesthetic variables. Hence, different
people decide individually how to equilibrate complexity, on the one hand, and balance
and symmetry, on the other hand, in their appraisal of images [25]. Variables like content,
meaning, and significance are also part of this equilibrium [80–82]. Importantly, balance,
symmetry, content, meaning, and significance are all sources of information, as is com-
plexity. However, in a sense, complexity is a meta-variable, changing in response to the
former sources of information. Complexity informs on an amount of information. We have
suggested that the brain may measure the amount of information (including symmetry,
balance, content, meaning, and significance) to allocate resources. In turn, the brain mea-
sures, for example, symmetry, to decide if one should analyze whether the object is a face,
a leopard, or a fruit.

5.5. Adaptation to Different Environments

Because environments can be rich, our brain could use not just a single complexity like-
lihood function but multiple ones [4,15,44,77]. However, our findings suggest that a single,
simple likelihood function is sufficient to capture each or most real-world environments.
Even environments behaving differently from the rest (for example, snowy rural settings)
are captured well enough. However, questions arise on how the brain sets the parameters
for each environment. For example, how quickly and correctly do internal parameters
adapt after environmental changes [22,29,30]? Does experience shape one’s ability to adapt
the parameters to future new environments? For example, if people live their entire lives
in the jungle and have an internal model fully perfected to rainforest characteristics, can
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they adapt efficiently when moving to a big city? If given enough time and energy, can we
adapt to any environment? What if the environment had naturally or artificially created
complexity distributions that did not match our internal likelihood function?

The importance of answering these questions on adaptations to new environments
is that the responses have implications for how our aesthetic values change over time.
Recent studies have shown that aesthetic values are constantly drifting [83]. Our results
suggest that one reason for the drift is adaptation to the environment. A prediction of
this adaptation is that even the inverted-U-shape curve is not immutable. Measuring this
curve in two different environments could lead to distinct locations of the peaks of the
inverted-U-shape even when testing on identical sensory stimuli.

5.6. Further Tests of Our Theory

This is a theory article, and thus, we have not conducted experiments to test whether
the brain follows what we are proposing. Nevertheless, the last section proposes experi-
mental tests of our theory related to adaptation to different environments. Furthermore,
the section before that addressed predictions related to the distinct types of complexity in
an image. Another set of interesting tests would arise if a person were in an environment
where the complexity statistics are not captured by the Logit-Losev-like function. We do
not know whether such an environment exists in the natural or urban world. However,
we can create environments like this artificially. We predict that if adaptation takes place
fast enough, the brain will try to find the best Logit-Losev parameters, although the fit
would not be perfect. With these parameters, we can predict what images the subject would
like and dislike. Without adaptation, these parameters would stay constant, but we can
still make these predictions. In an even stranger environment, we can make all images
have the same complexity but vary among other dimensions. For example, consider an
image with only red and black pixels. Now, take a second image that is identical to the
first, except that every pixel that is red in the first is now green. These two images have
the same luminance, spatial, and chromatic complexities. However, some people may
prefer the “red” image while others may prefer the “green” one [83]. Thus, these people
would not have a preference based on complexities but based on dominant color, or other
dimensions in alternate examples. In contrast, if we control these other dimensions, but
allow complexity to vary, we predict that images with similar complexities will have the
same preference regardless of the distribution of complexity in the artificial environment.

5.7. Generalizing the Use of Observed Fisher Information

In this work, we have shown the possible utility of Observed Fisher Information to
account for the aesthetic appraisal of complexities. Could Fisher Information be useful
with other aesthetic variables? In rough strokes, the brain interprets a sensory variable
as possibly carrying aesthetic information if the signal is important for survival. If this
happens, the brain likely dedicates special circuit to this signal, making its processing fluid.
This fluidity has been considered as a proxy to a positive aesthetic appraisal [27,28]. If so,
this proxy may be showing high Observed Fisher Information, which may help the brain
set the parameters of one of its multiple internal models about the world. Thus, Fisher
Information may provide a method of quantifying some theories of aesthetic emotions,
such as the processing fluency theory [27,28].
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