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Abstract: User-perceived throughput is a novel performance metric attracting a considerable amount
of recent attention because it characterizes the quality of the experience in mobile multimedia services.
For instance, it gives a data rate of video streaming with which a user will not experience any lag or
outage in watching video clips. However, its performance limit remains open. In this paper, we are
interested in the achievable upper bound of user-perceived throughput, also referred to as the user-
perceived capacity, and how to achieve it in typical wireless channels. We find that the user-perceived
capacity is quite limited or even zero with channel state information at the receiver (CSIR) only. When
both CSIR and channel state information at the transmitter (CSIT) are available, the user-perceived
throughput can be substantially improved by power or even rate adaptation. A constrained Markov
decision process (CMDP)-based approach is conceived to compute the user-perceived capacity with
joint power–rate adaptation. It is rigorously shown that the optimal policy obeys a threshold-based
rule with time, backlog, and channel gain thresholds. With power adaptation only, the user-perceived
capacity is equal to the hard-delay-constrained capacity in our previous work and achieved by joint
diversity and channel inversion.

Keywords: user-perceived capacity; ultra-reliable and low-latency communications; real-time wire-
less communication; hard delay constraint; cross-layer scheduling; finite horizon Markov decision
processes

1. Introduction

Future 6G communication aims to provide a revolutionary user experience [1,2], with
real-time communication holding high expectations in achieving the goals of future mobile
communications. On the other hand, the user-perceived capacity is a novel performance
metric that has attracted considerable recent attention because it characterizes the quality
of experience in mobile multimedia services [3]. In this paper, our objective is to improve
the user-perceived capacity to meet the demands of real-time communication in future
wireless communications.

Real-time communication is essential for applications where latency is a critical factor.
It ensures that the time taken for data to travel from the transmitter to the receiver is within
acceptable limits, enabling seamless and interactive experiences. Study [4] indicated that
communication in real-time systems must be predictable, and a scheme was proposed for
providing predictable inter-process communication in real-time systems with a point-to-
point interconnection network. Study [5] focused on the time sensitive networks, analyzed
the key functional parameters affecting the deterministic behavior in real-time communica-
tion protocols and, based on the configuration of these parameters, derived the constraints
required for computing schedules to ensure the deterministic end-to-end delay of critical
communication flows. In [6], the authors concentrated on real-time communication for
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industrial automation environments, aiming to meet the demands of real-time communica-
tion in a scenario where the number of networked devices and computational capabilities
are expected to significantly increase. The authors of [7] focused on wireless sensor net-
works, summarizing and employing various methods based on both hard real-time and soft
real-time models. Furthermore, they provided scheduling policies to ensure the require-
ments of real-time communication. In particular, hard real-time communication implies
that missing the deadline can lead to a system-wide failure, necessitating the satisfaction of
end-to-end latency constraints within the deadline. On the other hand, soft real-time com-
munication aims to reduce the transmission of packets that exceed the deadline, that is, to
minimize the probability of exceeding the deadline. In this paper, we focus on hard latency
constraints. This is due to hard latency constraints playing an extremely important role in
the ultra-reliable and low-latency communications (URLLC) scenario, ensuring timely and
reliable data delivery [8]. Many studies have primarily targeted hard latency constraints,
such as [9–17]. In the literature, the authors of [10] considered a communication network
under hard real-time constraints, wherein the source node transmits information to the
destination node via a directed acyclic graph subject to hard latency constraints. In [9],
the authors demonstrated that hard latency constraints can be provided using frequency
or spatial diversity and time domain power adaptation, with the condition that diversity
gains are at least two. Study [9] also revealed the underlying relationships between the
required average power, throughput, and outage probability. The authors of [12] presented
a novel power control scheme enhancing the link layer performance in delay-sensitive
communications over fading channels. This scheme is particularly adept at managing joint
queue length awareness. In [13], the authors introduced an optimal dynamic coding algo-
rithm, along with its low-complexity approximations, designed for deadline-constrained
traffic. Additionally, a joint coding and rate control policy proposed by [13] outperformed
in time-varying channels, making it particularly beneficial for multimedia streaming and
interactive real-time applications. This proposed policy was demonstrated to offer superior
performance and stability. However, there is also a considerable amount of research that
concentrates on soft real-time communications, specifically addressing the issue of delay
violation probabilities over wireless channels [18]. Refs. [19,20] contributed to the field by
formulating a CMDP to minimize the queue-length-bound violation probability, utilizing
linear programming to obtain the optimal probabilistic policy, balancing violation proba-
bility with transmission power. The authors of [21] proposed a framework for cross-layer
optimization to ensure the required quality-of-service with finite transmit power, consid-
ering the transmission error probability, queueing delay violation probability, and packet
dropping probability. Liu et al. proposed a URLLC-centric task offloading and resource
allocation framework, incorporating the statistical characteristics’ extreme queue length
events [22]. In [23], the authors focused on reducing packet delay violation probabilities
within periodic traffic models and, by utilizing Markov decision processes and nonlinear
Knapsack Problems, presented an asymptotically optimal policy.

In the context of real-time communication, wireless networks are responsible for
transmitting substantial amounts of data in a specified time frame, with an increasing
emphasis on ensuring high service quality. A significant portion of data has strict latency
requirements, which arise from various application scenarios involving real-time commu-
nication, such as autonomous driving, health monitoring, and industrial automation. To
meet these latency requirements, data transmissions must be completed within a given
deadline constraint. Consequently, Zafer and Modiano proposed a BT problem in [24],
addressing the challenge of transmitting B units of data within a deadline T. They em-
ployed continuous-time stochastic control theory to derive the optimal policy for the BT
problem. In addition, Berry et al. provided an overview of research related to packet
delay and energy consumption in [25], including the BT problem and delay-constrained
issues. For discrete-time point-to-point communication systems, refs. [26,27] investigated
the optimal data transmission for BT problems under constraints such as random data
arrival and Quality of Service (QoS), without considering time-varying channels. To specif-
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ically address the impact of time-varying channel conditions on the BT problem, several
studies [11,28,29] extended the BT problem from static channels to fading channels. Fur-
thermore, studies [24,30–32] have considered the BT problem in continuous-time systems,
exploring the optimal data transmission policies in the presence of time-varying channels.
In addition to single-user scenarios, the academic community has also conducted research
on multi-user scenarios. For instance, the authors of [33] investigated the BT problem in
a time-shared multi-user system by considering random arrivals and time-varying chan-
nels for multiple users. Furthermore, study [34] extended the BT problem to multi-access
scenarios and examined power minimization scheduling with deadline constraints in a
multi-access channel environment. Moreover, under the framework of the BT problem,
studies such as [35–39] further explored deadline-constrained communications in scenarios
such as multi-hop networks, computation offloading, lossy networks, and multi-robot task
allocation, providing optimal scheduling policies.

Cross-layer design is widely recognized as a crucial methodology for ensuring real-
time performance for delay-constrained services. Notably, Collins and Cruz pioneered
the integration of network and physical layer designs to optimize low-latency wireless
transmissions, resulting in the formulation of a cross-layer scheduling framework [40].
After that, there has been an increasing focus on interactions across different layers [41–43],
leading to the proposal of various approaches for cross-layer scheduling in diverse appli-
cation scenarios. Specifically, Lyapunov optimization and Markov decision processes are
commonly used in cross-layer designs to enhance system throughput and reduce latency.
Inspired by the existing literature on cross-layer scheduling approaches [40–43], researchers
utilized Lyapunov optimization to describe data arrivals at the network layer and channel
state information at the physical layer, thereby exploring power-constrained cross-layer
scheduling for low-latency wireless communications. In [44], the authors introduced
online dynamic control algorithms using Lyapunov optimization theory for multi-hop
networks. In [45], Neely provided a systematic summary of Lyapunov optimization the-
ory, focusing primarily on communication and queuing systems. Building upon this,
refs. [46–48] demonstrated the throughput optimality of the Lyapunov drift method under
the maximum weight rule, the logarithmic rule, and the exponential rule in multi-user
scenarios over time-varying wireless channels. Subsequently, the Lyapunov drift method
has been widely applied in packet switching [49–51], queuing networks [52], wireless com-
munication [53,54], and satellite communication systems [55]. When the system exhibits
Markovian properties, a Markov decision process (MDP) can be employed to achieve a
more rigorous analysis and optimization for metrics such as delay and power in wireless
communication systems [56,57]. Berry and Gallager conducted an analysis on the average
delay and power for a single-user scenario over block-fading channels in discrete-time
systems [58]. Building upon this, ref. [59] studied the trade-off among the average power,
delay, and the packet drop ratio in a single-user link over fading channels. It provided
deterministic policies for unconstrained problems and probabilistic policies for constrained
problems using value iteration and linear programming, respectively. Refs. [60,61] further
investigated the trade-off between delay and power for random arrivals in AWGN and fad-
ing channels based on the constrained MDP (CMDP) framework. Specifically, the authors
showed structural properties of the optimal scheduling policy, such as a threshold-based
structure and piecewise linearity, and consequently developed an efficient algorithm to
search for the optimal delay-power tradeoff. As an extension of [60,61], ref. [62] considered
a Markovian arrival process, and showed similar threshold and piecewise linear charac-
teristics for the optimal scheduling policy. Under a CMDP framework with cross-layer
designs, refs. [63,63] presented the optimal delay-power trade-off for two-user systems
over AWGN and block-fading channels, respectively.

In the aforementioned references, the studies from [40–64] focus on the research
of cross-layer design and do not conduct specific studies on real-time communication.
Although the references from [4–23] primarily concentrate on summarizing and designing
the framework of real-time communication, they do not specifically address the issue of
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transmitting B units of data within a deadline T. The studies from [24–39], while focusing
on the BT problem, do not take into account the user-perceived capacity, that is, they do
not consider how to meet the requirement for the continuous reading of the user. Based on
this, this paper focuses on real-time communication, utilizing the framework of cross-layer
design to improve the user-perceived capacity under the constraint of average power.

This paper primarily investigates single-user communication systems over wireless
fading channels. The objective is to maximize the user-perceived capacity under the
constraint of average power. Specifically, we consider periodic data arrivals, with B packets
of data arriving at the beginning of each period. The user reads the received data at a
certain rate at the receiver. To satisfy the user-perceived capacity, we need to transmit B
units of data within a deadline T. In particular, the main contributions of the paper are
as follows.

• We model the user-perceived capacity-oriented system as a two-dimensional Markov
chain with the queue length and time index as the system state. Based on this, we
rigorously analyze the power consumption and show conditions for ensuring a target
user-perceived capacity.

• Under this Markov chain, we formulate a dual problem of maximizing the user-
perceived capacity over fading channels, i.e., minimizing the average power while
achieving a constraint on the user-perceived capacity. To address the non-convexity of
this dual problem, we convert it into a linear programming problem, equivalently, via
a variable combination method.

• Next, we obtain an optimal cross-layer scheduling policy by solving the derived linear
programming problem. Subsequently, a binary search method is developed to acquire
the maximum user-perceived capacity under an arbitrary average power constraint.

• Furthermore, we represent the single user link as a finite horizon Markov decision
process, and demonstrate a series of threshold structures of the optimal policy in terms
of queue length, time-slot, and channel state.

The rest of this paper is organized as follows. Section 2 initially provides a detailed
definition of user-perceived capacity. Section 3 illustrates the system model. The BT
problem with the cross-layer approach is investigated in Section 4. In Section 5, we prove
the structure of the optimal policy. Numerical results and concluding remarks are presented
in Sections 6 and 7, respectively.

2. User-Perceived Capacity

We define C and R(t) as the user-perceived capacity and transmission rate, respectively.
For the time duration [0, T], the user-perceived capacity C satisfies

Ct ≤
∫ t

0
R(τ)dτ, w.p. 1, ∀t ∈ [0, T]. (1)

In discrete-time systems, the integral transforms into the form of a summation
T
∑

t=0
R(t).

Specifically, the user-perceived capacity refers to the capacity that enables users to avoid
any interruptions during reading. Then, we obtain the following three propositions.

Proposition 1. In the AWGN channel, the user-perceived capacity C is equal to

C = W log2(1 + γ) bit/s, (2)

where W and γ represent the bandwidth and the signal-to-noise ratio at the receiver, respectively.

Proposition 2. In the fading channel with the channel state information at the receiver, each
positive constant c > 0 satisfies

Pr
{

ct >
∫ t

0
R(t)dt

}
> 0, ∀t ∈ [0, T], (3)
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due to the unbounded power under deep fading. As such, the user-perceived capacity C is equal
to zero.

Proposition 3 (Our previous work [9]). In the fading channel with the channel state information
at the transmitter and the receiver, the user-perceived capacity is equal to the hard-delay-constrained
capacity with power adaptation only, i.e.,

C = W log2(1 + γ) bit/s, (4a)

P = Eh

{
γσ2

h2

}
, (4b)

where P denotes the expectation of transmission power over the random channel gain h. Meanwhile,
σ2 denotes the noise variance. (The condition for Proposition 3 to hold is that the power P is bounded
as stated in Equation (4b). The reader may have observed that Equation (4b) does not hold under
Rayleigh fading channels. In response to this case, we have demonstrated in our paper [9] that when
the frequency or spatial diversity order exceeds two, Equation (4b) can be satisfied.).

In this paper, leveraging a cross-layer approach, we achieve the user-perceived capacity
with the rate adaptation. Our proposed policy yields a user-perceived capacity that is
inevitably superior to that presented in Proposition 3.

3. System Model

In this paper, we consider a data transmission from a base station to a user. When a
user request is sent to the base station, the base station shall send an amount of data to the
user, supporting a target experience rate within a deadline, i.e., meeting the user-perceived
capacity. Specifically, a target rate illustrates how fast the user reads the transmitted data
at the receiver. Due to the randomness of the wireless channel, a careful channel resource
arrangement shall be acquired to avoid any interruption for reading the data.

3.1. Queueing Model

As shown in Figure 1, the time is divided into time-slots, each of which spans τ s
and is indexed by t = 0, 1, 2, . . .. We define a[t] as the number of packets that arrive at the
base station in the beginning of time-slot t. Meanwhile, we suppose that the data packet
arrival follows a periodical process with the arrival period of T time-slots and the number
of arriving packets set as B.

𝑞 𝑡

Researching

Physical 

Channel

Transmission Queue Reading Queue

Tx Tx

𝑎 𝑡 𝑠 𝑡

Cross-Layer Scheduling

Figure 1. System model

As such, a[t] evolves as

a[t] =
{

B if t mod T = 0,
0 if t mod T ̸= 0.

(5)
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According to the classic BT problem proposed in [25], these B data packets that arrive
periodically must be transmitted within T time-slots.

Let s[t] represent the transmission rate, which is the number of packets transmitted
in time-slot t. Owing to the constrained throughput at the base station, we set an upper
bound of s[t] by S. This way, the feasible region of s[t] is defined as S = {0, 1, 2, . . . , S}.

Meanwhile, a buffer of size Q is utilized to store remaining packets at the base station.
Let q[t] denote the queue length, i.e., the number of packets backlogged in the buffer, in the
t-th slot. As such, we have q[t] ∈ Q = {0, 1, 2, . . . , Q}. The queue state q[t] evolves as

q[t + 1] = min{(q[t]− s[t])+ + a[t + 1], Q}, (6)

where (x)+ = max{x, 0}.

3.2. Physical Layer Model

In the physical layer, we represent the signal transmitted during the t-th time-slot
as X[t], and the corresponding signal received at the receiver as Y[t]. The channel gain is
denoted as h[t]. We express the received signal as follows.

Y[t] = h[t]X[t] + Z[t], (7)

where Z[t] represents an additive white Gaussian noise process.
Note that a quantized channel state is typically used to determine modulation and

coding schemes’ real-world systems due to the limited resources for channel estimation. As
such, we employ a set of thresholds for the quantization of the channel gain h[y], namely,
hth

0 = 0 < hth
1 < · · · < hth

L = +∞. Specifically, we set h[t] as hl =
1
2 (h

th
l−1 + hth

l ) for l =
1, . . . , L, if the actual channel gain falls within the interval of [hth

l−1, hth
l ). Consequently, we

can model h[t] as an L-state block-fading channel, withH = {h1, h2, . . . , hL} representing
the feasible region of channel states, characterized by 0 < h1 < h2 < · · · < hL < +∞.
Furthermore, we define the probability of h[t] = hl as follows.

ηl =
∫ hth

l

hth
l−1

p(x)dx for l = 1, 2, . . . , L, (8)

where p(x) is the probability density function of the channel gain that is conducted from
the real-world wireless environment. Additionally, h[t] is independently and identically
distributed (i.i.d.) across time-slots. We assume that the channel state information h[t]
is available at the transceiver and receiver at each timeslot. The assumption of the full
knowledge of the channel state is widely adopted in the literature and grounded in the CSI
measuring and reporting processes stipulated for 5G NR systems in the 3GPP standard [65].
The effect of channel estimation error is also investigated by numerical simulations.

We denote by P[t] the power consumption in the t-th time-slot. When the transmission
rate s[t] = s and the channel state h[t] = hl , the power consumption P[t] = P(s, l). Without
the loss of generality, we assume that P(s, l) is convex with respect to s and that it is
monotonically increasing. Meanwhile, S is the maximum value of transmission rate s[t].

3.3. Reading Model

The transmitted packets are stored in a read-only buffer at the user side, and subse-
quently read under a fixed rate. In the context of the classic BT problem, the reading rate of
the user is typically set as B

T packets per time-slot. To avoid any interruption to the reading
process at the user, we next develop a continuous reading constraint for the transmission
of B data packets within an arrival period, i.e., T time-slots. To this end, we first denote
by m[t] the index of the current time-slot over its corresponding arrival period, which is
represented by

m[t] = t mod T. (9)
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Here, we have m[t] ∈ M = {0, 1, 2, . . . , T − 1}. As shown in Figure 2, we can avoid the
interruption of the data reading process, as long as the amount of remaining unread data at
the user side (red line) is no less than the amount of remaining in-transmitted data at the
base station side (blue line). This way, we formulate the continuous reading constraint as

B− q[t]
m[t]

≥ B
T

. (10)

To circumvent the influence of the zero point, we introduce

q[t]T + m[t]B ≤ TB. (11)
Researching

B

T

time-slot

The number of remaining 

packets in the transmitter

Reading curve

Transmission curve

Figure 2. Reading mode. The blue step-change line represents the number of packets remaining as
backlog at the base station in each time-slot in a period. The red line represents the number of packets
remaining that are unread at the user side.

Subsequently, we find that optimizing the user-perceived capacity directly, under the
constraint of average power, is highly challenging. Therefore, we consider optimizing the
dual problem of improving the user-perceived capacity, which minimizes the average power
while satisfying the user-perceived capacity. Based on this, we formulate an optimization
problem to minimize the long-term average transmission power consumption under the
continuous reading constraint in Equation (10), i.e.,

min
{s[t]∈S}

lim
N→+∞

1
N

N

∑
t=1

P[t] (12a)

s.t. q[t]T + m[t]B ≤ TB, (12b)

q[t + 1] = min{(q[t]− s[t])+ + a[t + 1], Q}, (12c)

m[t] = t mod T. (12d)

Before leaving this section, we shall emphasize that the system determines the trans-
mission rate s[t] by jointly considering the current values of the queue state q[t], the channel
state h[t], and the time index m[t]. As such, an energy-efficiency scheduling policy is
conducted to achieve the user-perceived capacity.

4. The Cross-Layer Approach

In this section, we prioritize addressing the dual problem of enhancing the user-
perceived capacity, that is, minimizing the average power while meeting the user-perceived
capacity requirements. Subsequently, we propose a search algorithm capable of determining
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the achievable user-perceived capacity under power constraints. Firstly, we delve into
a detailed exposition of the scheduling policy, aiming to minimize the average power
consumption while ensuring a continuous supply of packets for the user. Specifically,
we analytically describe the scheduling policy under a probabilistic method, which is
comprised of a conditional probability distribution of s[t] under different values of q[t],
h[t], and m[t]. Based on this, we represent the system as a Markov chain with the system
state being the pair of the queue length and time index, i.e., (q[t], m[t]). By exploiting the
steady-state distribution of the Markov chain and the probabilistic scheduling policy, we
re-write problem (12) as a linear programming problem. By solving the derived linear
programming problem, we obtain the minimum average power under the continuous
reading constraint, as well as the corresponding scheduling policy.

4.1. The Probabilistic Scheduling Policy and Markov Chain

We develop a probabilistic scheduling policy based on the queue state, the time index,
and the channel state. To this end, we use f s

q,m,l to characterize the probabilistic scheduling
policy, which is given by

f s
q,m,l = Pr{s[t] = s|q[t] = q, m[t] = m, h[t] = hl}. (13)

Moreover, we have
∑
s∈S

f s
q,m,l = 1, ∀q ∈ Q, m ∈ M, hl ∈ H. (14)

Given a policy F =
{

f s
q,m,l

}
, we denote by πF the steady-state distribution of the

Markov chain. Then, we have

πF = [πF(q, m)], q ∈ Q, m ∈ M, (15)

where πF(q, m) is the steady-state probability of q[t] = q and m[t] = m. Considering the
normalization condition, we have

∑
q∈Q

∑
m∈M

πF(q, m) = 1. (16)

For each given scheduling policy F, the following lemma presents the transition
probability of the Markov chain, defined as

λ(q,m),(q̃,m̃) = Pr{(q[t + 1], m[t + 1]) = (q̃, m̃)|(q[t], m[t]) = (q, m)}. (17)

Lemma 1. The transition probability is equal to

λ(q,m),(q̃,m̃) =

 ∑
hl∈H

∑
s∈S

ηl f s
q,m,l1{q̃ = q− s}1{m̃ = m + 1} if m < T − 1,

1{q̃ = B}1{m̃ = 0} if m = T − 1,
(18)

where 1{·} is the indicator function.

Proof. When m < T − 1, the transition to the next state does not involve packet arrival.
Thus, the queue state transition depends solely on the transmission rate, leading to a change
from q to q− s with probability f s

q,m,l . Meanwhile, the time index will inevitably increase
by 1. Thus, we have

λ(q,m),(q̃,m̃) = ∑
hl∈H

∑
s∈S

ηl f s
q,m,l1{q̃ = q− s}1{m̃ = m + 1}, m < T − 1. (19)

When m = T − 1, the queue state will definitely transition to B, and the time index will be
reset to zero.
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Based on Lemma 1, the balance equation is expressed as

∑
q∈Q

∑
m∈M

λ(q,m),(q̃,m̃)πF(q, m) = πF(q̃, m̃). (20)

4.2. The Power Metric and the Continuous Reading Constraint

We next express the long-term average power consumption in terms of the steady-state
distribution πF and the scheduling policy F as follows.

Theorem 1. The long-term average power consumption Pave = lim
N→+∞

1
N

N
∑

t=1
P[t] is calculated as

Pave = ∑
q∈Q

∑
m∈M

∑
hl∈H

∑
s∈S

P(s, l)ηlπF(q, m) f s
q,m,l . (21)

Proof. We calculate the average power consumption from a probability perspective. The
probability of the queue state q[t] = q, time index m[t] = m, channel state h[t] = hl , and
transmission rate s[t] = s is given by ηlπF(q, m) f s

q,m,l , with a power consumption of P(s, l).
Subsequently, proving Theorem 1 involves computing the mathematical expectation.

The continuous reading constraint in Equation (10) can be transformed into

∑
q∈Q

∑
m∈M

πF(q, m)1{qT + mB > TB} = 0. (22)

Therefore, we formulate an optimization problem to minimize the average power
while satisfying the continuous reading constraint,

min
{πF (q,m), f s

q,m,l}
∑

q∈Q
∑

m∈M
∑

hl∈H
∑
s∈S

P(s, l)ηlπF(q, m) f s
q,m,l (23a)

s.t. ∑
q∈Q

∑
m∈M

πF(q, m)1{qT + mB > TB} = 0, (23b)

∑
s∈S

f s
q,m,l = 1, ∀q ∈ Q, m ∈ M, hl ∈ H, (23c)

∑
q∈Q

∑
m∈M

πF(q, m) = 1, (23d)

∑
q∈Q

∑
m∈M

λ(q,m),(q̃,m̃)πF(q, m) = πF(q̃, m̃), ∀q̃ ∈ Q, m̃ ∈ M, (23e)

πF(q, m) ≥ 0, f s
q,m,l ≥ 0. (23f)

Note that the derived problem (23) is non-convex, making it challenging to find the
optimal solution. We next convert this problem into a linear programming problem by
introducing a series of variables, which are defined as

ys
q,m,l = πF(q, m)ηl f s

q,m,l . (24)

For the new variable, there is an intuitive understanding: the original variable f s
q,m,l is the

probability of taking action s[t] = s when the queue state q[t] = q, time index m[t] = m,
and channel state h[t] = hl , whereas the new variable ys

q,m,l represents the probability of
being in the queue state q[t] = q, time index m[t] = m, channel state h[t] = hl , and taking
action s[t] = s. Subsequently, we propose Theorem 2.

Theorem 2. The optimization problem (23) is equivalent to the following linear program-
ming problem,

min
{ys

q,m,l}
∑

q∈Q
∑

m∈M
∑

hl∈H
∑
s∈S

P(s, l)ys
q,m,l (25a)
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s.t. ∑
q∈Q

∑
m∈M

∑
hl∈H

∑
s∈S

ys
q,m,l1{qT + mB > TB} = 0, (25b)

∑
q∈Q

∑
m∈M

∑
hl∈H

∑
s∈S

ys
q,m,l = 1, (25c)

∑
q∈Q

∑
m∈M

∑
hl∈H

∑
s∈S

λ̃(q,m),(q̃,m̃)y
s
q,m,l = ∑

hl∈H
∑
s∈S

ys
q̃,m̃,l , ∀q̃ ∈ Q, m̃ ∈ M, hl ∈ H (25d)

ys
q,m,l ≥ 0, (25e)

where we define

λ̃(q,m),(q̃,m̃) =

{
1{q̃ = q− s}1{m̃ = m + 1} if m < T − 1,
1{q̃ = B}1{m̃ = 0} if m = T − 1.

(26)

Proof. The proof starts with the observation that the objective functions of optimiza-
tion problems (23) and (25) can be directly transformed into each other. The constraints
(23b)–(23d) and (25b)–(25c) can be mutually converted using Equation (24) with the help of
each other. The conversion of the transition equations, however, is more complex. Next, we
focus on proving that the transition equations remain linear after the variable combination
through Equation (24) and can be mutually converted. Then, when m < T − 1, we have

λ(q,m),(q̃,m̃) = ∑
hl∈H

ηl f s
q,m,l1{q̃ = q− s}1{m̃ = m + 1} (27a)

= ∑
hl∈H

∑
s∈S

ηl f s
q,m,l1{q̃ = q− s}1{m̃ = m + 1} (27b)

= ∑
hl∈H

∑
s∈S

ηl f s
q,m,l λ̃(q,m),(q̃,m̃). (27c)

When m = T − 1, we have

λ(q,m),(q̃,m̃) = 1{q̃ = B}1{m̃ = 0} (28a)

= ∑
hl∈H

∑
s∈S

ηl f s
q,m,l1{q̃ = B}1{m̃ = 0} (28b)

= ∑
hl∈H

∑
s∈S

ηl f s
q,m,l λ̃(q,m),(q̃,m̃). (28c)

Next, Equations (27) and (28) yield

∑
q∈Q

∑
m∈M

λ(q,m),(q̃,m̃)πF(q, m) = ∑
q∈Q

∑
m∈M

∑
hl∈H

∑
s∈S

ηl f s
q,m,l λ̃(q,m),(q̃,m̃)πF(q, m) (29a)

= ∑
q∈Q

∑
m∈M

∑
hl∈H

∑
s∈S

λ̃(q,m),(q̃,m̃)y
s
q,m,l . (29b)

Then,

πF(q̃, m̃) = πF(q̃, m̃) ∑
hl∈H

∑
s∈S

ηl f s
q̃,m̃,l (30a)

= ∑
hl∈H

∑
s∈S

ηl f s
q̃,m̃,lπF(q̃, m̃) (30b)

= ∑
hl∈H

∑
s∈S

ys
q̃,m̃,l . (30c)

Thus, we have proven that the two optimization problems can be mutually converted.
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The solutions πF(q, m) and f s
q,m,l of optimization problem (23) can generate the so-

lutions ys
q,m,l of optimization problem (25) according to Equation (24). Similarly, ys

q,m,l in
problem (25) generates πF(q, m) by

πF(q, m) = ∑
hl∈H

∑
s∈S

ys
q,m,l . (31)

Likewise, we have

f s
q,m,l =


ys

q,m,l
πF (q,m)

if πF(q, m) > 0,

1{s = 0} otherwise.
(32)

We have demonstrated that if
(

πF(q, m), f s
q,m,l

)
constitutes an optimal solution to problem

(23), then the corresponding ys
q,m,l is an optimal solution to problem (25), and vice versa.

The attentive reader should have noticed that we are optimizing power consumption
given B and T. The user-perceived capacity, on the other hand, is the capacity of the
wireless communication system under a given power consumption. Therefore, we propose
Algorithm 1 to address this issue, that is, to find the user-perceived capacity under a given
power consumption. Meanwhile, the complexity of Algorithm 1 is O

(
log

(
PaveT
∆Pmin

))
, where

∆Pmin = mins,hl
P(s + 1, hl)− P(s, hl).

Algorithm 1 User-Perceived Capacity Search Algorithm

1: Input: T, Pave.
2: B1 ← 0, B2 ← PaveT

∆Pmin

3: B←
⌊
(B1+B2)

2

⌋
4: P(B)← the optimal objective function of problem (25) with the frame size as B
5: P(B + 1)← the optimal objective function of problem (25) with the frame size as B + 1
6: while P(B) > Pave or P(B + 1) < Pave do
7: if P(B) > Pave then
8: B2 ← B
9: else

10: B1 ← B
11: end if
12: B←

⌊
(B1+B2)

2

⌋
13: P(B)← the optimal objective function of problem (25) with the frame size as B
14: P(B + 1) ← the optimal objective function of problem (25) with the frame size as

B + 1
15: end while
16: B

T is the maximum user-perceived capacity.

5. The Structure of the Optimal Policy

In this section, we develop a series of theoretical results for the structural properties of
the optimal scheduling policy. Note that B packets arriving at the beginning of each period
must be transmitted within one arrival period. Thus, we only need to consider the data
transmission for one period, i.e., T time-slots.

Within one period, we first represent the constraint on the user-perceived capacity,
i.e., Equation (25b) by introducing the upper and lower bounds of the queue length. In
particular, they are expressed as{

q[m] ≤
⌊

B− Bm
T

⌋
upper bound,

q[m] ≥ (B− Sm)+ lower bound,
(33)
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through which we define qlb
m+1 = (B− S(m + 1))+ and qub

m+1 =
⌊

B− B(m+1)
T

⌋
. Conse-

quently, the feasible region of the transmission rate in time-slot m is given by

Sm(q[m]) =
{

s[m] ∈ {0, 1, . . . , S} | max{q[m]− qub
m+1, 0} ≤ s[m] ≤ min{q[m], S}

}
. (34)

Furthermore, we represent the data transmission as a finite horizon Markov decision
process, which is constructed as follows:

• State: The pair of the queue length and channel state (q[m], h[m]), where qlb
m ≤ q[m] ≤

qub
m and h[m] ∈ {h1, . . . , hL} with h1 < h2 < · · · < hL.

• Action: The transmission rate s[m] ∈ Sm(q[m]).
• Transition: The queue length evolves according to Equation (6) and the channel state

is i.i.d. over time, following the probability distribution {η1, . . . , ηL}.
• Value function:

V∗m(q, l) = min
s∈Sm(q)

P(s, l) +
L

∑
l=1

ηlV∗m+1(q− s, l), m = 0, 1, . . . , T − 1, (35)

where V∗T (q, l) = 0 for each q and l.
• Scheduling policy:

s∗m(q, l) = arg min
s∈Sm(q)

Q∗m(q, l, s) = arg min
s∈Sm(q)

P(s, l) +
L

∑
l=1

ηlV∗m+1(q− s, l), (36)

where the item P(s, l) + ∑L
l=1 ηlV∗t (q − s, l) is referred to as the Q-value function,

denoted by Q∗m(q, l, s). According to theoretical results for finite horizon MDPs [66],
considering the scheduling policy in (36) will not lose the optimality for the average
minimizing problem (12). Furthermore, the policy in (36) can be re-written in the form
of the probabilistic policy F in Section 3.1 by setting f s

q,m,l = 1{s = s∗m(q, l)}.
Then, we solve the finite horizon MDP by the dynamic programming in Algorithm 2

with the complexity O((B + 1)2L2(S + 1)T). By analyzing Algorithm 2, we further have
the following theorem.

Algorithm 2 Dynamic programming for finite horizon Markov decision processes

1: m← T − 1
2: for qlb

m ≤ q[m] ≤ qub
m , h[m] ∈ {h1, . . . , hL} do

3: V∗m(q, l) = mins∈Sm(q) P(s, l)
4: end for
5: Recursion: For each time step m from T − 2 to 0, the value function V∗m(q, l) is updated

using the Bellman equation.
6: for m ∈ {T − 2, T − 3, . . . , 0} do
7: V∗m(q, l) = mins∈Sm(q) P(s, l) + ∑L

l=1 ηlV∗m+1(q− s, l)
8: end for
9: Policy Extraction: After computing the value functions for all time steps, the optimal

policy can be extracted by choosing the action that maximizes the value function at
each state and time step.

10: for m ∈ {T − 1, T − 2, . . . , 0} do
11: for qlb

m ≤ q[m] ≤ qub
m , h[m] ∈ {h1, . . . , hL} do

12: for s ∈ Sm(q) do
13: Q∗m(q, l, s)← P(s, l) + ∑L

l=1 ηlV∗m+1(q− s, l)
14: end for
15: s∗m(q, l)← arg mins∈Sm(q) Q∗m(q, l, s)
16: end for
17: end for
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Theorem 3. The optimal scheduling s∗m, m = 0, . . . , T − 1, can be re-written as a series of
thresholds qth

m(l, s), ∀m, h, s. That is,

s∗m(q, l) = s if qth
m(l, s− 1) < q ≤ qth

m(l, s), (37)

where the thresholds satisfy qth
m(l, s− 1) ≤ qth

m(l, s) for all s=0, . . . , S. Meanwhile, qth
m(l,−1)=−1

and qth
m(l, S) = B.

Proof. We prove the threshold-based structure of the optimal policy by induction. Assum-
ing that V∗m+1(q, l) is convex over q, we demonstrate the thresholds of the optimal policy at
time-slot m. After that, the threshold-based structure can induce to the convexity of V∗m(q, l).
Specifically, the convexity of V∗m+1(q, l) holds for m = T − 1 due to V∗T (q, l) = 0. For time-
slot m, we first represent the threshold-based structure by the following two assertions:

Q∗m(q, l, s∗) ≤ Q∗m(q, l, s∗ − δ)⇒ Q∗m(q + 1, l, s∗) ≤ Q∗m(q + 1, h, s∗ − δ), (38)

Q∗m(q, l, s∗) ≤ Q∗m(q, l, s∗ + δ)⇒ Q∗m(q + 1, l, s∗ + 1) ≤ Q∗m(q + 1, h, s∗ + 1 + δ), (39)

where s∗ = s∗m(q, l) = arg mins∈Sm(q) Q∗m(q, l, s). (For completeness, we set Q∗m(q, l, s) = +∞
for s /∈ Sm(q) and V(q, l) = +∞ for q < qlb

m or q > qub
m .) Based on the definition of the

optimal policy in Equations (36), (38) and (39) implies that the optimal transmission rate
s̃ = arg mins∈Sm(q+1) Q∗m(q + 1, l, s) for the state (q + 1, l) satisfies s∗ ≤ s̃ ≤ s∗ + 1. That is,
the optimal transmission rate is monotonically increasing over q for each given h and m,
through which we can derive the threshold-based structure in Theorem 1.

Next, we prove Equations (38) and (39) based on the convexity of V∗t+1(q, l) and P(s, l).
For Equation (38), it suffices to show that

Q∗m(q + 1, l, s∗)−Q∗m(q, l, s∗) ≤ Q∗m(q + 1, l, s∗ − δ)−Q∗m(q, l, s∗ − δ) (40)

when Q∗m(q, l, s∗) ≤ Q∗m(q, l, s∗ − δ). Note that Q∗(q, l, s) = P(s, l) + ∑L
l=1 ηlV∗m+1(q− s, l)

is given based on the expression of Q∗(q, l, s) in (36). As such, we can re-write (38) as

L

∑
l=1

ηl
[(

V∗m+1(q− s∗ + 1, l)−V∗m+1(q− s∗, l)
)]

≤
L

∑
l=1

ηl
[(

V∗m+1(q− s∗ + δ + 1, l)−V∗m+1(q− s∗ + δ, l)
)]

. (41)

According to the convexity of V∗(q, l), V∗m+1(q− s∗+ 1, l)−V∗m+1(q− s∗, l) ≤ V∗m+1(q− s∗+
δ + 1, l)−V∗m+1(q− s∗ + δ, l) holds for any l. Based on this, Equation (38) has been proven.

Similarly, we demonstrate Equation (39) by considering its sufficient condition:

Q∗m(q + 1, l, s∗ + 1)−Q∗m(q, l, s∗) ≤ Q∗m(q + 1, l, s∗ + 1 + δ)−Q∗m(q, l, s∗ + δ). (42)

when Q∗m(q, l, s∗) ≤ Q∗m(q, l, s∗ + δ). Note that Q∗(q, l, s) = P(s, l) + ∑L
l=1 ηlV∗m+1(q− s, l)

is given based on the expression of Q∗(q, l, s) in (36). As such, we can re-write (39) as

P(s∗ + 1, l)− P(s∗, l) +
L

∑
l=1

ηl
[(

V∗m+1(q− s∗, l)−V∗m+1(q− s∗, l)
)]

(43)

≤P(s∗ + 1 + δ, l)− P(s∗ + δ, l) +
L

∑
l=1

ηl
[(

V∗m+1(q− s∗ − δ, l)−V∗m+1(q− s∗ − δ, l)
)]

.

Consequently, it is equivalent to

P(s∗ + 1, l)− P(s∗, l) ≤ P(s∗ + 1 + δ, l)− P(s∗ + δ, l). (44)
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This assertion is true due to the convexity of P(s, l) over s.
Finally, we prove the convexity of V∗m(q, l) over q, i.e.,

2V∗m(q, l) ≤ V∗m(q + 1, l) + V∗m(q− 1, l). (45)

Recalling that s∗ = s∗m(q, l), we have V∗m(q, l) = Q(q, l, s∗). Likewise, we represent
s̃ = s∗m(q + 1, l) and s̆ = s∗m(q− 1, l). According to the threshold-based structure, illustrated
by Equations (38) and (39), we have

s∗ ≤ s̃ ≤ s∗ + 1 and s∗ − 1 ≤ s̆ ≤ s∗. (46)

This way, four potential cases for the values of s∗, s̃, and s̆ are listed as follows: (1) s̃ = s∗

and s̆ = s∗; (2) s̃ = s∗ + 1 and s̆ = s∗; (3) s̃ = s∗ and s̆ = s∗ − 1; and (4) s̃ = s∗ + 1 and
s̆ = s∗ − 1. For the first three cases, we prove Equation (45) by establishing an upper bound
of its left-hand side, i.e.,

2V∗m(q, l) ≤ Q∗m(q, l, s̃) + Q∗m(q, l, s̆)

=P(s̃, l) + P(s̆, l) +
L

∑
l=1

ηl
(
V∗t+1(q− s̃, l) + V∗m+1(q− s̆, l)

)
(47)

Meanwhile, we have

V∗m(q + 1, l) + V∗m(q− 1, l) (48)

= P(s̃, l) + P(s̆, l) +
L

∑
l=1

ηl
(
V∗m+1(q + 1− s̃, l) + V∗m+1(q− 1− s̆, l)

)
. (49)

Based on the convexity of V∗m+1(q, l), we have

V∗m+1(q− s̃, l) + V∗m+1(q− s̆, l) ≤ V∗m+1(q + 1− s̃, l) + V∗m+1(q− 1− s̆, l) (50)

when s̆ ≥ s̃− 1. For the last case, i.e., s̃ = s∗ + 1 and s̆ = s∗ − 1, we prove Equation (45) by

2V∗m(q, l)−V∗m(q + 1, l)−V∗m(q− 1, l)

=2P(s∗, l)− P(s∗ + 1, l)− P(s∗ − 1, l)

+
L

∑
l=1

ηl
(
2V∗m+1(q− s∗, l)−V∗m+1(q + 1− (s∗ + 1), l)−V∗m+1(q− 1− (s∗ − 1), l)

)
=2P(s∗, l)− P(s∗ + 1, l)− P(s∗ − 1, l) ≥ 0 (51)

The equality is given by substituting the definition of V∗m(q, l) in Equation (45). Meanwhile,
the inequality holds due to the convexity of P(s, l) over s.

Overall, we first assumed the convexity of the value function and proved that the opti-
mal policy has a threshold structure. Then, we established the convexity of the value func-
tion through mathematical induction. Consequently, we have completed the proof that the
optimal policy from the perspective of the queue state possesses a threshold structure.

Then, we reveal the threshold structure from over the time index m[t] as follows.

Lemma 2. V∗m(q, l) monotonically increases over q.

Proof. We assume V∗m+1(q + 1, l) ≥ V∗m+1(q, l) inductively. It is true for m = T − 1 since
V∗T (q, l) = 0. Next, we have

V∗m(q + 1, l)−V∗m(q, l) ≥ Q∗m(q + 1, l, s̃)−Q∗m(q, l, s̃)

=
L

∑
l=1

ηl(V∗m+1(q− s̃ + 1, l)−V∗m+1(q− s̃, l)) ≥ 0, (52)
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where s̃ = s∗m(q + 1, l). As such, the first equality holds since V∗m(q + 1, l) = Q∗m(q + 1, l, s̃)
and V∗m(q, l) ≤ Q∗m(q, l, s̃). This way, we prove this lemma.

Theorem 4. The thresholds of the optimal scheduling policy under different times satisfy

qth
m+1(l, s) ≤ qth

m(l, s), ∀m = 0, . . . , T − 2. (53)

Proof. We indicate that the optimal transmission rate increases with time-slot m in this
theorem, i.e., s∗m(q, l) ≤ s∗m+1(q, l).

Furthermore, we give an intuitive explanation of how the optimal transmission rate is
selected. In particular, we have

s∗m(q, l) = arg min
s∈Sm(q)

P(s, l) + V̄∗m+1(q− s), (54)

where

V̄∗m(q) =
L

∑
l=1

ηlV∗m(q, l). (55)

Given the values of q and l, we note that P(s, l) is increasing and convex over s, while
V̄∗m+1(q− s) is decreasing and convex over s based on Theorem 1 and Lemma 2. This way,
we can represent the optimal transmission rate as

s∗m(q, l) = max
{

s ∈ Sm(q) | P(s, l)− P(s− 1, l) ≤ V̄∗m+1(q− s + 1)− V̄∗m+1(q− s)
}

. (56)

As a result, we have s∗m+1(q, l) ≥ s∗m(q, l) when

V̄∗m(q + 1)− V̄∗m(q) ≤ V̄∗m+1(q + 1)− V̄∗m+1(q), ∀m = 0, . . . , T − 2. (57)

This statement holds based on two observations: (1) Sm(q) removes the lower transmission
rates when m is increasing, which is due to the monotonicity of qub

m ; (2) for each s satisfy-
ing P(s, l)− P(s− 1, l) ≤ V̄∗m+1(q− s + 1)− V̄∗m+1(q− s), we have P(s, l)− P(s− 1, l) ≤
V̄∗m+2(q− s + 1)− V̄∗m+2(q− s) as per (57).

Since V̄∗m(q) = ∑L
l=1 ηlV∗m(q, l), we show (57) by the following sufficient condition:

V∗m(q + 1, l)−V∗m(q, l) ≤ P(s∗, l)− P(s∗, l) +
L

∑
l=1

ηl
(
V∗m+1(q + 1− s∗, l)−V∗m+1(q− s∗, l)

)
≤

L

∑
l=1

ηl
(
V∗m+1(q + 1, l)−V∗m+1(q, l)

)
= V̄∗m+1(q + 1)− V̄∗m+1(q). (58)

where we recall that s∗ = s∗m(q, l). Meanwhile, the last inequality holds due to the convexity
of V∗m+1(q, l) over q.

Then, we reveal the threshold structure from over the channel state h[t] as follows.

Theorem 5. If the power consumption function P(s, h) satisfies

P(s + 1, l+)− P(s, l+) ≤ P(s + 1, l−)− P(s, l−), ∀s = 0, . . . , S− 1, (59)

for the case when l+ > l−, the order relation of thresholds over different channel states is

qth
m(l

+, s) ≤ qth
m(l
−, s). (60)

Proof. We start the proof by noticing that qth
m (l+, s) ≤ qth

m (l−, s) means that a larger trans-
mission rates is obtained for queue length q when the system suffers a higher channel gain.
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That is, s∗m(q, l+) ≥ s∗m(q, l−). To prove this, we represent s̃ = s∗m(q, l+) and s̆ = s∗m(q, l−)
and give an equivalent expression of s̃ ≥ s̆ as

Q∗m(q, l−, s̆) ≤ Q∗m(q, l−, s̆− δ)⇒ Q∗m(q, l+, s̆) ≤ Q∗m(q, l+, s̆− δ). (61)

This implies that the optimal transmission rate for the state (q, l+) shall be selected from
the set Sm(q) ∩ {s̆, s̆ + 1, . . . , S}, i.e., s̃ ≥ s̆. We next show (61) by considering its suffi-
cient condition:

Q∗m(q, l+, s̆) + Q∗m(q, l−, s̆− δ)−Q∗m(q, l+, s̆− δ)−Q∗m(q, l−, s̆)

=P(s̆, l+) + P(s̆− δ, l−)− P(s̆− δ, l+)− P(s̆, l−) ≤ 0, (62)

where the inequality holds due to (59).

By exploiting Theorems 3–5, we finally develop an efficient method in Algorithm 3 to
search thresholds for the optimal transmission policy. As presented in Algorithm 3, we can
reduce the running time to update the optimal transmission rate based on the monotonicity
of s∗m(q, l) over q in line 5. Similarly, given qth

m (l, s) for specific l and m, we can constrain the
transmission rates of states with l̃ < l and m̃ < m in lines 9 and 11. As such, the complexity
of Algorithm 3 is O(S + 1) in the best case, while it is equal to O((B + 1)2L2(S + 1)T) in
the worst case, the same as that in Algorithm 2.

Algorithm 3 Algorithm to search thresholds for the optimal transmission policy

1: qth
T−1(1, s)← (B + 1)1{s=S} − 1 for all s

2: for m = T − 1 to 0 do
3: for l = L to 1 do
4: for q = qub

m to qlb
m do

5: s∗m(q, l)← arg mins∈Sm(q)∩{s≤min{s̆|q≤qth
m (l,s̆)}} Q∗m(q, l, s)

6: qth
m (l, s∗m(q, l))← q

7: V∗m(q, l)← Q∗m(q, l, s∗m(q, l))
8: end for
9: qth

m (l̃, s)← qth
m (l, s) for all l̃ < l

10: end for
11: qth

m̃ (l, s)← qth
m (l, s) for all m̃ < m

12: end for

6. Simulation Results

In this section, we will validate the accuracy and effectiveness of our theoretical
results through simulation. We assume that the large scale path loss is calculated as
ρ = 28 + 22 log10 d + 20 log10 fc dB with the carrier frequency fc as 6 GHz and the distance
d as 100 m, grounded in a typical channel model in the 5G NR standard [67]. Next, we
calculate the transmission powers over the AWGN channel as P(0) = 0 W, P(1) = 5.19 mW,
and P(2) = 10.38 mW by using BPSK and QPSK modulations when transmission rate
s[t] = 1 and 2, respectively. In particular, the occupied bandwidth is 1 MHz and the
one-sided noise power spectral density N0 is −150 dBm/Hz. Additionally, we model the
fading channel with a three-state block-fading distribution, with states [1, 4, 9] and equal
probabilities. The power consumption over fading channels is equal to P(s, l) = P(s)

h2
l

.

Figure 3 demonstrates the performance of the policy in the fading channel scenario.
Since we adopt discrete time-slots, only the points shown in the figure represent the
operating points of our proposed policy. The horizontal axis represents the period size,
which is the maximum number of service time-slots for the periodically arriving data
packets. The vertical axis represents the average power consumption. We demonstrate
the performance of cross-layer scheduling with B = 6, 10, and 14, where the frame sizes
are quantized by the minimum transmission unit δ = 5× 103 bits. Meanwhile, we set
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T ∈ {7, . . . , 30}, with the timeslot duration as 0.5 ms. We observe that the theoretical
results of the proposed policy align well with the simulation results, providing a cross-layer
scheduling policy that meets the continuous reading requirement in the fading channel
scenario. We also notice that, when the periodically arriving data packets are fixed, the
average power consumption decreases as period T increases. There are two reasons for
this. First, similar to the AWGN scenario, as the period increases, the average power
consumption naturally decreases. Second, a larger period means more time-slots are
available for transmission, allowing for the possibility to wait for better channel conditions,
thereby reducing power consumption.

10 15 20 25 30
1

2

3

4

5

6

7

Optimization Result in Fading Channel
Simulation Result in Fading Channel

Figure 3. The power–period tradeoff in a fading channel.

Figure 4 illustrates the variation of user-perceived capacity with respect to the average
power consumption in a fading channel scenario. The horizontal axis represents the average
power consumption, while the vertical axis denotes the user-perceived capacity. We present
performance variations for the cases of T = 15, 20, 30. It is observed that there is good
agreement between theoretical and simulated results. Additionally, it is noted that as the
average power increases, the user-perceived capacity continuously increases. However, the
rate of increase in user-perceived capacity slows down with the increase in average power.
This is consistent with the law of channel capacity, where the marginal effect of the capacity
increase diminishes as the average power increases.

We next compare the optimal rate and power adaptation scheme with a heuristic
method, referred to as the fixed rate transmission scheme. Specifically, this benchmark
serves the user with a fixed rate B/T in each timeslot. In Figure 5a, we set T = 20 and
evolve the user-perceived capacity under the two schemes. It is evident that the user-
perceived capacity achievable by our policy is higher than the fixed rate transmission
scheme. Similarly, Figure 5b presents the average power under different values of T with
B = 20. Since the benchmark dose not consider the time-varying channel state, it suffers
from a larger amount of power consumption compared to the optimal scheme.

Figure 6 demonstrates the influence of the imperfect channel state information to the
performance of the proposed transmission scheme, where we set B = 20 and T ∈ {10, 20}.
Specifically, ϵ indicates the probability that the actual channel state is not equal to the
estimated channel state. In this case, the estimated channel state is randomly selected
among all the possible values with equal probabilities. As shown in this figure, the user-
perceived capacity will decrease with the increment of ϵ.
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Figure 4. User-perceived capacity in fading channel.

Additionally, Table 1 displays the average running times of Algorithm 2 and the
Algorithm 3 under different values of B and T. Notably, Algorithm 3 exhibits a significant
reduction in running time compared to the dynamic programming in Algorithm 2.

Table 1. Running times of Algorithms 2 and 3.

B 50 100

T 25 30 35 40 50 60 70 80

Algorithm 2 0.0106 0.0119 0.0120 0.0119 0.0331 0.0338 0.0462 0.0519

Algorithm 3 0.0033 0.00089 0.00091 0.0011 0.0036 0.0021 0.0030 0.0034

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Optimal rate and power adaptation
Fixed rate transmission scheme

(a) User-perceived capacity under different amounts of power with T = 20.
Figure 5. Cont.
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Figure 5. Comparisons of the optimal scheme with a fixed rate transmission scheme.
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Figure 6. The influence of imperfect CSI for user-perceived capacity.

Figure 7 illustrates the threshold structure of the optimal policy. In this simulation,
we set the number of periodically arriving data packets to B = 10 and the number of
time-slots in a period to T = 24. Subplots 1 through 3 represent the optimal scheduling
policy under three different channel states, respectively. We observe that within the feasible
space (q, m) ∈ {(q, m)|qT + mB ≤ TB, B− q ≤ mS}, the optimal policy exhibits a threshold
structure, validating the queue length-based optimal policy structure proposed earlier. Ad-
ditionally, we note that as the channel condition improves, the transmission rate increases,
confirming the channel-based optimal policy structure we proposed.
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Figure 7. The threshold structure of the optimal policy: the three subfigures present the optimal
policy with |h[t]|2 = 1, 4, and 9, successively.

7. Conclusions

This paper has focused on the concept of user-perceived throughput, a crucial perfor-
mance metric that encapsulates the essence of the user experience in mobile multimedia
services. Our study has considered the impact of channel state information, both at the
receiver (CSIR) and the transmitter (CSIT), on enhancing the user-perceived capacity. It
is observed that the capacity is severely limited when only CSIR is available, potentially
reaching a lower bound of zero. In contrast, the integration of CSIT with CSIR facilitates
substantial improvements in the user-perceived capacity associated with adaptive power
and rate strategies. We have proposed an MDP-based methodology for calculating the
user-perceived capacity under a cross-layer design of power and rate adaption. Based
on this, we have solved an average power minimization problem with a constraint on
the user-perceived capacity by converting it as linear programming. Consequently, the
maximum user-perceived capacity under different power consumption amounts has been
calculated based on a binary searching method. Furthermore, our findings have indicated
that the optimal cross-layer policy adheres to a threshold-based structure dependent on
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time, backlog, and channel gain. Additionally, when power adaptation is implemented as
the sole policy, the user-perceived capacity corresponds to the hard-delay-constrained ca-
pacity established in our previous research [9], realized through a combination of diversity
and channel inversion techniques. Note that several critical issues, including massive user
access, the inter-dependency of data, and secure requirement provisioning, remain to be
addressed concerning user-perceived capacity. In future research, we aim to expand this
work to achieve immersive, highly dense connectivity, and secure wireless access technolo-
gies for emerging human-centric applications in 6G, such as extended reality, digital twins,
and remote driving.
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