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Abstract: We propose two families of asymptotically local minimax lower bounds on parameter
estimation performance. The first family of bounds applies to any convex, symmetric loss function
that depends solely on the difference between the estimate and the true underlying parameter
value (i.e., the estimation error), whereas the second is more specifically oriented to the moments
of the estimation error. The proposed bounds are relatively easy to calculate numerically (in the
sense that their optimization is over relatively few auxiliary parameters), yet they turn out to be
tighter (sometimes significantly so) than previously reported bounds that are associated with similar
calculation efforts, across many application examples. In addition to their relative simplicity, they
also have the following advantages: (i) Essentially no regularity conditions are required regarding
the parametric family of distributions. (ii) The bounds are local (in a sense to be specified). (iii) The
bounds provide the correct order of decay as functions of the number of observations, at least in
all the examples examined. (iv) At least the first family of bounds extends straightforwardly to
vector parameters.

Keywords: parameter estimation; minimax estimation; mean-square error; hypothesis testing;
probability of error; Fisher information

1. Introduction

The theory of parameter estimation consists of a very large plethora of lower bounds
(as well as upper bounds), which characterize the fundamental performance limits of any
estimator in a given parametric model. In this context, it is common to distinguish between
Bayesian bounds (see, e.g., the Bayesian Cramér–Rao bound [1], the Bayesian Bhattacharyya
bound, the Bobrovsky–Zakai bound [2], the Bellini–Tartara bound [3], the Chazan–Zakai–
Ziv bound [4], the Weiss–Weinstein bound [5,6], and more (see [7] for a comprehensive
overview), and non-Bayesian bounds, where in the former, the parameter to be estimated
is considered a random variable with a given probability law, as opposed to the latter,
where it is assumed an unknown deterministic constant. The category of non-Bayesian
bounds is further subdivided into two subclasses; one is associated with local bounds
that hold for classes of estimators with certain limitations, such as unbiased estimators
(see, e.g., the Cramér–Rao bound [8–12], the Bhattacharyya bound [13], the Barankin
bound [14], the Chapman–Robbins bound [15], the Fraser–Guttman bound [16], the Keifer
bound [17], and more), and the other is the subclass of minimax bounds (see, e.g., Ziv and
Zakai [18], Hajek [19], Le Cam [20], Assouad [21], Fano [22], Lehmann (Sections 4.2–4.4
in [23]), Nazin [24], Yang and Barron [25], Guntuboyina [26,27], Kim [28], and many more).

In this paper, we focus on the minimax approach, and more concretely, on the local
minimax approach. According to the minimax approach, we are given a parametric
family of probability density functions (or probability mass functions, in the discrete
case), {p(x1, . . . , xn|θ), (x1, . . . , xn) ∈ Rn, θ ∈ Θ}, where θ is a d-dimensional parameter
vector, Θ ⊆ Rd is the parameter space, n is a positive integer designating the number of
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observations, and we define a loss function, ℓ(θ, θ̂n), where θ̂n is an estimator, which is a
function of the observations x1, . . . , xn only. The minimax performance is defined as

Rn(Θ)
△
= inf

θ̂n(·)
sup
θ∈Θ

Eθ{ℓ(θ, θ̂n)}, (1)

where Eθ denotes expectation w.r.t. p(·|θ). As customary, we consider here loss functions
with the property that ℓ(θ, θ̂n) depends on θ and θ̂n only via their difference, that is,
ℓ(θ, θ̂n) = ρ(θ − θ̂n), where the function ρ(·) satisfies certain assumptions (see Section 2).
The local asymptotic minimax performance at the point θ ∈ Θ is defined as follows (see also,
e.g., [19]). Let {ζ∗n, n ≥ 1} be a positive sequence, tending to infinity, with the property that

r(θ)
△
= lim

δ↓0
lim inf

n→∞
inf

θ̂n(·)
sup

{θ′ : ∥θ′−θ∥≤δ}
ζ∗n ·Eθ′{ρ(θ̂n − θ′)} (2)

is a strictly positive finite constant. Then, we say that r(θ) is the local asymptotic minimax
performance with respect to (w.r.t.) {ζ∗n} at the point θ ∈ Θ. Roughly speaking, the signifi-
cance is that the performance of a good estimator, θ̂n, at θ is about Eθ{ρ(θ − θ̂n)} ≈ r(θ)/ζ∗n.
For example, in the scalar mean square error (MSE) case, where ρ(ε) = ε2, and where the
observations are Gaussian, i.i.d., with mean θ and known variance σ2, it is actually shown
in Example 2.4, p. 257 in [23] that r(θ) = σ2 w.r.t. ζ∗n = n, for all θ ∈ R, which is attained by
the sample mean estimator, θ̂n = 1

n ∑n
i=1 xi.

Our focus in this work is on the derivation of some new lower bounds that are as
follows: (i) essentially free of regularity conditions on the smoothness of the parametric
family {p(·|θ), θ ∈ Θ}, (ii) relatively simple and easy to calculate, at least numerically,
which amounts to the property that the bound contains only a small number of auxiliary
parameters to be numerically optimized (typically, no more than two or three parameters),
(iii) tighter than earlier reported bounds that are associated with similar calculation efforts
as described in (ii), and (iv) lend themselves to extensions that yield even stronger bounds
(albeit with more auxiliary parameters to be optimized), as well as extensions to vector
parameters. We propose two families of lower bounds on Rn(Θ), along with their local
versions, of bounding r(θ), with the four above-described properties. The first applies to
any convex, symmetric loss function ρ(·), whereas the second is more specifically oriented
to the moments of the estimation error, ρ(ε) = |ε|t, where t is a positive real, not necessarily
an integer, with special attention devoted to the MSE case, t = 2. For the sake of simplicity
and clarity of the exposition, in the first two main sections of the paper (Sections 3 and 4),
our focus is on the case of a scalar parameter, as most of our examples are associated with
the scalar case. In Section 5, we extend some of our findings to the vector case.

To put this work in the perspective of earlier work on minimax estimation, we next
briefly review some of the basic approaches in this problem area. Admittedly, considering
the vast amount of literature on the subject, our review below is by no means exhaustive.
For a more comprehensive review, the reader is referred to Kim [28].

First, observe the simple fact that the minimax performance is lower bounded by
the Bayesian performance of the same loss function (see, e.g., [1–7]) for any prior on the
parameter, θ, and so, every lower bound on the Bayesian performance is automatically a valid
lower bound also on the minimax performance (see Section 4.2 in [23]). Indeed, in Section 2.3
in [26], it is argued that the vast majority of existing minimax lower bounding techniques are
based upon bounding the Bayes risk from below w.r.t. some prior. Many of these Bayesian
bounds, however, are subjected to certain restrictions and regularity conditions concerning
the smoothness of the prior and the family of densities, {p(·|θ), θ ∈ Θ}.

Dating back to Ziv and Zakai’s 1969 article [18] on parameter estimation, applied mostly
in the context of time-delay estimation, this prior puts all its mass equally on two values,
θ0 and θ1, of the parameter θ, and considering an auxiliary hypothesis testing problem of
distinguishing between the two hypotheses, H0 : θ = θ0 and H1 : θ = θ1 with equal
priors (see Section 2 for exact definitions). A simple argument regarding the sub-optimality
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of a decision rule that is based on estimating θ and deciding on the hypothesis with the
closer value of θ, combined with Chebychev’s inequality, yields a simple lower bound on
the corresponding Bayes risk, and hence also the minimax risk, in terms of the probability
of error of the optimal decision rule. Five years later, Bellini and Tartara [3], and then
independently, Chazan, Zakai, and Ziv [4], improved the bound of [18] using somewhat
different arguments and obtained Bayesian bounds that apply to the uniform prior. These
bounds are also given in terms of the error probability pertaining to the optimal maximum
a posteriori (MAP) decision rule of binary hypothesis testing with equal priors, but this
time, it had an integral form. These bounds were demonstrated to be fairly tight in several
application examples, but they are rather difficult to calculate in most cases. Shortly before
the Bellini–Tartara and the Chazan–Zakai–Ziv articles were published, Le Cam [20] proposed
a minimax lower bound, which is also given in terms of the error probability associated with
binary hypothesis testing, or equivalently, the total variation between p(·|θ0) and p(·|θ1),
under the postulate that the loss function ℓ(·, ·) is a metric. We will refer to Le Cam’s bound
in a more detailed manner later, in the context of our first proposed bound.

A decade later, Assouad [21] extended Le Cam’s two-point testing bound to multiple
points, where instead of just two test points, θ0 and θ1, as before, there are, more generally, m
test points, θ0, θ1, . . . , θm−1, and correspondingly, the auxiliary hypothesis testing problem
consists of m hypotheses, Hi : θ = θi, i = 0, 1, . . . , m − 1, with certain priors (again,
to be defined in Section 2). Based on those test points, Assouad devised the so-called
hypercube method. Another related bounding technique that is based on multiple test
points, and referred to as Fano’s method, amounts to further bounding from below the
error probability of multiple hypotheses using Fano’s inequality (see Section 2.10 in [29]).
Considering the large number of auxiliary parameters to be optimized when multiple
hypotheses are present, these bounds demand heavy computational efforts. Also, Fano’s
inequality is often loose, even though it is adequate enough for the purpose of proving
converse-to-coding theorems in information theory [29]. In later years, Le Cam [30] and
Yu [31] extended Le Cam’s original approach to apply to testing mixtures of densities.
More recently, Yang and Barron [25] related the minimax problem to the metric entropy
of the parametric family, {p(·|θ, θ ∈ Θ}, and Cai and Zhou [32] combined Le Cam’s and
Assouad’s methods by considering a larger number of dimensions. Guntuboyina [26,27]
pursued a different direction by deriving minimax lower bounds using f -divergences.

The outline of this article is as follows. In Section 2, we define the problem setting,
provide a few formal definitions along with background, and establish the notation. In
Section 3, we develop the first family of bounds, and in Section 4, we present the second
family, both for the scalar parameter case. Finally, in Section 5, we extend some of our
findings to the vector case.

2. Problem Setting, Background, Definitions, and Notation

As outlined in the last paragraph of the Introduction, Sections 3 and 4 are on the scalar
parameter case, whereas in Section 5, we extend some of the results to the case of a vector
parameter with dimension d. In order to avoid repetition, we formalize the problem and
define the notation here for the more general vector case, with the understanding that for
the scalar case, all definitions remain the same, except that they are confined to the special
case of d = 1.

Consider a family of probability density functions (PDFs), {p(·|θ), θ ∈ Θ}, where
θ is a parameter vector of dimension d to be estimated, and Θ ⊆ Rd is the parameter
space. We denote by Eθ{·} the expectation operator w.r.t. p(·|θ). Let X= (X1, . . . , Xn)
be a random vector of observations, governed by p(·|θ) for some θ ∈ Θ. The support of
p(·|θ) is assumed X n, the nth Cartesian power of the alphabet X of each component Xi,
i = 1, . . . , n. The alphabet X may be a finite set, a countable set, a finite interval, an infinite
interval, or the entire real line. In the first two cases, the PDFs should be understood to be
replaced by probability mass functions and integrations over the observation space should
be replaced by summations. A realization of X will be denoted by x = (x1, . . . , xn) ∈ X n.
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An estimator, θ̂n, is given by any function of the observation vector, gn : X n → Θ,
that is, θ̂n = gn[x]. Since X is random, so is the estimate gn[X], as well as the estimation
error, εn[X] = θ̂n − θ = gn[X] − θ. We associate with every possible vector value, ϵ,
of εn[X] a certain loss (or “cost”, or “price”), ρ(ϵ), where ρ(·) is a non-negative function
with the following properties: (i) monotonically non-increasing in each component, ϵi, of ϵ,
wherever ϵi < 0, i = 1, 2, . . . , d, (ii) monotonically non-decreasing in each component, ϵi,
of ϵ, wherever ϵi ≥ 0, i = 1, 2, . . . , d, and (iii) ρ(0) = 0.

Referring to Sections 3 and 4, which deals with the scalar case (d = 1), we further
adopt the following assumptions regarding the loss function ρ. In Section 3, we assume that
ρ(·) is as follows: (iv) convex, and (v) symmetric, i.e., ρ(−ϵ) = ρ(ϵ) for every ϵ. In Section 4,
we assume, more specifically, that ρ(ε) = |ε|t, where t is a positive constant, not necessarily
an integer. This is a special case of the class of loss functions considered in Section 3,
except when t ∈ (0, 1), in which case, |ε|t is a concave (rather than a convex) function of
ε. In Section 5, for the vector extension of the results of Section 3, the above-mentioned
symmetry assumption (v) is extended to become radial symmetry; namely, ρ(ϵ) will be
assumed to depend on ϵ only via its Euclidean norm, ∥ϵ∥.

The expected cost of an estimator gn at a point θ ∈ Θ, is defined as

Rn(θ, gn)
△
= Eθ{ρ(gn[X]− θ)}. (3)

The global minimax performance is defined as

Rn(Θ)
△
= inf

gn
sup
θ∈Θ

Rn(θ, gn). (4)

Another related notion is that of local asymptotic minimax performance, defined in
Section 1, and repeated here for the sake of completeness. Let {ζ∗n, n ≥ 1} be a posi-
tive sequence, tending to infinity, with the property that r(θ), defined as in (2), is a strictly
positive finite constant. Then, we say that r(θ) is the local asymptotic minimax performance
w.r.t. {ζ∗n} at θ ∈ Θ. The sequence {1/ζ∗n} is referred to as the convergence rate of the
minimax estimator.

Similarly, as in earlier articles on minimax lower bounds, many of our proposed
bounds are given in terms of the error probability pertaining to certain auxiliary hypothesis
testing problems that are associated with two or more test points in the parameter space,
and the choice of those test points is subjected to optimization. We therefore provide a few
definitions, notation conventions, and background associated with elementary hypothesis
testing. For further details, the reader is referred to any one of many textbooks that cover
the topic, for example, Van Trees (see Sections 2.2 and 2.3 in [1]), Helstrom (see Chapter III
in [33]), or Whalen (see Chapter 5 in [34]).

For given θ0 and θ1, both in Θ, consider the problem of deciding between two pos-
sible hypotheses regarding the probability distribution that governs the given vector of
observations, X. Under hypothesis H0, X is governed by p(·|θ0), and under hypothesis
H1, X is governed by p(·|θ1). Suppose also that the a priori probability of H0 to be the
actual underlying hypothesis is Pr{H0} = q, where 0 ≤ q ≤ 1 is given, and so the a priori
probability of H1 is the complementary probability, Pr{H1} = 1 − q. When q = 1

2 , we say
that the priors are equal; otherwise, the priors are unequal. A decision rule Ω = (Ω0, Ω1)
is a partition of the observation space, X n, into two disjoint decision regions, Ω0 ⊆ X n

and its complementary region, Ω1 = Ωc
0: Given that X = x ∈ Ω0, we decide in favor

of H0; otherwise, we decide in favor of H1. The probability of error, associated with the
hypotheses H0 and H1, referring to test points θ0 and θ1, respectively, with priors q and
1 − q, respectively, when using the decision rule Ω, is defined as

Pe(q, θ0, θ1, Ω) = q ·
∫

Ω1

p(x|θ0)dx + (1 − q) ·
∫

Ω0

p(x|θ1)dx. (5)
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A well-known elementary result in decision theory asserts that the optimal decision rule,
Ω∗ = (Ω∗

0 , Ω∗
1), in the sense of minimizing Pe(q, θ0, θ1, Ω), is given by

Ω∗
0 = {x ∈ X n : q · p(x|θ0) ≥ (1 − q) · p(x|θ1)} (6)

Ω∗
1 = {x ∈ X n : q · p(x|θ0) < (1 − q) · p(x|θ1)}, (7)

where it should be pointed out that attributing the case of a tie, q· (x|θ0) = (1 − q) · p(x|θ1),
to Ω∗

0 is completely arbitrary, and could have been attributed alternatively to Ω∗
1 without

affecting the probability of error. Here and in the sequel, the minimum probability of error,
associated with Ω∗, namely, Pe(q, θ0, θ1, Ω∗), will be denoted more simply by Pe(q, θ0, θ1).
On substituting Ω∗ into the above definition of the probability of error, we obtain

Pe(q, θ0, θ1) = q ·
∫
{x: q·p(x|θ0)<(1−q)·p(x|θ1)}

p(x|θ0)dx +

(1 − q) ·
∫
{x: q·p(x|θ0)≥(1−q)·p(x|θ1)}

p(x|θ1)dx

=
∫
{x: q·p(x|θ0)<(1−q)·p(x|θ1)}

q · p(x|θ0)dx +∫
{x: q·p(x|θ0)≥(1−q)·p(x|θ1)}

(1 − q) · p(x|θ1)dx (8)

=
∫
{x: q·p(x|θ0)<(1−q)·p(x|θ1)}

min{q · p(x|θ0), (1 − q)p(x|θ1)}dx +∫
{x: q·p(x|θ0)≥(1−q)·p(x|θ1)}

min{q · p(x|θ0), (1 − q) · p(x|θ1)}dx

=
∫
X n

min{q · p(x|θ0), (1 − q) · p(x|θ1)}dx

= 1 −
∫
X n

max{q · p(x|θ0), (1 − q) · p(x|θ1)}dx.

The expression of the second to the last line will appear in some of our lower bounds in the
sequel and will be recognized and interpreted as Pe(q, θ0, θ1). The expression of the last line
is the one that extends to multiple hypothesis testing, as will be detailed below.

The auxiliary problem of binary hypothesis testing extends from two hypotheses to
a general number, m, of hypotheses, associated with m test points, θ0, θ1, . . . , θm−1, in the
following manner. Under hypothesis Hi, the observation vector X is governed by p(·|θi)
and the a priori probability of Hi being the underlying true hypothesis, Pr{Hi}, is denoted
qi, i = 0, 1, . . . , m − 1, where q0, q1, . . . , qm−1 are given non-negative numbers summing to
unity. Here, a decision rule Ω = (Ω0, Ω1, . . . , Ωm−1) is a partition of X n into m disjoint
regions such that if x ∈ Ωi, we decide in favor of Hi, i = 0, 1, . . . , m − 1. The probability of
error associated with Ω, θ0, θ1, . . . , θm−1 and q = (q0, q1, . . . , qm−1) is defined as

Pe(q, θ0, θ1, . . . , θm−1, Ω) =
m−1

∑
i=0

qi

∫
Ωc

i

p(x|θi)dx, (9)

where Ωc
i is complementary to Ωi. The optimal MAP decision rule Ω∗ selects the hypothesis

Hi whose index i maximizes the product qi · p(x|θi) among all i ∈ {0, 1, . . . , m − 1}, for the
given x, where ties are broken arbitrarily. The probability of error, associated with Ω∗,
denoted Pe(q, θ0, θ1, . . . , θm−1), is well known to be given by

Pe(q, θ0, θ1, . . . , θm−1) = 1 −
∫
X n

max{q0 · p(x|θ0, q1 · p(x|θ1), . . . , qm−1 · p(x|θm−1)}dx. (10)

Note that for m > 2, this is different from the expression∫
X n

min{q0 · p(x|θ0, q1 · p(x|θ1), . . . , qm−1 · p(x|θm−1)}dx,
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as the latter can be interpreted as the probability that the index i of the true hypothesis Hi
minimizes (rather than maximizes) the product qi p(x|θi) over i ∈ {0, 1, . . . , m − 1} for the
given x. Imagine an observer that, upon observing a realization x of the random vector X,
creates a list of indices {i} with the k largest values of qi p(x|θi) for some k < m, and an
error is defined as the event where the correct i is not in that list. This is referred to as a list
error, which is a term borrowed from the fields of coded communication and information
theory. The last expression is the probability of list error for k = m − 1. We will encounter
this expression later in certain versions of our lower bound. This completes the background
needed about hypothesis testing.

As described in Section 1, our objective in this work is to derive relatively simple
and easily computable lower bounds to r(θ), which are as tight as possible. While many
existing lower bounds in the literature are satisfactory in terms of yielding the correct rate
of convergence, 1/ζ∗n, here we wish to improve the bound on the constant factor, r(θ).
Many of our examples involve numerical calculations which include optimization over
auxiliary parameters and occasionally also numerical integrations. All these calculations
were carried out using MATLAB R2019a (9.6.0.1072779) 64-bit (win64).

3. Lower Bounds for Convex Symmetric Loss Functions

As explained earlier, here and in Section 4, we consider a scalar parameter, namely,
d = 1.

Theorem 1. Let the assumptions of Section 2 be satisfied for d = 1 and let ρ(·) be a symmetric
convex loss function. Then,

Rn(Θ) ≥ sup
θ0, θ1∈Θ

{
2 · ρ

(
θ1 − θ0

2

)
· sup

0≤q≤1
Pe(q, θ0, θ1)

}
, (11)

where Pe(q, θ0, θ1) is defined as in Equation (8).

Proof of Theorem 1. For every θ0, θ1 ∈ Θ and q ∈ [0, 1],

Rn(Θ) ≥ qEθ0{ρ(gn[X]− θ0)}+ (1 − q)Eθ1{ρ(gn[X]− θ1)}
(a)
=

∫
Rn

[
q · p(x|θ0)ρ(gn[x]− θ0) +

(1 − q) · p(x|θ1)ρ(θ1 − gn[x])
]

dx

≥ 2 ·
∫
Rn

min{q · p(x|θ0), (1 − q) · p(x|θ1)} ×[
1
2

ρ(gn[x]− θ0) +
1
2

ρ(θ1 − gn[x])
]

dx (12)

(b)

≥ 2 ·
∫
Rn

min{q · p(x|θ0), (1 − q) · p(x|θ1)} ×

ρ

(
gn[x]− θ0

2
+

θ1 − gn[x]
2

)
dx

= 2 · ρ

(
θ1 − θ0

2

)
·
∫
Rn

min{q · p(x|θ0), (1 − q) · p(x|θ1)}dx

= 2 · ρ

(
θ1 − θ0

2

)
· Pe(q, θ0, θ1),

where (a) is due to the assumed symmetry of ρ(·) and (b) is by its assumed convexity. Since
the inequality,

Rn(Θ) ≥ 2 · ρ

(
θ1 − θ0

2

)
· Pe(q, θ0, θ1) (13)
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applies to every θ0, θ1 ∈ Θ and q ∈ [0, 1], it applies, in particular, also to the supremum
over these auxiliary parameters. This completes the proof of Theorem 1.

Before we proceed, two comments are in order:

1. Note that Pe(q, θ0, θ1) is a concave function of q for fixed (θ0, θ1), as it can be presented
as the minimum among a family of affine functions of q, given by minΩ[q · P(Ω|θ0) +
(1 − q) · P(Ωc|θ1)], where Ω runs over all possible subsets of the observation space,
X n. Another way to see why this is true is by observing that Pe(q, θ0, θ1) is given in
the second to the last line of (8) by an integral, whose integrand, min{q · p(x|θ0), (1 −
q) · p(x|θ1)}, is concave in q. Clearly, Pe(q, θ0, θ1) = 0 whenever q = 0 or q = 1. Thus,
Pe(q, θ0, θ1) is maximized by some q between 0 and 1. If Pe(q, θ0, θ1) is strictly concave
in q, then the maximizing q is unique.

2. Note that the lower bound (11) is tighter than the lower bound of ρ( θ1−θ0
2 )Pe(

1
2 , θ0, θ1),

which was obtained in Equations (6)–(9a) in [18], both because of the factor of 2
and because of the freedom to optimize q rather than setting q = 1/2. In a further
development of [18] the factor of 2 was accomplished too, but at the price of assuming
that the density of the estimation error is symmetric about the origin (see discussion
after (10) therein), which limits the class of estimators to which the bound applies.
The factor of 2 and the degree of freedom q are also the two ingredients that make the
difference between (11) and the lower bound due to Le Cam [20] (see also [26,28]). In
Chapter 2 in [26] Guntuboyina reviews standard bounding techniques, including those
of Le Cam, Assouad, and Fano. In particular, in Example 2.3.2 therein, Guntiboyina
presents a lower bound in terms of the error probability associated with general priors,
given by η

2 · Pe(q, θ0, θ1), where in the case of two hypotheses, η = minϑ{ρ(θ0 −
ϑ) + ρ(θ1 − ϑ)}, in our notation. Now, if ρ is symmetric and monotonically non-
decreasing in the absolute error, then the minimizing ϑ is given by θ0+θ1

2 , which yields
η
2 = ρ

(
θ1−θ0

2

)
and so, again, the resulting bound is of the same form as (11) except

that it lacks the prefactor of 2.

Our first example demonstrates Theorem 1 on a somewhat technical but simple model,
with an emphasis on the point that the optimal q may differ from 1/2 and that it is therefore
useful to maximize w.r.t. q in order to improve the bound relative to the choice q = 1/2.

Example 1. Let X be a random variable distributed exponentially according to

p(x|θ) = θe−θx, x ≥ 0, (14)

and Θ = {1, 2}, so that the only possibility to select two different values of θ in the lower bound
are θ0 = 1 and θ1 = 2. In terms of the hypothesis testing problem pertaining to the lower bound,
the likelihood ratio test (LRT) is by comparison of qe−x to (1 − q) · 2e−2x. Now, if 2(1 − q) ≤ q,
or equivalently, 1 ≥ q ≥ 2

3 , the decision is always in favor of H0, and then Pe(q, 1, 2) = 1 − q. For

0 ≤ q < 2
3 , the optimal LRT compares X to x0(q) = ln 2(1−q)

q . If X > x0(q), one decides in favor
of H0; otherwise, one decides in favor of H1. Thus,

Pe(q, 1, 2) = q
∫ x0(q)

0
e−xdx + (1 − q)

∫ ∞

x0(q)
2e−2xdx

= q[1 − e−x0(q)] + (1 − q)e−2x0(q) (15)

= q
[

1 − q
2(1 − q)

]
+ (1 − q)

[
q

2(1 − q)

]2

=
q(4 − 5q)
4(1 − q)

.
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In summary,

Pe(q, 1, 2) =

{
q(4−5q)
4(1−q) 0 ≤ q < 2

3

1 − q 2
3 ≤ q ≤ 1

(16)

It turns out that for q = 1
2 , Pe(

1
2 , 1, 2) = 3

8 = 0.375, whereas the maximum is 0.382, attained at

q = 1 −
√

5
5 = 0.5528. Thus,

Rn(Θ) ≥ 2 · 0.382 · ρ

(
2 − 1

2

)
= 0.764 · ρ

(
1
2

)
. (17)

This concludes Example 1.

In the above example, we considered just one observation, n = 1. From now on, we
will refer to the case where n ≫ 1. In particular, the following simple corollary to Theorem 1
yields a local asymptotic minimax lower bound.

Corollary 1. For a given θ ∈ Θ and a constant s, let {ξn}n≥1 denote a positive sequence tending
to zero with the property that

lim
n→∞

max
q

Pe(q, θ, θ + 2sξn) (18)

exists and is given by a strictly positive constant, which will be denoted by P∞
e (θ, s). Also, let

ω(s)
△
= lim

u→0

ρ(s · u)
ρ(u)

. (19)

Then, the local asymptotic minimax performance w.r.t. ζn = 1/ρ(ξn) is lower bounded by

r(θ) ≥ sup
s∈R

{2ω(s) · P∞
e (θ, s)}. (20)

Corollary 1 is readily obtained from Theorem 1 by substituting θ0 = θ and θ1 =
θ + 2sξn in Equation (11), then multiplying both sides of the inequality by ζn = 1/ρ(ξn),
and finally, taking the limit inferior of both sides.

Next, we study a few examples of the use of Corollary 1. As in Example 1, we
emphasize again in Example 2 below the importance of having the degree of freedom
to maximize over the prior q rather than to fix q = 1

2 . Also, in all the examples that
were examined, the rate of convergence, 1/ζn = ρ(ξn), is the same as the optimal rate of
convergence, 1/ζ∗n. In other words, it is tight in the sense that there exists an estimator (for
example, the maximum likelihood estimator) for which Rn(θ, gn) tends to zero at the same
rate. In some of these examples, we compare our lower bound to r(θ) to those of earlier
reported results on the same models.

Example 2. Let X1, . . . , Xn be independently, identically distributed (i.i.d.) random variables,
uniformly distributed in the range [0, θ]. In the corresponding hypothesis testing problem of
Theorem 1, the hypotheses are θ = θ0 and θ = θ1 > θ0 with priors, q and 1 − q. There are two
cases: If q/θn

0 < (1 − q)/θn
1 , or equivalently, q < θn

0 /(θn
0 + θn

1 ), one decides always in favor
of H1 and so, the probability of error is q. If, on the other hand, q/θn

0 > (1 − q)/θn
1 , namely,

q > θn
0 /(θn

0 + θn
1 ), we decide in favor of H1 whenever maxi Xi > θ0 and then an error occurs only

if H1 is true, yet maxi Xi < θ0, which happens with probability (1 − q)
(

θ0
θ1

)n
. Thus,

Pe(q, θ0, θ1) =

 q q <
θn

0
θn

0+θn
1

(1 − q)
(

θ0
θ1

)n
q ≥ θn

0
θn

0+θn
1

= min
{

q, (1 − q)
(

θ0

θ1

)n}
, (21)
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which is readily seen to be maximized by q =
θn

0
θn

0+θn
1

and then

max
q

Pe(q, θ0, θ1) =
θn

0
θn

0 + θn
1

. (22)

Now, to apply Corollary 1, we let θ0 = θ and θ1 = θ0(1+ 2σ/n), which amounts to s = θ0σ = θσ
and ξn = 1/n. Then,

P∞
e (θ, s) = lim

n→∞

1
1 + [1 + 2s/(θn)]n

=
1

1 + e2s/θ
. (23)

In the case of the MSE criterion, ρ(ε) = ε2, we have ω(s) = s2, and so,

r(θ) ≥ sup
s≥0

2s2

1 + e2s/θ
= θ2 · sup

u≥0

u2

2(1 + eu)
≈ 0.2414θ2 (24)

w.r.t. ζn = 1/ρ(ξn) = 1/(1/n)2 = n2. This bound will be further improved upon in Section 4.
If instead of maximizing w.r.t. q, we select q = 1/2, then

Pe

(
1
2

, θ, θ

(
1 +

2σ

n

))
=

1
2
·
[

θ

θ(1 + 2σ/n)

]n
→ 1

2
· e−2σ =

1
2
· e−2s/θ , (25)

and then the resulting bound would become

r(θ) ≥ sup
s≥0

s2e−2s/θ = θ2 · sup
u≥0

u2e−u

4
≈ 0.1353θ2 (26)

w.r.t. ζn = n2. Therefore, the maximization over q plays an important role here in terms of
tightening the lower bound to r(θ).

More generally, for ρ(ε) = |ε|t (t ≥ 1), ω(s) = |s|t, and we obtain

r(θ) ≥ θt · sup
u≥0

2ut

1 + e2u , (27)

w.r.t. ζn = nt, where the supremum, which is in fact a maximum, can always be calculated
numerically for every given t. For large t, the maximizing u is approximately t/2, which yields

r(θ) ≥ (tθ)t

2t−1(1 + et)
. (28)

On the other hand, for q = 1/2, we end up with

r(θ) ≥ sup
s≥0

ste−2s/θ =

(
tθ
2e

)t
. (29)

For large t, the bound of q = 1/2 is inferior to the bound with the optimal q, by a factor of about
1/2. This concludes Example 2.

Example 3. Let X1, X2, . . . , Xn be i.i.d. random variables, uniformly distributed in the interval
[θ, θ + 1]. For the hypothesis testing problem, let θ1 be chosen between θ0 and θ0 + 1. Clearly,
if mini Xi < θ1, the underlying hypothesis is certainly H1. Likewise, if maxi Xi > θ0 + 1,
the decision is in favor of H0 with certainty. Thus, an error can occur only if all {Xi} fall in
the interval [θ1, θ0 + 1], an event that occurs with probability (θ0 + 1 − θ1)

n. In this event,
the best to do is to select the hypothesis with the larger prior with a probability of error given by
min{q, 1 − q}. Thus,
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Pe(q, θ0, θ1) = (θ0 + 1 − θ1)
n · min{q, 1 − q}, (30)

and so,

max
q

Pe(q, θ0, θ1) =
1
2
[1 − (θ1 − θ0)]

n, (31)

achieved by q = 1/2. Now, let us select ξn = 1/n, which yields

lim
n→∞

max
q

Pe(q, θ0, θ1) = lim
n→∞

1
2
·
(

1 − 2s
n

)n
=

1
2
· e−2s. (32)

For ρ(ε) = |ϵ|t, (t ≥ 1), we have

r(θ) ≥ sup
s≥0

2st · 1
2

e−2s = sup
s≥0

ste−2s =

(
t

2e

)t
(33)

w.r.t. ζn = 1/|1/n|t = nt. For the case of MSE, t = 2, r(θ) ≥ e−2 ≈ 0.1353. The constant
0.1353 should be compared with 1−1/

√
2

128 ≈ 0.0023 (see Example 4.9 in [35]), which is two orders of
magnitude smaller. This concludes Example 3.

Example 4. Let Xi = θ + Zi, where {Zi} are i.i.d., Gaussian random variables with zero mean and
variance σ2. Here, for the corresponding binary hypothesis testing problem, the optimal value of q is
always q∗ = 1

2 . This can be readily seen from the concavity of Pe(q, θ0, θ1) in q and its symmetry
around q = 1/2, as Pe(q, θ0, θ1) = Pe(1 − q, θ0, θ1). Since

Pe

(
1
2

, θ0, θ1

)
= Pr

{
n

∑
i=1

Zi ≥
n(θ1 − θ0)

2

}

= Pr

{
1

σ
√

n

n

∑
i=1

Zi ≥
√

n(θ1 − θ0)

2σ

}
(34)

= Q
(√

n(θ1 − θ0)

2σ

)
,

where

Q(t)
△
=
∫ ∞

t

e−u2/2du√
2π

, (35)

we select ξn = 1√
n , which yields θ1 − θ0 = 2s√

n

P∞
e (θ, s) = Q

( s
σ

)
, (36)

and then for the MSE case, ω(s) = s2,

r(θ) ≥ sup
s≥0

{
2s2Q

( s
σ

)}
= σ2 · sup

u≥0
{2u2Q(u)} ≈ 0.3314σ2 (37)

w.r.t. ζn = 1/(1/
√

n)2 = n, and so, the asymptotic lower bound to Rn(θ, gn) is 0.3314σ2/n.
We now compare this bound (which will be further improved in Section 4) with a few earlier

reported results. In one of the versions of Le Cam’s bound (see Example 4.7 in [35]) for the same
model, the lower bound to r(θ) turns out to be σ2

24 = 0.0417σ2, namely, an order of magnitude
smaller. Also, in Example 3.1 in [28], another version of Le Cam’s method yields r(θ) ≥ (1 −√

1/2)σ2/8 = 0.0366σ2. According to Corollary 4.3 in [36], r(θ) ≥ σ2

8e = 0.046σ2. Yet another
comparison is with Theorem 5.9 in [37], where we find an inequality, which in our notation reads
as follows:

sup
θ∈Θ

Pθ

{
(gn[X]− θ)2 ≥ 2ασ2

n

}
≥ 1

2
− α α ∈

(
0,

1
2

)
. (38)
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Combining it with Chebychev’s inequality yields

sup
θ∈Θ

Eθ(gn[X]− θ)2 ≥ σ2

n
· max

0≤α≤1/2
α(1 − 2α) =

0.125σ2

n
. (39)

In [23] (p. 257), it is shown that when Θ = R, the minimax estimator for this model is the sample
mean, and so, in this case, the correct constant in front of σ2 is actually 1. This concludes Example 4.

The next example is related to Example 4, as it is based on the use of the central limit
theorem (CLT), which means that the Gaussian tail distribution is used here too.

Example 5. Consider an exponential family,

p(x|θ) =
n

∏
i=1

p(xi|θ) =
n

∏
i=1

eθT(xi)

Z(θ)
=

exp{θ ∑n
i=1 T(xi)}

Zn(θ)
. (40)

where T(·) is a given function and Z(θ) is a normalization function given by

Z(θ) =
∫
R

eθT(x)dx, (41)

assuming that the integral converges. In the auxiliary binary hypothesis problem, the test statistic
is ∑n

i=1 T(Xi). If q = 1/2, ξn = 1/
√

n and θ1 − θ0 = 2s/
√

n, the LRT amounts to examining
whether ∑n

i=1[T(Xi)−Eθ{T(Xi)}] is larger than

s√
n
· n

d2 ln Z(θ)
dθ2 = s

√
n · d2 ln Z(θ)

dθ2 .

In this case, the probability of error can be asymptotically assessed using the CLT, which after a
simple algebraic manipulation, becomes:

P∞
e (θ, s) = Q

 sd2 ln Z(θ)/dθ2√
d2 ln Z(θ)/dθ2


= Q

s

√
d2 ln Z(θ)

dθ2

 (42)

= Q
(

s
√

I(θ)
)

,

where I(θ) is the Fisher information. Thus, for the MSE,

r(θ) ≥ sup
s≥0

2s2Q
(

s
√

I(θ)
)
≈ 0.3314

I(θ)
(43)

w.r.t. ζn = 1/(1/
√

n)2 = n. This concludes Example 5.

In several earlier examples, our bound was shown to outperform (sometimes signifi-
cantly so) earlier reported bounds for the corresponding models. However, to be honest and
fair, we should not ignore the fact that there are also situations where our bound may not
be tighter than earlier bounds applied to the same model. Such a case is demonstrated in
Example 6 below, where our result is compared to those of Ziv and Zakai [18] and Chazan,
Zakai, and Ziv [4] in the context of estimating the delay of a known continuous-time signal
corrupted by additive white Gaussian noise (for further developments and applications of
the Ziv–Zakai and the Chazan–Zakai–Ziv bounds, see, e.g., [38–45] and references therein).
Having said that, it should also be kept in mind that our emphasis in this work is on
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bounds that are relatively simple and easy to calculate (at least numerically), whereas the
Chazan–Zakai–Ziv bound, although very tight in many situations, is notoriously difficult
to calculate. Indeed, in this setting, the explicit behavior of the resulting complicated bound
of [4] is clearly transparent only at high values of the signal-to-noise ratio (SNR)—see
Equations (11), (12), and (14) in [4].

Example 6. Let X(t) = s(t, θ) + N(t), t ∈ [0, T], where N(t) is additive white Gaussian noise
(AWGN) with double-sided spectral density N0 and s(t, θ) is a deterministic signal that depends
on the unknown parameter, θ. It is assumed that the signal energy, E =

∫ T
0 s2(t, θ)dt, does not

depend on θ (which is the case, for example, when θ is a delay parameter of a pulse fully contained
in the observation interval, or when θ is the frequency or the phase of a sinusoidal waveform). We
further assume that s(t, θ) is at least twice differentiable w.r.t. θ, and that the energies of the first
two derivatives are also independent of θ. Then, as shown in Appendix A, for small |θ1 − θ0|,

ϱ(θ0, θ1)
△
=

1
E

∫ T

0
s(t, θ0)s(t, θ1)dt

= 1 − (θ1 − θ0)
2

2E

∫ T

0

[
∂s(t, θ)

∂θ

∣∣∣∣
θ=θ0

]2

dt + o(|θ1 − θ0|2) (44)

= 1 − (θ1 − θ0)
2Ė

2E
+ o(|θ1 − θ0|2),

where Ė is the energy ṡ(t, θ) = ∂s(t, θ)/∂θ.
The optimal LRT in deciding between the two hypotheses is based on the comparison be-

tween the correlations,
∫ T

0 X(t)s(t, θ0)dt and
∫ T

0 X(t)s(t, θ1)dt. Again, the optimal value of q is
q∗ = 1/2. Thus,

Pe

(
1
2

, θ0, θ1

)
= Q

(√
E

2N0
[1 − ϱ(θ0, θ1)]

)

≈ Q

√EĖ(θ1 − θ0)2

4EN0

 (45)

= Q

√ Ė
4N0

· |θ1 − θ0|


= Q

√ Ṗ
4N0

·
√

T|θ1 − θ0|

,

where Ṗ = Ė/T is the power of ṡ(t, θ). Since we are dealing here with continuous time, instead
of a sequence ξn, we use a function, ξ(T), of the observation time, T, which in this case would be
ξ(T) = 1√

T
. Let θ0 = θ and θ1 = θ + 2s√

T
. Then,

P∞
e (θ, s) = Q

√ Ṗ
N0

· |s|

, (46)

which, for the MSE case, yields

r(θ) ≥ sup
s≥0

2s2Q

√ Ṗ
N0

· s


=

N0

Ṗ
sup
u≥0

{2u2Q(u)} (47)

≈ 0.3314N0

Ṗ
.
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w.r.t. ζ(T) = 1/(1/
√

T)2 = T, which means that the minimax loss is lower bounded by r(θ)/T ≥
0.3314N0/Ė. This has the same form as the Cramér–Rao lower bound (CRLB), except that the
multiplicative factor is 0.3314 rather than 1. In Equation (20) in [18], the bound is of the same
form, but with a multiplicative constant of 0.16 for a high signal-to-noise ratio (SNR). However,
in [4], the constant of proportionality was improved to 1 in the high SNR limit, just like in the
Cramér–Rao lower bound for the same model. The constant 0.3314 will be improved later to 0.4549
(under Example 9 in the sequel), but it will still be below 1.

The case where s(t, θ) is not everywhere differentiable w.r.t. θ can be handled in a similar
manner, but some caution should be exercised. For example, consider the model,

X(t) = s(t − θ) + N(t), (48)

where −∞ < t < ∞, θ ∈ [0, T], N(t) is AWGN as before, and s(·) is a rectangular pulse with
duration ∆ and amplitude

√
E/∆, E being the signal energy. Here, ϱ(θ, θ + δ) = 1 − |δ|/∆;

namely, it also includes a linear term in |δ|, not just the quadratic one. This changes the asymptotic
behavior of the resulting lower bound to r(θ), which turns out to be 0.7544(N0∆/P)2 w.r.t. T2

(namely, a minimax lower bound of 0.7544(N0∆/E)2). It is interesting to compare this bound to
the Chapman–Robbins bound for the same model, which is a local bound of the same form but with a
multiplicative constant of 0.1602 instead of 0.7544, and which is limited to unbiased estimators.
The Chazan–Zakai–Ziv bound [4] for this case is difficult to calculate, but in the high SNR regime,
it behaves like 3(N0∆/P)2 w.r.t. T2.

It is conceivable that the Chazan–Zakai–Ziv bound for estimating the delay of non-differential
signals in Gaussian white noise has been improved even further ever since its publication in 1975,
but the point of this particular example remains: our bound may not always be the best available
bound. Still, since our bound is easy to calculate, it is worth comparing it to other bounds for every
given model. This concludes Example 6.

4. Bounds Based on the Minimum Expected Loss over Some Test Points

In this section, we derive our second family of bounds for the scalar case, d = 1.

4.1. Two Test Points

The following generic, yet conceptually very simple, lower bound assumes neither
symmetry nor convexity of the loss function ρ(·). For a given (x, q, θ0, θ1) ∈ Rn × [0, 1]×Θ2,
let us define

ψ(x, q, θ0, θ1) = min
ϑ

{qp(x|θ0)ρ(ϑ − θ0) + (1 − q)p(x|θ1)ρ(ϑ − θ1)}. (49)

Then,

Rn(Θ) ≥ sup
θ0,θ1,q

qEθ0{ρ(gn[X]− θ0)}+ (1 − q)Eθ1{ρ(gn[X]− θ1)}

= sup
θ0,θ1,q

∫
Rn
[qp(x|θ0)ρ(gn[x]− θ0) + (1 − q)p(x|θ1)ρ(gn[x]− θ1)]dx (50)

≥ sup
θ0,θ1,q

∫
Rn

ψ(x, q, θ0, θ1)dx.

If we further assume the symmetry of ρ, then it is easy to see that the minimizer ϑ∗, which
achieves ψ(x, q, θ0, θ1), is always within the interval [θ0, θ1]. This is because the objective
increases monotonically as we move away from the interval [θ0, θ1] in either direction. Of
course, this simple idea can easily be extended to apply to the weighted sums of more than
two points, in principle, but it would become more complicated—see the next subsection
for three such points.
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If ρ is concave, then the minimizing ϑ is either θ0 or θ1, depending on which of qp(x|θ0)
and (1 − q)p(x|θ1) is smaller, and the bound becomes

Rn(Θ) ≥ sup
θ0,θ1,q

ρ(θ1 − θ0)Pe(q, θ0, θ1). (51)

Minimality at the edge points may also happen for some loss functions that are not concave,
like the loss function ρ(u) = 1{|u| ≥ ∆}.

The generic lower bound (50) is more general than our first bound in the sense that
it does not require convexity or symmetry of ρ, but the downside is that the resulting
expressions are harder to deal with directly, as will be seen shortly. For loss functions
other than the MSE or general moments of the estimation error, it may not be a trivial task
even to derive a closed-form expression of ψ(x, q, θ0, θ1) (i.e., to carry out the minimization
associated with the definition of ψ).

For the case of the MSE, ρ(ε) = ε2, the calculation of ψ(x, q, θ0, θ1) is straightforward,
and it readily yields

ψ(x, q, θ0, θ1) = (θ1 − θ0)
2 · qp(x|θ0) · (1 − q)p(x|θ1)

qp(x|θ0) + (1 − q)p(x|θ1)
. (52)

However, it may not be convenient to integrate this function of x due to the summation at
the denominator. One way to alleviate this difficulty is to observe that

ψ(x, q, θ0, θ1) ≥ (θ1 − θ0)
2 · qp(x|θ0) · (1 − q)p(x|θ1)

2 max{qp(x|θ0), (1 − q)p(x|θ1)}
(53)

=
1
2
· (θ1 − θ0)

2 · min{qp(x|θ0), (1 − q)p(x|θ1)},

which after integration yields again

Rn(Θ) ≥ sup
θ0,θ1,q

{
1
2
(θ1 − θ0)

2 · Pe(q, θ0, θ1)

}
, (54)

exactly as in Theorem 1 in the special case of the MSE. This indicates that the bound (50) is
at least as tight as the bound of Theorem 1 for the MSE.

It turns out, however, that we can do better than bounding the denominator, qp(x|θ0)+
(1 − q)p(x|θ1), by 2 · max{qp(x|θ0), (1 − q)p(x|θ1)} for the purpose of obtaining a more
convenient integrand. To this end, we invoke the following lemma, whose proof appears in
Appendix B.

Lemma 1. Let k be a positive integer and let a1, . . . , ak be positive reals. Then,

k

∑
i=1

ai = inf
(r1,...,rk)∈S

max
{

a1

r1
, . . . ,

ak
rk

}
, (55)

where S is the interior of the k-dimensional simplex, namely, the set of all vectors (r1, . . . , rk) with
strictly positive components that sum to unity.

Applying Lemma 1 with the assignments k = 2, a1 = qp(x|θ0), and a2 = (1 −
q)p(x|θ1), we have

qp(x|θ0 + (1 − q)p(x|θ1) = inf
r∈(0,1)

max
{

qp(x|θ0)

r
,
(1 − q)p(x|θ1)

1 − r

}
. (56)

Thus,

ψ(x, q, θ0, θ1) =
qp(x|θ0) · (1 − q)p(x|θ1)

infr∈(0,1) max{qp(x|θ0)/r, (1 − q)p(x|θ1)/(1 − r)}
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= sup
r∈(0,1)

qp(x|θ0) · (1 − q)p(x|θ1)

max{qp(x|θ0)/r, (1 − q)p(x|θ1)/(1 − r)} (57)

= sup
r∈(0,1)

{
r(1 − q)p(x|θ1) r ≤ r∗

(1 − r)qp(x|θ0) r ≥ r∗

= sup
r∈(0,1)

min{r(1 − q)p(x|θ1), (1 − r)qp(x|θ0)},

where

r∗ =
qp(x|θ0)

qp(x|θ0) + (1 − q)p(x|θ1)
. (58)

Thus, the bound becomes

Rn(Θ) ≥ sup
{(θ0,θ1,q)∈Θ2×(0,1)}

(θ1 − θ0)
2 ×

∫
Rn

sup
r∈(0,1)

min{r(1 − q)p(x|θ1), (1 − r)qp(x|θ0)}dx

≥ sup
(θ0,θ1,q)∈Θ2×(0,1)

sup
r∈(0,1)

(θ1 − θ0)
2 ×

∫
Rn

min{r(1 − q)p(x|θ1), (1 − r)qp(x|θ0)}dx

= sup
(θ0,θ1,q,r)∈Θ2×(0,1)2

(θ1 − θ0)
2 · (q + r − 2qr)×

∫
Rn

min
{

r(1 − q)
q + r − 2qr

· p(x|θ1),
(1 − r)q

q + r − 2qr
· p(x|θ0)

}
dx

= sup
(θ0,θ1,q,r)∈Θ2×(0,1)2

(θ1 − θ0)
2 · (q + r − 2qr) · Pe

(
(1 − r)q

q + r − 2qr
, θ0, θ1

)
.

The bound of Theorem 1 for the MSE is obtained as a special case of r = 1/2. Therefore,
after the optimization over the additional degree of freedom, r, the resulting bound cannot
be worse than the MSE bound of Theorem 1. In fact, it may strictly improve as we will
demonstrate shortly. The choice r = q gives a prior of 1/2 in the error probability factor,
and then the maximum of the external factor, q + r − 2rq = 2q(1 − q), is maximized by
q = 1/2.

Example 7. To demonstrate the new bound for the MSE, let us revisit Example 2 and see how it
improves the multiplicative constant. In that example,

Pe

(
(1 − r)q

q + r − 2qr
, θ0, θ1

)
= min

{
(1 − r)q

q + r − 2qr
,

r(1 − q)
q + r − 2qr

·
(

θ0

θ1

)n}
. (59)

Let us denote α = (θ0/θ1)
n and recall that α ∈ (0, 1), provided that we select θ1 > θ0. Then,

(q + r − 2qr) · Pe

(
(1 − r)q

q + r − 2qr
, θ0, θ1

)
= min{(1 − r)q, r(1 − q)α}. (60)

The maximum w.r.t. q is attained when (1 − r)q = r(1 − q)α, namely, for q = q∗
△
= αr/[1 − (1 −

α)r], which yields

max
q

(q + r − 2qr) · Pe

(
(1 − r)q

q + r − 2qr
, θ0, θ1

)
=

αr(1 − r)
1 − (1 − α)r

. (61)



Entropy 2024, 26, 944 16 of 27

Let us denote β
△
= 1 − α ∈ (0, 1). The maximum of r(1 − r)/(1 − βr) is attained for

r = r∗
△
=

1 −
√

1 − β

β
=

1 −
√

α

1 − α
=

1
1 +

√
α

, (62)

which yields

max
q,r

(q + r − 2qr) · Pe

(
(1 − r)q

q + r − 2qr
, θ0, θ1

)
= sup

r∈(0,1)

αr(1 − r)
1 − (1 − α)r

= α ·
(

1 −
√

α

1 − α

)2

(63)

=
α

(1 +
√

α)2 .

To obtain a local bound in the spirit of Corollary 1, take θ0 = θ, θ1 = θ(1 + s
nθ ), which yields

α = e−s/θ in the limit of large n, and so,

r(θ) ≥ sup
s≥0

s2e−s/θ

(1 + e−s/[2θ])2
= θ2 · sup

u≥0
u2 · e−u

(1 + e−u/2)2 ≈ 0.3102θ2, (64)

w.r.t. ζn = n2, which improves on our earlier bound in Example 2, r(θ) ≥ 0.2414θ2. This concludes
Example 7.

More generally, for general moments of the estimation error, a similar derivation yields
the following:

Theorem 2. For ρ(ε) = |ε|t, t ≥ 1 (not necessarily an integer),

Rn(Θ) ≥ sup
θ0,θ1,q,r

|θ1 − θ0|t[(1 − r)t−1q + rt−1(1 − q)] · Pe

(
(1 − r)t−1q

(1 − r)t−1q + rt−1(1 − q)
, θ0, θ1

)
. (65)

Applying the local version of Theorem 2 to Example 7, we obtain

r(θ) ≥ θt · sup
s>0

ste−s

(1 + e−s/t)t (66)

w.r.t. ζn = nt. Changing the optimization variable from s to σ = s/t, we end up with

r(θ) ≥ (θt)t ·
[

sup
σ>0

σ

eσ + 1

]t

≈ (0.2785tθ)t. (67)

The factor of (0.2785t)t should be compared with (1/2e)t = 0.1839t of Example 2, pertaining
to the choice q = r = 1/2. The gap increases exponentially with t. For the maximum
likelihood estimator pertaining to Example 2, which is gn[X] = maxi Xi, it is easy to show
that whenever t is an integer,

Eθ{|θ̂ − θ|t} =
n!t!θt

(n + t)!
=

t!θt

(n + 1)(n + 2) · · · (n + t)
, (68)

and so, the asymptotic gap is between t! and (0.2785t)t. Considering the Stirling approxi-
mation, the ratio between the upper bound and the lower bound is about

√
2πt · (1.3211)t.

4.2. Three Test Points

The idea behind the bounds of Section 4.1 can be conceptually extended to be based on
more than two test points, but the resulting expressions become cumbersome very quickly
as the number of test points grows. For three points, however, this is still manageable and
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can provide improved bounds. Let us select the three test points to be θ0 − ∆, θ0, and θ0 + ∆
for some θ0 and ∆, and let us assign weights q, r, and w = 1 − q − r. Consider the bound

Rn(Θ) ≥ qEθ0−∆{ρ(gn[X]− θ0 + ∆)}+ rEθ0{ρ(gn[X]− θ0)}+
wEθ0+∆{ρ(gn[X]− θ0 − ∆)}

=
∫
Rn

[
q · p(x|θ0 − ∆)ρ(gn[x]− θ0 + ∆) + r · p(x|θ0)ρ(gn[x]− θ0) + (69)

w · p(x|θ0 + ∆)ρ(gn[x]− θ0 − ∆)
]

dx

≥
∫
Rn

Ψ(x, θ0, ∆, q, r)dx,

where

Ψ(x, θ0, ∆, q, r) = min
ϑ

{
q · p(x|θ0 − ∆)ρ(ϑ − θ0 + ∆) + r · p(x|θ0)ρ(ϑ − θ0) + (70)

w · p(x|θ0 + ∆)ρ(ϑ − θ0 − ∆)
}

.

Considering the case of the MSE,

Ψ(x, θ0, ∆, q, r) = min
ϑ

{
q · p(x|θ0 − ∆)(ϑ − θ0 + ∆)2 + r · p(x|θ0)(ϑ − θ0)

2 + (71)

w · p(x|θ0 + ∆)(ϑ − θ0 − ∆)2
}

can be found in closed-form. Denoting temporarily a = qp(x|θ0 − ∆), b = rp(x|θ0),
and c = wp(x|θ0 + ∆), Ψ(x, θ0, ∆, q, r) is attained by

ϑ = ϑ∗ =
a(θ0 − ∆) + bθ0 + c(θ0 + ∆)

a + b + c
= θ0 +

(c − a)∆
a + b + c

. (72)

On substituting ϑ∗ into the sum of squares, we end up with

Ψ(x, θ0, ∆, q, r) =
[a(b + 2c)2 + b(c − a)2 + c(2a + b)2]∆2

(a + b + c)2

=
(ab + bc + 4ac)∆2

a + b + c

=
[qrp(x|θ0 − ∆)p(x|θ0) + rwp(x|θ0)p(x|θ0 + ∆) + 4qwp(x|θ0 − ∆)p(x|θ0 + ∆)]∆2

qp(x|θ0 − ∆) + rp(x|θ0) + wp(x|θ0 + ∆)
.

The lower bound on the MSE is then the sum of three integrals

I1 = qr∆2 ·
∫
Rn

p(x|θ0 − ∆)p(x|θ0)dx
qp(x|θ0 − ∆) + rp(x|θ0) + wp(x|θ0 + ∆)

(73)

I2 = rw∆2 ·
∫
Rn

p(x|θ0)p(x|θ0 + ∆)dx
qp(x|θ0 − ∆) + rp(x|θ0) + wp(x|θ0 + ∆)

(74)

I3 = 4qw∆2 ·
∫
Rn

p(x|θ0 − ∆)p(x|θ0 + ∆)dx
qp(x|θ0 − ∆) + rp(x|θ0) + wp(x|θ0 + ∆)

. (75)

Example 8. Revisiting again Example 2, for a given t > 0, let us denote C(t) = [0, t]n, and then
p(x|θ0 + i∆) = [θ0 + i∆]−n · I{x ∈ C(θ0 + i∆), i = −1, 0, 1. Then,

I1 = qr∆2 ·
∫
C(θ0−∆)

(θ0 − ∆)−nθ−n
0 dx

q(θ0 − ∆)−n + rθ−n
0 + w(θ0 + ∆)−n
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= qr∆2 ·
(θ0 − ∆)n(θ0 − ∆)−nθ−n

0
q(θ0 − ∆)−n + rθ−n

0 + w(θ0 + ∆)−n (76)

=
qr∆2θ−n

0
q(θ0 − ∆)−n + rθ−n

0 + w(θ0 + ∆)−n

=
qr∆2

q[θ0/(θ0 − ∆)]n + r + w[θ0/(θ0 + ∆)]n
.

For ∆ = θ0s/n, we then have, for large n:

I1 ∼
θ2

0
n2 · qrs2

qes + r + we−s =
θ2

0
n2 · qrs2es

qe2s + res + w
. (77)

I2 = rw∆2
∫
C(θ0)

θ−n
0 (θ0 + ∆)−ndx

q(θ0 − ∆)−nI{x ∈ C(θ0 − ∆)}+ rθ−n
0 + w(θ0 + ∆)−n

= rw∆2 ·
(θ0 − ∆)nθ−n

0 (θ0 + ∆)−n

q(θ0 − ∆)−n + rθ−n
0 + w(θ0 + ∆)−n +

rw∆2 ·
[θn

0 − (θ0 − ∆)n]θ−n
0 (θ0 + ∆)−n

rθ−n
0 + w(θ0 + ∆)−n (78)

= rw∆2 · (1 − ∆/θ0)
n

q[(1 + ∆/θ0)/(1 − ∆/θ0)]−n + r(1 + ∆/θ0)n + w
+

rw∆2 · [1 − (1 − ∆/θ0)
n]

r(1 + ∆/θ0)n + w

∼
θ2

0
n2 · rws2

(
e−s

qe2s + res + w
+

1 − e−s

res + w

)
.

Similarly,

I3 ∼
θ2

0
n2 · 4qws2

qe2s + res + w
. (79)

Thus,

r(θ0) ≥ θ2
0 · sup

s≥0
sup

(q,r,w)∈R3
+ : q+r+w=1

s2 ·
[

qres + 4qw + rwe−s

qe2s + res + w
+

rw(1 − e−s)

res + w

]
(80)

≈ 0.4624θ2
0 ,

w.r.t. ζn = n2, which is a significant improvement of nearly 50% over the previous bound, 0.3102θ2
0 ,

which was obtained on the basis of two test points, let alone the bound of Theorem 1, which was
0.2414θ2

0 . This concludes Example 8.

In general, the integrals I1, I2, and I3 are not easy to calculate due to the summations
at the denominators of the integrands. One way to proceed is to apply Lemma 1 to the
sum of k = 3 terms, but this would introduce two additional parameters to be optimized.
Returning to the earlier shorthand notation of a, b, and c, a different approach to get rid of
summations at the denominators, at the expense of some loss of tightness, is the following:

ab + bc + 4ac
a + b + c

=
a(b + 2c)
a + b + c

+
c(b + 2a)
a + b + c

≥ a(b + 2c)
a + b + 2c

+
c(b + 2a)
2a + b + c

≥ a(b + 2c)
2 max{a, b + 2c} +

c(b + 2a)
2 max{2a + b, c} (81)
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=
1
2
· (min{a, b + 2c}+ min{2a + b, c})

≥ 1
2
· (min{a, b}+ min{b, c})

=
1
2
· [min{qp(x|θ0 − ∆), rp(x|θ0)}+ min{rp(x|θ0), wp(x|θ0 + ∆)}],

and so,

Rn(Θ) ≥ ∆2

2

[ ∫
Rn

min{qp(x|θ0 − ∆), rp(x|θ0)}dx +∫
Rn

min{rp(x|θ0), wp(x|θ0 + ∆)}dx
]

(82)

=
∆2

2

[
(q + r)Pe

(
q

q + r
, θ0 − ∆, θ0

)
+

(r + w)Pe

(
r

r + w
, θ0, θ0 + ∆

)]
.

Note that by setting w = 0, we recover the bound obtained by integrating (53), and therefore,
by optimizing w, the resulting bound cannot be worse. A slightly different (better, but more
complicated) route in (81) is to apply Lemma 1 with k = 2 in the following manner:

ab + bc + 4ac
a + b + c

=
a(b + 2c)
a + b + c

+
c(b + 2a)
a + b + c

≥ a(b + 2c)
a + b + 2c

+
c(b + 2a)
2a + b + c

=
a(b + 2c)

minu max{a/u, (b + 2c)/(1 − u)} +
c(b + 2a)

minv max{(2a + b)/(1 − v), c/v}
= max

u
min{(1 − u)a, u(b + 2c)}+ max

v
min{v(2a + b), (1 − v)c} (83)

≥ max
u

min{(1 − u)a, ub}+ max
v

min{vb, (1 − v)c}

= max
u

min{(1 − u)qp(x|θ0 − ∆), urp(x|θ0)}+

max
v

min{vrp(x|θ0), (1 − v)wp(x|θ0 + ∆)},

and so,

Rn(Θ) ≥ ∆2 ·
[

max
u

∫
Rn

min{(1 − u)qp(x|θ0 − ∆), urp(x|θ0)}dx +

max
v

∫
Rn

min{vrp(x|θ0), (1 − v)wp(x|θ0 + ∆)}dx
]

(84)

= ∆2 ·
{

max
u

[(1 − u)q + ur] · Pe

(
(1 − u)q

(1 − u)q + ur
, θ0 − ∆, θ0

)
+

max
v

[vr + (1 − v)w] · Pe

(
vr

vr + (1 − v)w
, θ0, θ0 + ∆

)}
.

We have just proved the following result:

Theorem 3. For the MSE case,

Rn(Θ) ≥ sup
θ0,∆,q,r,w,(u,v)∈[0,1]2

∆2 ·
{

max
u

[(1 − u)q + ur] · Pe

(
(1 − u)q

(1 − u)q + ur
, θ0 − ∆, θ0

)
+ (85)

max
v

[vr + (1 − v)w] · Pe

(
vr

vr + (1 − v)w
, θ0, θ0 + ∆

)}
.
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where the maximum over q, r, and w is under the constraints that they are all non-negative and
sum to unity.

Example 9. Revisiting Example 4, it is natural that both error probabilities would correspond to a
prior of 1/2. This dictates the relations,

u =
q

q + r
(86)

v =
w

w + r
, (87)

and so, the bound becomes

Rn(Θ) ≥ max
∆,q,w,r

∆2
(

2qr
q + r

+
2wr

w + r

)
· Q
(√

n∆
2σ

)
=

[
max
s≥0

(
2sσ√

n

)2
Q(s)

]
· max
{(q,r): q≥0, r≥0, q+r≤1}

{
2qr

q + r
+

2r(1 − q − r)
1 − q

}
=

σ2

n
· max

s≥0
{4s2Q(s)} · 0.6862 (88)

=
σ2

n
· 0.6629 · 0.6862

≈ 0.4549σ2

n
,

which is an improvement on the bound of Example 4, which was 0.3314σ2/n. Similarly, in
Example 6, for smooth signals, the multiplicative constant also improves from 0.3314 to 0.4549,
and for the rectangular pulse, it improves from 0.7544 to 1.0352 (about 37% improvement in all of
them). This concludes Example 9.

Example 10. Revisiting Example 2, we now have

Rn(Θ) ≥ ∆2 · [max
u

min{(1 − u)q, urα}+ max
v

min{vr, (1 − v)wα}]

= ∆2
(

qrα

q + rα
+

wrα

r + wα

)
= ∆2

(
qrα

q + rα
+

r(1 − q − r)α
r + (1 − q − r)α

)
(89)

=
s2

n2 e−sr
(

q
q + re−s +

1 − q − r
r + (1 − q − r)e−s

)
=

s2

n2 r
(

q
qes + r

+
1 − q − r

res + (1 − q − r)

)
,

whose maximum is 0.3909/n2, an improvement relative to the earlier bound of 0.3102/n2. This
concludes Example 10.

5. Extensions to the Vector Case

In this section, we outline extensions of some of our findings in Sections 3 and 4 to the
vector case. Let θ be a parameter vector of dimension d and Θ ⊆ Rd. Let ρ(ε) be a convex
loss function that depends on the d-dimensional error vector ε only via its norm, ∥ε∥ (that
is, ρ has radial symmetry).

First, observe that Theorem 1 extends verbatim to the vector case, as nothing in
the proof of Theorem 1 is based on any assumption or property that holds only if θ is a
scalar parameter.

Corollary 1 can also be extended by letting the two test points of the auxiliary hypoth-
esis testing problem, θ0 and θ1, be selected such that the distance between them, ∥θ1 − θ0∥,
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would decay at an appropriate rate as a function of n, so as to make the probability of error,
maxq Pe(q, θ0, θ1), converge to a positive constant as n → ∞, as was achieved in Corollary 1
for the scalar case. But in the vector case considered now, there is an additional degree
of freedom, which is the direction of the displacement vector, θ1 − θ0. This direction can
now be optimized so as to yield the largest (hence the tightest) lower bound. To be specific,
in the vector case, Corollary 1 remains the same except that now s should be thought of
as a d-dimensional vector rather than a scalar, ρ(u) in the denominator of (19) should be
replaced by ρ(v · u), where v ∈ Rd is an arbitrary fixed non-zero vector (for example, any
unit norm vector in the case of MSE), and the supremum in (20) should be taken over Rd.
To demonstrate this point, we now revisit Example 5, but this time, for the vector case.

Example 11. Consider the case where p(x|θ) = ∏n
i=1 p(xi|θ), with each factor in this product

PDF being given by a d-dimensional exponential family,

p(x|θ) = exp{θ′T(x)}
Z(θ)

(90)

where θ′T(x) is the inner product of the d-dimensional parameter vector θ and a d-dimensional
vector of statistics, T(x) = (T1(x), T2(x), . . . , Td(x)), and

Z(θ) =
∫
R

exp{θ′T(x)}dx, (91)

provided that the integral converges. In the above notation, both θ and T(x) are understood to
be column vectors and θ′ denotes transposition of θ to a row vector. Similarly as in Corollary 1,
to obtain a local bound at a given θ, we let θ0 = θ and θ1 = θ + 2s√

n , where s ∈ Rd. A simple
extension of the derivation in Example 5 (using the CLT) yields

P∞
e (θ, s) = Q

(√
s′ I(θ)s

)
, (92)

where s is considered a column vector, the superscript prime denotes vector transposition as be-
fore, and I(θ) = ∇2 ln Z(θ) is the d × d Fisher information matrix of the exponential family.
Considering the case of the MSE, ρ(ϵ) = ∥ϵ∥2 with v being any unit norm vector, we have

w(s) = lim
u→0

∥s · u∥2

∥v · u∥2 = ∥s∥2, (93)

and then the following lower bound is obtained w.r.t. 1/∥v/
√

n∥2 = n:

r(θ) ≥ sup
s∈Rd

{
2∥s∥2Q

(√
s′ I(θ)s

)}

= sup
t≥0

{
2t2 · max

{s: ∥s∥2=t2}
Q
(√

s′ I(θ)s
)}

= sup
t≥0

{
2t2 · Q

(
t
√

λmin(θ)

)}
(94)

=
1

λmin(θ)
sup
τ≥0

{
2τ2 · Q(τ)

}
≈ 0.3314

λmin(θ)
,

where λmin(θ) is the smallest eigenvalue of I(θ). In this example, it is apparent that the chosen
direction of the vector s is that of the eigenvector corresponding to the smallest eigenvalue of the
Fisher information matrix. This completes Example 11.
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In the vector case considered in this section, it is also instructive to extend the scope
from two test points, θ0 and θ1, to multiple test points, θ0, θ1, . . . , θm−1, along with the
corresponding weights (or priors), q0, q1, . . . , qm−1 (see the exposition at the end of Section 2).
Interestingly, this will also lead to new bounds even for the case of m = 2 test points.

To this end, we also consider a set of m unitary transformation matrices, T0, T1, T2, . . . ,
Tm−1, with the properties: (i) θ ∈ Θ if and only if Tiθ ∈ Θ for all i = 0, 1, . . . , m − 1, and (ii)
T0 + T1 + · · ·+ Tm−1 = 0. For example, if d = 2, take Ti to be matrices of rotation by 2πi/m,
i = 0, 1, . . . , m − 1.

Theorem 4. Let θ0, θ1, . . . , θm−1 ∈ Θ ⊆ Rd, d ≥ 1 and q0, q1, . . . , qm−1 be given, and let
T0, T1, . . . Tm−1 be unitary transformations that sum to zero, as described in the above paragraph.
Then, for a convex loss function ρ(ε) that depends on ε only via ∥ε∥, we have:

Rn(Θ) ≥ m · ρ

(
1
m

m−1

∑
i=0

Tiθi

)
·
∫
Rn

min{q0 · p(x|θ0), . . . , qm−1 p(x|θm−1)}dx. (95)

As explained in Section 2, the integral on the right-hand side can be interpreted as the
probability of list error with a list size of m − 1.

Proof of Theorem 4. The proof is a direct extension of the proof of Theorem 1:

sup
θ∈Θ

Eθ{ρ(gn[X]− θ)} ≥
m−1

∑
i=0

qiEθi{ρ(gn[X]− θi)}

=
∫
Rn

[ m−1

∑
i=0

qi · p(x|θi)ρ(gn[x]− θi)

]
dx

≥ m ·
∫
Rn

min{q0 · p(x|θ0), . . . , qm−1 p(x|θm−1)} ×[
1
m

m−1

∑
i=0

ρ(θi − gn[X])

]
dx

(a)
= m ·

∫
Rn

min{q0 · p(x|θ0), . . . , qm−1 p(x|θm−1)} ×[
1
m

m−1

∑
i=0

ρ(Ti(θi − gn[X]))

]
dx

(b)

≥ m ·
∫
Rn

min{q0 · p(x|θ0), . . . , qm−1 p(x|θm−1)} ×

ρ

(
1
m

m−1

∑
i=0

Ti(θi − gn[X])

)
dx

(c)
= m ·

∫
Rn

min{q0 · p(x|θ0), . . . , qm−1 p(x|θm−1)} ×

ρ

(
1
m

m−1

∑
i=0

Tiθi

)
dx

= mρ

(
1
m

m−1

∑
i=0

Tiθi

)
·
∫
Rn

min{q0 · p(x|θ0), . . . , qm−1 p(x|θm−1)}dx,

where in (a), we have used the unitarity (and hence the norm-preserving property) of
{Ti}, as ρ(·) is assumed to depend only on the norm of the error vector; in (b), we used
the convexity of ρ, and in (c), we used the fact that ∑m−1

i=0 Ti = 0, which implies that
∑m−1

i=0 Tign[X] = 0, thus making the bound independent of the estimator, gn. This completes
the proof of Theorem 4.

Theorem 1 is a special case where m = 2, T0 = I, and T1 = −I, where I is the
d × d identity matrix. The integral associated with the lower bound of Theorem 4 might
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not be trivial to evaluate in general for m ≥ 3. However, there are some choices of
the auxiliary parameters that may facilitate calculations. One such choice is as follows.

For some positive integer k < m, take θ0 = θ1 = . . . = θk−1
△
= ϑ0, for some ϑ0 ∈ Θ,

q0 = q1 = . . . = qk−1
△
= Q/k, for some Q ∈ (0, 1), θk = θk+1 = . . . = θm−1

△
= ϑ1, for some

ϑ1 ∈ Θ, and finally, qk = qk+1 = . . . = qm−1 = (1 − Q)/(m − k). The integrand then
becomes the minimum between two functions only, as in Section 3. Denoting α = k/m,
the bound then becomes

Rn(Θ) ≥ mρ

(
1
m

k−1

∑
i=0

Ti(ϑ0 − ϑ1)

)
·
∫
Rn

min
{

Q
k
· p(x|ϑ0),

1 − Q
m − k

· p(x|ϑ1)

}
dx

= ρ

(
1
m

k−1

∑
i=0

Ti(ϑ0 − ϑ1)

)
·
∫
Rn

min
{

Q
α
· p(x|ϑ0),

1 − Q
1 − α

· p(x|ϑ1)

}
dx (96)

= ρ

(
1
m

k−1

∑
i=0

Ti(ϑ0 − ϑ1)

)
·
(

Q
α
+

1 − Q
1 − α

)
· Pe

(
(1 − α)Q

(1 − α)Q + α(1 − Q)
, ϑ0, ϑ1

)
.

Redefining

q =
(1 − α)Q

(1 − α)Q + α(1 − Q)
, (97)

we have
Q
α
+

1 − Q
1 − α

=
1

1 − α − q + 2αq
, (98)

and the following corollary to Theorem 2 is obtained.

Corollary 2. Let the conditions of Theorem 4 be satisfied. Then,

Rn(Θ) ≥ sup
ϑ0,ϑ1,α,q

ρ

(
1
m

k−1

∑
i=0

Ti(ϑ0 − ϑ1)

)
· Pe(q, ϑ0, ϑ1)

1 − α − q + 2αq
(99)

= sup
ϑ0,ϑ1,q

ρ

(
1
m

k−1

∑
i=0

Ti(ϑ0 − ϑ1)

)
· Pe(q, ϑ0, ϑ1)

min{q, 1 − q} .

Note that if m is even, α = 1
2 , and T0 = I; then, we are actually back to the bound of

m = 2, and so, the optimal bound for even m > 2 cannot be worse than our bound of m = 2.
We do not have, however, precisely the same argument for an odd m, but for a large m, it
becomes immaterial if m is even or odd. In its general form, the bound of Theorem 4 is a
heavy optimization problem, as we have the freedom to optimize θ0, . . . , θm−1, T0, . . . , Tm−1
(under the constraints that they are all unitary and sum to zero), and q0, . . . , qm−1 (under
the constraints that they are all non-negative and sum to unity).

Another relatively convenient choice is to take θi = T−1
i θ0, i = 1, . . . , m − 1 to obtain

another corollary to Theorem 4:

Corollary 3. Let the conditions of Theorem 2 be satisfied. Then,

Rn(Θ) ≥ sup
θ0,T0,...,Tm−1,q0,...,qm−1

mρ(θ0) ·
∫
Rn

min{q0 p(x|θ0), q1 p(x|T−1
1 θ0), . . . , qm−1 p(x|T−1

m−1θ0)}dx. (100)

Example 12. To demonstrate a calculation of the extended lower bound for m = 3, consider the
following model. We are observing a noisy signal,

Zi = ϑϕi + (ϑ + ζ)ψi + Ni, i = 1, 2, . . . , n, (101)

where ϑ is the desired parameter to be estimated, ζ is a nuisance parameter, taking values within
an interval [−δ, δ] for some δ > 0, {Ni} are i.i.d. Gaussian random variables with zero mean and
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variance σ2, and ϕi and ψi are two given orthogonal waveforms with ∑n
i=1 ϕ2

i = ∑n
i=1 ψ2

i = n.
Suppose we are interested in estimating ϑ based on the sufficient statistics X = 1

n ∑n
i=1 Ziϕi and

Y = 1
n ∑n

i=1 Ziψi, which are jointly Gaussian random variables with the mean vector (ϑ, ϑ + ζ)

and the covariance matrix σ2

n · I, I being the 2 × 2 identity matrix. We denote realizations of
(X, Y) by (x, y). Let us also denote θ = (ϑ, ϑ + ζ). Since we are interested only in estimating
ϑ, our loss function will depend only on the estimation error of the first component of θ, which is
ϑ. Consider the choice m = 3 and let Ti be counter-clockwise rotation transformations by 2πi/3,
i = 0, 1, 2. For a given ∆ ∈ (0, δ], let us select θ0 = (−∆, 0), θ1 = T−1

1 θ0 = (∆/2, ∆
√

3/2), and
θ2 = T−1

2 θ0 = (∆/2,−∆
√

3/2). Finally, let q0 = q1 = q2 = 1
3 . In order to calculate the integral

I =
∫
R2

min
{

1
3

p(x, y|θ0),
1
3

p(x, y|θ1),
1
3

p(x, y|θ2)

}
dxdy,

the plane R2 can be partitioned into three slices over which the integrals contributed are equal.
In each such region, the smallest p(x, y|θi) is integrated. In other words, every p(x, y|θi) in its turn
is integrated over the region whose Euclidean distance to θi is larger than the distances to the other
two values of θ. For θ0 = (−∆, 0), this is the region {(x, y) : x ≥ 0, |y| ≤ x

√
3}. The factor of 1

3
cancels with the three identical contributions from θ0, θ1, and θ2 due to the symmetry. Therefore,

I =
∫ ∞

0
dx
∫ x

√
3

−x
√

3
dy · p(x, y|θ0)

=
∫ ∞

0
dx
∫ x

√
3

−x
√

3
· n
2πσ2 exp

{
−n(x + ∆)2 + ny2

2σ2

}
dy (102)

=

√
n

2πσ2 ·
∫ ∞

0
exp

{
−n(x + ∆)2

2σ2

}[
1 − 2Q

(
x
√

3n
σ

)]
dx.

Our next mathematical manipulations in this example are in the spirit of the passage from
Theorem 1 to Corollary 1, that is, selecting the test points increasingly close to each other as functions
of n, so that the probability of list error would tend to a positive constant. To this end, we change
the integration variable x to u = x

√
n/σ and select ∆ = sσ/

√
n for some s ≥ 0 to be optimized

later. Then,

I =

√
n

2πσ2 ·
∫ ∞

0
exp

{
−n(uσ/

√
n + sσ/

√
n)2

2σ2

}[
1 − 2Q(u

√
3)
]
d
(

uσ√
n

)
(103)

=
1√
2π

·
∫ ∞

0
e−(u+s)2/2 · [1 − 2Q(u

√
3)]du.

The MSE bound then becomes

Rn(θ, gn) ≥ sup
s≥0

{
3 ·
(

sσ√
n

)2
· 1√

2π
·
∫ ∞

0
e−(u+s)2/2 · [1 − 2Q(u

√
3)]du

}

=
σ2

n
· sup

s≥0

{
3s2
√

2π
·
∫ ∞

0
e−(u+s)2/2 · [1 − 2Q(u

√
3)]du

}
(104)

≈ 0.2514σ2

n
.

This bound is not as tight as the corresponding bound of m = 2, which results in 0.3314σ2/n, but it
should be kept in mind that here, we have not attempted to optimize the choices of θ0, θ1, θ2, T0, T1,
T2, q0, and q1. Instead, we have chosen these parameter values from considerations of computational
convenience, just to demonstrate the calculation. This concludes Example 12.

Finally, a comment is in order regarding the possible extensions of Section 4 to the
vector case. Such extensions are conceptually straightforward whenever the loss function of
the error vector is given by the sum of losses associated with the different components of the
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error vector. Most notably, when the loss function is the MSE, ρ(ϵ) = ∥ϵ∥2, each component
of the estimation error can be handled separately by the methods of Section 4. Of course,
the two or three test points should be chosen such that they differ in all components of
the parameter vector. In the case of three test points, it makes sense to select them equally
spaced along a certain straight line of a general direction in Θ. We will not pursue any
further this extension in the framework of this work.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.
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Appendix A

Proof of Equation (44). Consider the Taylor series expansion,

s(t, θ + δ) = s(t, θ) + δ · ṡ(t, θ) +
δ2

2
· s̈(t, θ) + o(δ2), (A1)

where ṡ(t, θ) and s̈(t, θ) are the first two partial derivatives of s(t, θ) w.r.t. θ. Correlating
both sides with s(t, θ) yields

∫ T

0
s(t, θ)s(t, θ + δ)dt = E + δ ·

∫ T

0
s(t, θ)ṡ(t, θ)dt +

δ2

2
·
∫ T

0
s(t, θ)s̈(t, θ)dt + o(δ2). (A2)

Now, ∫ T

0
s(t, θ)ṡ(t, θ)dt =

1
2
· ∂

∂θ

{∫ T

0
s2(t, θ)dt

}
=

1
2
· ∂E

∂θ
= 0, (A3)

since the energy E is assumed independent of θ. Also, since ∂2E
∂θ2 = 0, we have

0 =
∂2

∂θ2

{∫ T

0
s2(t, θ)dt

}
=

∂

∂θ

{
2 ·
∫ T

0
s(t, θ)ṡ(t, θ)dt

}
(A4)

= 2 ·
∫ T

0
ṡ2(t, θ)dt + 2 ·

∫ T

0
s(t, θ)s̈(t, θ)dt,

which yields ∫ T

0
s(t, θ)s̈(t, θ)dt = −

∫ T

0
ṡ2(t, θ)dt, (A5)

and so, ∫ T

0
s(t, θ)s(t, θ + δ)dt = E − δ2

2

∫ T

0
ṡ2(t, θ)dt + o(δ2), (A6)

and hence,

ϱ(θ, θ + ∆) = 1 − δ2

2E

∫ T

0
ṡ2(t, θ)dt + o(δ2). (A7)

Appendix B

Proof of Lemma 1. First, observe that

k

∑
i=1

ai =
k

∑
i=1

ri ·
ai
ri

≤ max
{

a1

r1
, . . . ,

ak
rk

}
, (A8)
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and since the inequality ∑k
i=1 ai ≤ max{a1/r1, . . . , ak/rk} applies to all r ∈ S , it also

applies to the infimum of max{a1/r1, . . . , ak/rk} over S , thus establishing the inequality
“≤” between the two sides. To establish the “≥” inequality, r∗ ∈ S is defined to be the
vector whose components are given by r∗i = ai/ ∑k

j=1 aj. Then,

inf
(r1,...,rk)∈S

max
{

a1

r1
, . . . ,

ak
rk

}
≤ max

{
a1

r∗1
, . . . ,

ak
r∗k

}
=

k

∑
i=1

ai. (A9)

This completes the proof of Lemma 1.
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