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The authors wish to make the following correction to this published paper [1]. There
was a mistake over Equation (9): some factors were missing over the x-interactions from
the Holstein-Primakoff expansion and were lost in the substitution. It should read
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As a result, the following expressions are modified, including reduced variables expressed
in the third paragraph of Section 3.2 in the original paper:
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Due to the modification in ωF, Equation (34) is rewritten as
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This impacts some of the results. First, after correcting the expressions, Figure 3(a1),
(b1), and (c1) in the original paper are slightly modified without significant qualitative
differences, as shown here in Figure 3.

Figure 3. Polariton modes of the anisotropic Dicke model as a function of the coupling for (a1) TC
limit (ξ = 0), (b1) anisotropic case (ξ = 0.5), and (c1) Dicke limit (ξ = 1) with material collective
interactions at ηx = 0.9ω0 (∆ηzy = 0.0, ∆ηzx = −0.9ω0). The critical coupling γc

ξx (γc
ξy) is indicated

by the vertical solid black (dotted red) line. (a2–a4,b2–b4,c2–c4) depict the corresponding energy
surfaces for the respective cases. The vertical dashed purple line shows the position of energy surfaces
in the energy spectrum in the normal phases (a2–c2). The yellow one indicates the location of energy
surfaces in the superradiant phase (a3–c3), while the blue line represents higher values of light–matter
couplings (a4–c4). Green points in the energy surfaces represent energy minima, red ones indicate
maxima and yellow points denote saddle points. Tilde variables are scaled to ω0. All cases are
calculated in resonance (ω = ω0 = 1).

The figure is a correction of Figure 3(a1–c1) in Ref. [1].
Second, the discussion about how the phase and amplitude modes behave toward the

deformed phase in Section 3.3 in the original paper, must be modified. Equation (43) in the
original paper changes to
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We observe that the phase mode becomes undefined when ∆ηzy > ω0, or ∆ηzyµx > ω0
in the normal and superradiant phases, respectively. For the amplitude mode we have
ϵN,S

2− = 1, so its energy just becomes ϵN,S
− = ϵN,S

1− . The paragraph after Equation (43) should
be read:
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± = ϵS,N
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1± , the phase mode becomes undefined when ∆ηzy ≥ ω0, or

∆ηzyµx ≥ ω0 in the normal and superradiant phases, respectively, and the amplitude mode
turns to ϵN,S

− = ϵN,S
1− .
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Finally, the amplitude mode at the critical coupling γc
ξx might become discontinuous.

In the normal phase, Equation (44) in the article remains unchanged. We reproduce it here
for comparison. However, in the superradiant phase, it becomes:
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in the superradiant phase. Discontinuities may arise for ηz ̸= 0 at the critical coupling. In
the absence of interactions it becomes
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Discontinuities may arise for ηz ̸= 0 at the critical coupling, but for ηz = 0 we recover
the results in this article. With this correction, the order of some equations has been
adjusted accordingly.

The paper suffered from minor quantitative calculation mistakes, also resulting in
updating Figure 3 within it, but all qualitative argumentation and conclusions remain
unchanged. This correction was approved by the Academic Editor. The original publication
has also been updated.
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