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Abstract: Identifying signs of regularity and uncovering dynamical symmetries in complex and
chaotic systems is crucial both for practical applications and for enhancing our understanding of
complex dynamics. Recent approaches have quantified temporal correlations in time series, revealing
hidden, approximate dynamical symmetries that provide insight into the systems under study. In
this paper, we explore universality patterns in the dynamics of chaotic maps using combinations
of complexity quantifiers. We also apply a recently introduced technique that projects dynamical
symmetries into a “symmetry space”, providing an intuitive and visual depiction of these symmetries.
Our approach unifies and extends previous results and, more importantly, offers a meaningful
interpretation of universality by linking it with dynamical symmetries and their transitions.
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1. Introduction

Chaotic systems are deterministic in nature although they can include a significant
amount of embedded noise. They frequently present dynamics that cannot be distinguished
from randomness with traditional techniques [1–4]. Nevertheless, underneath the apparent
randomness, they can contain dynamical constraints related to internal temporal symme-
tries. Recent efforts have unveiled hidden dynamical symmetries using the time series
of chaotic systems, including by quantifying temporal correlations among consecutive
values of a measurable variable. Permutation entropy [5], for example, uses the relative
preponderance of ordinal patterns (also known as words) to quantify the entropy of a time
series. Dispersion entropy [6,7] captures both amplitude and order information, making
it sensitive to variations in magnitude. Improved permutation entropy [8] incorporates
additional statistical properties of the time series to improve robustness against noise. The
Horizontal Visibility Graph [9] transforms a time series into a graph based on visibility
criteria, revealing temporal structures through graph properties.

Other techniques explore the temporal correlations and dynamical constraints among
consecutive events in a time series by combining words based on their natural symme-
tries [10–14] to discover other details about the dynamics, including uncovering specific
dynamical constraints or generalized symmetries.

In this context, an entropy sub-channel representation and analysis [15] has been
shown to allow a compact visual representation of system behavior, including changes with
parameters, in a space where the location explicitly encodes the dynamical complexity and
symmetry of the dynamics. Specifically, when applied to continuous time series generated
from the paradigmatic Duffing oscillator, this traces transitions from and out of chaos via
symmetry-related families of periodic orbits. As such, this representation distinguishes
different kinds of periodicity and chaos and allows us to better understand transitions
between these regimes for a given system. In this paper, we use this technique in a variety
of 1D maps to map families of chaos (previously revealed with other techniques), and find
that this entropy sub-channel representation allows us a compact and clear mapping of
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transitions between dynamical regimes. In particular, we find a universality in dynamical
behavior across a wide variety of maps that is easily displayed in this space of dynamical
symmetries. Below, we lay this out in some detail, starting with defining our techniques in
the next section before presenting the results and closing with a short discussion.

2. Word Populations, Complexity Quantifiers, and Universality

Permutation entropy (PE) is a complexity quantifier based on temporal correlations
among consecutive events in a time series. It is computed based on the probabilities of
some ordinal patterns (or words) composed of properties of events in a time series. Using
PE and the probabilities of the words necessary to compute it, Parlitz et al. [10] classified
time series from heartbeats and were able to distinguish patients suffering from congestive
heart failure from a healthy group studying beat-to-beat time series, for example.

Based on the words used to compute permutation entropy, different research has
focused on identifying the symmetries within these words. Bandt [11] combined words of
dimension three and defined some order combination functions, up-down scaling, up-down
balance, persistence, and rotational asymmetry, to identify symmetries in the dynamics and
applied it to heart and brain activity data to classify them. Gunther et al. [12] introduced
alternative combinations of words and the deviations among them to identify dynamical
regimes and anticipate changes in dynamics in the Duffing oscillator.

Representing pairs of these quantifiers in a two-dimensional plane has shown to be
a powerful tool in classifying complex dynamics and unveiling signals of universality.
In particular, the Fisher–Shannon plane [16–18], which portrays the Fisher Information
Measure versus entropy, was used by Wang and Shang [19] to analyze financial time series
and distinguish three different groups based on their behavior. Identifying constraints
in the probabilities of the words for chaotic systems, Spichak and Aragoneses [14] were
able to put bounds on the Fisher–Shannon complexity plane of these dynamical systems.
They were also able to identify different families of chaos. Nguyen et al. [13] introduced
TARDYS quantifiers to identify temporal symmetries based on a photonic neuron. They
applied the new quantifiers to chaotic maps and identified different chaotic behaviors
with the same Lyapunov exponents. They also were able to forecast regular-to-chaos
transitions. This work combined the TARDYS quantifiers with permutation entropy to
identify different families of chaos in the logistic map. They found equivalent results as
those found previously using the Fisher–Shannon plane computed with words [14]. This
work also found underlying universality patterns in non-invertible chaotic iterative maps.

These approaches aim at identifying the symmetries underneath the complex dy-
namics by focusing on the temporal correlations of the words. Nevertheless, the possible
symmetries are limited by the dimension D of the words. For a more detailed study, one
could attempt at finding the symmetries for higher dimensions of the words. This would
lead to more richness of the temporal structures, but also present itself as less intuitive
to interpret. Yet, because the possible dynamical symmetries of dimension three are lim-
ited, each one of these symmetry quantifiers can be thought as a cross section of a higher
dimensional symmetry space.

2.1. Words Populations

Given a time series {xi}, we compute the words of dimension D by comparing D con-
secutive values, [xi, xi+1, xi+2, . . . , xi+D−1], where these xi could be raw observational data
or the spacing or magnitude of an event (such as a peak or zero-crossing). For dimension
D = 3, the smallest value is assigned a label 0, the intermediate value a label 1, and the
largest value a label 2. For example, if xi < xi+1 < xi+2, we assign the word 012 and if
xi < xi+2 < xi+1, we assign the word 021, and so on. There are D! words of dimension D.
By this procedure, we transform the time series of values into a time series of words. We
then calculate the population, or probability, of each word in the time series. For a purely
stochastic process, we would expect all probabilities to be equal (P1 = P2 = . . . = P6 = 1

6 ).
For a different distribution of populations, we can conclude that the dynamics is deter-
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ministic, and different hierarchies of word probabilities correlate with different kinds of
deterministic dynamics, including with their intrinsic dynamical symmetries.

Word populations capture temporal correlations of the dynamics of the system. How-
ever, the ordinalization loses part of the information as it only includes the relative magni-
tudes of consecutive values (the sequence 100–200–150 is associated the same word w021 as
the sequence 140–200–190, for example). Nevertheless, this procedure acts as a filter that is
robust to experimental noise. Because of this feature of the words, we can only talk about
approximate dynamical symmetries in what we can learn from these populations.

Figure 1a shows the populations Pi of the words of dimension d = 3 as a function of
the control parameter r for the logistic map (xn+1 = rxn(1 − xn), 3.5 ≤ r ≤ 4.0). As r is
varied, the system explores different chaotic regions as well as windows of periodicity. This
is captured by the word populations, which identify regions with different approximate
symmetries [14], characterized by different combinations of the populations Pi. These
symmetries are constraints in the dynamics. The more obvious one for the logistic map is
the fact that word-6 (210) is a forbidden word (P6 = 0), which imposes a restriction on the
populations of the other words. Another constraint in the chaotic regime 3.592 < r < 3.679
is that P2 = P4 ̸= P3 = P5 and P1 = P6 = 0. For the region 3.679 < r < 3.891, the
populations satisfy P2 = 1−3P1

2 − P3, P4 = P1 + P2 and P5 = P1 + P3.
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Figure 1. (a) Word populations as a function of r for the logistic map. (b) PE as a function of r for
the logistic map. Both figures identify the windows of periodicity in this chaotic map. The word
probabilities and their constraints also identify different families of chaos through their distribution
and hierarchies.

2.2. Permutation Entropy

With the populations Pi of the words of dimension D (P[012] → P1, P[021] → P2, . . . ,
P[210] → P6), we compute the permutation entropy (PE) as [5]:

PE = −∑N
i=1 Pilog(Pi)

log(N)
(1)
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Here, N is the number of words. This is N = D! if there are no consecutive equal
values (x(i) ̸= x(i + 1), ...). In order to account for the possibility of x(i) = x(i + 1), we
include a seventh word for D = 3, as P111. PE is normalized so that 0 ≤ PE ≤ 1. For a
purely random process, Pi =

1
N ∀i ⇒ PE = 1, whereas if there is only one word in the

dynamics, then Pi∗ = 1, and Pi = 0 ∀i ̸= i∗ ⇒ PE = 0. Figure 1b shows the permutation
entropy for the logistic map as a function of the control parameter. There are sudden drops
in PE when the dynamics enters in a window of periodicity, associated with sharp changes
in the temporal symmetries.

2.3. Combined Complexity Measures

Combining separate complexity quantifiers has been shown to help highlight differ-
ences and identify similarities shared by different dynamics and are thus excellent tools to
identify and classify families of chaos. Figure 2 shows two of these combinations, Fisher
Information Measure, FIM (see Appendix A for details), versus PE, and reversibility Tρ

versus PE for the logistic map (see Refs. [13,14] for details of these quantifiers). These
figures portray a 2D signature that tracks the evolution of the complexity of the dynamics
as the system evolves in parameter space. The color code indicates the control parameter
3.5 ≤ r ≤ 4.0.

Figure 2. (a) Fisher Information Measure versus PE. (b) Reversibility Tρ versus PE. Both combinations
show a clear signature that tracks the different dynamics performed by the map as the control
parameter is varied. FIM computed using SA∗ sorting array: [P2-P4-P1-P5-P3-P6] (see Ref. [14]).
Dashed ellipses point to some families of chaos. The different circled regions indicate different
families of chaos, from [A] laminar with more dynamical constraints to [F] more chaotic (details in
main text).

This geometric representation of the chaotic map allows us to differentiate dynamical
regions. While PE quantifies the structure of the dynamics, the system can present the
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same PE with different FIM or Tρ values. Additionally, in these 2D spaces, the dynamical
states cluster together and create distinct visual patterns, making it possible to identify
different families of chaos (some indicated with dashed ellipses in Figure 2). It can be
appreciated that for low values 3.5 ≤ r ≤ 3.6, the system sits in the laminar region of these
2D fingerprints, shown by the top blue lines ([A]). The system then evolves to gradually
increase PE while it decreases FIM and Tρ (moves generally down to the right). This
prevailing tendency is not uniform; it shows structure and presents escapes from it ([B],
[C]). These correspond to the windows of periodicity and the period-doubling route to
chaos associated to them, and can be tracked in these representations. Cluster [D] indicates
the route to chaos at r ≈ 3.83, while [F] corresponds to the more chaotic behavior close
to r ≲ 4, where the dynamics has lost most of the previous constraints, although P6 = 0
still holds.

2.4. Universality

The 2D fingerprints observed when combining complexity quantifiers for the logistic
map are not unique to this chaotic system but are universal across many chaotic iterative
maps. This widespread behavior was demonstrated in Ref. [14] for FIM versus PE. Since
these quantifiers are based on temporal correlations and approximate dynamical symme-
tries, this universality is a reflection of underlying universal dynamical symmetries. These
universal features can be revealed using various complexity quantifiers that are designed
to capture temporal correlations in the dynamics [5,11–13,16]. Each quantifier, or their
combinations, extracts a specific characteristic of the dynamics, and the most suitable
approach depends on the particular dynamical system.

Figure 3 shows the universality features for different chaotic maps (see Appendix A
and caption for details) using the same two combinations of quantifiers as in Figure 2.
Figure 3a plots FIM versus PE. FIM is a local measure, in this case computed with the
populations of the words and using the sorting array SA† from Ref. [14]. PE is a global
measure, so this Fisher–Shannon plane (see Figure 3a) combines local and global dynamics.
All the maps overlap, following the same 2D pattern. The trajectory of each map’s state in
this space reflects the evolution of symmetries with respect to control parameters, showing
how these progressions are shared across all maps.

There are subtle differences that allow for differentiation between the maps. For ex-
ample, the cusp and tent maps exhibit the least structure, as if they outline the skeleton
around which other maps display their more complex features. This indicates that, while
these two maps share the same dynamical features and constraints as the others because
they overlap on the plane, they do not show deviations from the main path. This indicates
that the sharper shape of these two maps correlates with the lack of transitions of the
dynamics to regions with more constraints, which is itself related to windows of periodicity
or period-doubling routes to chaos.

Figure 3b shows the TARDYS reversibility quantifier, Tρ = 1 − |P1 − P6| − |P2 − P4| −
|P3 − P5|, plotted against PE. Tρ captures the reversibility of the dynamics as it weights
the probabilities of self-reversible words, i.e., word 1 (012) is the reversible of word 6 (210),
word 2 (021) is the reversible of word 4 (120), and word 3 (102) is the reversible of word 5
(201). Similar to Figure 3a, all the maps display the same fingerprint on the plane, and they
all reveal the same families of chaos.

The quantifiers presented in Figure 3 (FIM, PE, and Tρ) are of general relevance to
any dynamical system. Other quantifiers, such as Tα or Tβ, were defined based on the
dynamical symmetries of a specific physical system, a photonic neuron [13]. It is a very
specific symmetry that might be relevant to a subset of dynamical systems, although it has
been found in various systems.
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Figure 3. For the logistic (3.5 ≤ r ≤ 4.0), tent (1.1 ≤ r ≤ 2), cusp (1 ≤ r ≤ 2), Ricker’s (15 ≤ r ≤ 20),
sine (0.85 ≤ r ≤ 1.00), and cubic (2.3 ≤ r ≤ 2.6) maps: (a) FIM versus PE. Sorting array for FIM:
SA†=[P4-P3-P1-P6-P5-P2]. (b) Reversibility Tρ versus PE.

Because these inherent features originate in internal temporal symmetries, other
combinations of quantifiers can express more meaningful and useful representations.
Portraying other quantifiers that highlight generic dynamical features such as Rotational
and Mirror symmetries can be more significant. In Figure 4, we combine these symmetry
quantifiers. As expected, they display the universality present in these chaotic systems.
Tracking their position in this 2D space can tell us how each of these two specific
symmetries evolve with the control parameter, but also how they contribute to the
overall change in dynamical symmetry.

Figure 4a shows Rotational Hierarchy versus Rotational Variance (quantifiers defined
in Appendix [12]). They measure the rotational symmetry present in the dynamics through
the sets of words (012, 120, 201) and (021, 102, 210). The fingerprint of all the maps lie on
top of each other, indicating the universality of the temporal dynamics. As with previous
combinations of quantifiers (Figure 3), some maps show a more detailed structure, making
this a differentiating trait. Again, the cusp and the tent maps show less detail in this
fingerprint and they define the main skeleton area that all the other maps fall into.

Figure 4b shows Mirror Hierarchy versus Mirror Variance for the set of chaotic maps.
Similar observations as Figure 4a can be made for this other dynamical symmetry. Each
combination of quantifiers draws a different characteristic fingerprint as each one depicts
a particular aspect of the global symmetry of the dynamical system, but all show the
universality pattern and capture transitions in dynamics that allow us to classify families
of chaos.

All of these results suggest that this universal behavior can be emphasized, better
represented, and interpreted if we define a suitable symmetry space that accentuates the
dynamical symmetries embedded in the temporal correlations of words of dimension
D = 3.
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Figure 4. For the logistic, tent, cusp, Ricker’s, sine, and cubic maps: (a) Rotational Hierarchy versus
Rotational Variance [12]. (b) Mirror Hierarchy versus Mirror Variance. Legend as in Figure 3.

3. Symmetry Space and Universality

To capture the essence of the temporal approximate symmetries in a dynamical
system—and, as we see below, to gain an extra dimension in representation given the
relationship of the length of the vector to the PE—we use a new entropy sub-channel
space where the dynamics is represented by a vector Φ⃗ whose length corresponds to PE,
and its components (ϕ⃗1, ϕ⃗2, ϕ⃗3) relate to approximate reversible symmetries in the dynam-
ics. This technique is introduced in Ref. [15], where it is applied to the Duffing oscillator as
a paradigmatic flow displaying chaos where the value of being able to see multiple regimes
of dynamical behavior in this compact manner is discussed in detail. The method pairs
the populations of the words that are time-reversible with each other, such as [012, 210],
[021, 120], and [102, 201], into vectors as follows:

ϕ⃗1 =

 π1
π6
S111√

3

; ϕ⃗2 =

 π2
π4
S111√

3

; ϕ⃗3 =

 π3
π5
S111√

3

 (2)

where

πi =

√
−Pi log(Pi)

log(N)
(3)

and

π111 =

√
−P111 log(P111)

log(N)
, (4)

i.e., P111 quantifies the population of words that contain equal values, i.e., x(i) = x(i + 1),
or x(i + 1) = x(i + 2), or x(i) = x(i + 2), or x(i) = x(i + 1) = x(i + 2).
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These three vectors ϕ⃗i define a coordinate system where each axis identifies the rele-
vance of a particular reversibility constraint. We then create a symmetry vector as follows:

Φ⃗ =

|ϕ⃗1|
|ϕ⃗2|
|ϕ⃗3|

 (5)

where by construction this vector captures several aspects of the dynamics of the system:
its magnitude, |Φ⃗|, quantifies the total amount of temporal symmetries present while its
components indicate the significance of each symmetry within the dynamical system.

Figure 5a plots the symmetry vector in symmetry space for the logistic map, where the
color indicates the control parameter r. The projection of this vector tracks the evolution of
the chaotic map as the control parameter runs in the 3.5 ≤ r ≤ 4.0 range. The fingerprint
on this space shows how the symmetries of the dynamics evolve.

Figure 5. (a) Symmetry vector plotted in symmetry space for the logistic map. Color code indicates
the control parameter 3.5 ≤ r ≤ 4.0. The pink dot refers to a random dynamics. (b) Symmetry vector
for several chaotic iterative maps. Colors as in Figure 1.

The system starts without the presence of the symmetry ϕ1. It evolves in a pseudo-
laminar regime where ϕ2 and ϕ3 progress on a curve while ϕ1 remains unchanged. Then,
there is a transition where ϕ1 starts to gain relevance while the other two symmetries stay
mostly unchanged except for some drastic escapes to lower values. These departures of ϕ2
and ϕ3 in this range are related to the period-doubling routes to chaos and the windows
of periodicity. When the system approaches the most chaotic regime, ϕ2 and ϕ3 decrease
while ϕ1 stays almost constant again.
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The magenta dot in the figure indicates a state for which the dynamics is random.
Because all the words are equally probable at this point, the ordinal dynamics here is
maximally reversible (P1 = P2 = . . . = P6 = 1

6 ). The logistic map approaches that
randomness dot as it gets more chaotic, but the remaining constraints (such as P6 = 0)
prevent it from reaching this point.

Figure 5b shows the universal character of the symmetry vector among the different
chaotic iterative maps. Φ⃗ also captures how all maps lie on top of the same fingerprint
in symmetry space. This highlights the fact that this universality feature, as well as
those previously found elsewhere, is a symmetry universality, embedded in the temporal
dynamics of these systems.

Not only does this combination of constraints expressed through the word populations
quantify the presence of reversibility in the dynamics and the contribution of each temporal
symmetry, but, defined this way (Equations (3) and (5)), the magnitude of this vector is
equivalent to the permutation entropy of the time series of the dynamics. πi can be thought
of as a sub-entropy, or the i-component of an entropy vector such that |Φ⃗|2 = PE.

It is worth noting here the relevance of this symmetry vector as a three-component
object, whose components contain specific information about different but complementary
dynamical symmetries. Despite the fact that ∑N

i Pi = 1, the length of this vector changes
with the control parameter, as it depends on the presence of temporal symmetries. For some
systems, this vector will move in a subspace of this symmetry space, restricting its values
to a plane, indicating that the symmetry perpendicular to this plane remains unaltered,
even though the other symmetries change in non-trivial manners (see Ref. [15]).

4. Universality Using Four-Dimensional Words

At this point, one could argue that if exploring words of higher length, D would be
convenient as the possibilities of patterns increase considerably and we could study more
complex symmetries. Also, computing higher-length words would involve longer temporal
correlations and, therefore, they explore the longer memory of the system. To investigate
this, we compute the symmetry quantifiers for words of length D = 4 (Figure 6). They show
interesting fingerprints when pairing different quantifiers, and we also see the universality
patterns at this temporal scales. Figure 6a plots a generalization of Rotational Hierarchy
versus Rotational Variance for D = 4 for the logistic map. For D = 3, we have two
rotation groups: (012, 120, 201) and (021, 210, 102). For D = 4, we have six rotational
groups: (0123, 3012, 2301, 3012), (0132, 1320, 2013, 3201), etc. As we see, Figure 6a clearly
distinguishes families of chaos in the well-defined and differentiated trajectories that the
dynamics follows.

Figure 6b plots a generalization of Mirror Hierarchy versus Mirror Variance for words
of D = 4 for different chaotic iterative maps. This combination shows a different 2D
fingerprint but still identifies the different dynamical regions. As found previously, all
maps share the same 2D fingerprint, revealing that universality is also present at this level
of depth in words length. As shown in Figures 3–5, for words of D = 3, the tent and cusp
maps have the least structure and define the skeleton around which the other maps are
deployed, demonstrating it as good tool to identify not just the commonalities among maps
but also their differences.

Despite the richness of possibilities for longer-length words, understanding the mean-
ing of the symmetries is less intuitive and not always possible to generalize. Also, because of
the high number of possible words (24 for D = 4), it is not trivial to find the suitable combi-
nations equivalent to the D = 3 symmetries, or to define a three-dimensional symmetry
vector space. Creating a Φ-space for D = 4 would result in a 12-dimensional space (12 pairs
of reversible words), unless alternative multi-word combinations are employed, which
are not immediately straightforward or intuitive. Furthermore, analysis of higher-length
words imposes a statistical challenge as much longer time series are required, which is not
always feasible from an experimental point of view.
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Figure 6. (a) Rotational Hierarchy versus Rotational Variance for several 1D iterative maps for words
of length 4. (b) Mirror Hierarchy versus Mirror Variance for words of length 4.

5. Conclusions

We have investigated the temporal correlations within the nonlinear dynamics of
iterative chaotic maps, focusing in particular on the universality of temporal symmetries
in these systems. To achieve this, we have employed established combinations of tem-
poral dynamical quantifiers, such as permutation entropy, Fisher Information Measure,
and TARDYS quantifiers, along with new combinations that incorporate Mirror and Rota-
tional symmetries.

Additionally, we have used a novel technique that projects the system’s dynamics
into a symmetry vector space. This symmetry space is constructed using entropy sub-
channels, which are combined into three axes that quantify the reversibility of the dynamics.
The position of a dynamical system in this symmetry vector space provides insights into
the system’s overall temporal symmetry, while its evolution with the control parameter
reveals how these symmetries vary in chaotic regimes. The magnitude of this vector, |Φ⃗|,
corresponds to the system’s permutation entropy.

Our results reveal a universal pattern in the temporal correlations across all the chaotic
systems studied. This pattern emerges regardless of the specific combination of complexity
quantifiers used. While each combination retains its own distinct signature, the chaotic
maps share a consistent “fingerprint” in every representation space.

More significantly, we linked these universal features to specific temporal and re-
versible symmetries, which are captured within the permutation entropy. The construction
of Φ⃗ as a merger of sub-entropies combines the power of entropy as a complexity quan-
tifier with the temporal symmetries of the dynamics, in particular with the reversibility
symmetry of the system.

Not only do these techniques allow us to identify similarities and differences across
chaotic dynamics, classify families of chaotic behavior, and uncover universal patterns,
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but they also connect these patterns to the system’s intrinsic dynamical symmetries. More-
over, for chaotic systems exhibiting this universality, their evolution in symmetry space
enables us to track where the system originates and where it is heading in the parameter
space, offering potential for forecasting dynamic transitions.

The concept of universality in chaotic maps is not new, with roots tracing back to
Feigenbaum’s 1976 discovery of universality constants in the bifurcation diagram of the
logistic map. However, the universal signature we present here pertains to the symmetries
in the temporal correlations of chaotic map time series, marking a novel perspective on the
universality of chaotic systems.

We have used a diverse set of complexity measures to identify the shared underlying
traits in the chaotic maps studied, and to uncover their relation to dynamical symmetries.
The techniques presented in this paper provide complementary information and strong
evidence of the universality features that all these maps share, while they are not computa-
tionally demanding. Future research could focus on finding a deeper, potentially analytical
demonstration of these generalized patterns of universality.
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Appendix A

Appendix A.1. Rotational and Mirror Quantifiers

The Rotational and Mirror quantifiers used in Figures 4 and 6 measure the symmetries
of words that are rotations of each other or mirror images of each other [12]. These are
contained in subgroups of words. Those words that are obtained from another word
through a rotation can be grouped as R1: 012-120-201 and R2: 021-210-102. Pairs of words
that are mirror images can be groups as M1: 012-210, M2: 021-120, and M3: 102-201. We
define the quantifiers as follows:

• Rotational Variance:

ψ =
(P1 − PR1)

2 + (P4 − PR1)
2 + (P5 − PR1)

2 + (P6 − PR2)
2 + (P2 − PR2)

2 + (P3 − PR2)
2

6
(A1)

• Rotational Hierarchy:

Ψ =
(PR1 − Pall)

2 + (PR2 − Pall)
2

2
(A2)

• Rotational Variance:

ξ =
(P1 − PM1)

2 + (P6 − PM1)
2 + (P2 − PM2)

2 + (P4 − PM3)
2 + (P3 − PM3)

2 + (P5 − PM3)
2

6
(A3)
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• Rotational Hierarchy:

Ξ =
(PM1 − Pall)

2 + (PM2 − Pall)
2 + (PM3 − Pall)

2

3
(A4)

where
PR1 =

P1 + P4 + P5

3
; PR2 =

P6 + P2 + P3

3
; (A5)

PM1 =
P1 + P6

2
; PM2 =

P2 + P4

2
; PM3 =

P3 + P5

2
(A6)

and
Pall =

P1 + P2 + P3 + P4 + P5 + P6

6
(A7)

Appendix A.2. Fisher Information Measure

Fisher Information Measure (FIM) [17,18] is a complexity measure of the gradient
content of a distribution. It can describe the evolution of physical systems and characterize
complex signals, either as an alternative to Shannon entropy or as a complementary tool.
FIM quantifies differences between neighboring values in a time series, effectively acting
as a measure of the local derivative of the series. For a distribution of probabilities pi, it can
be defined as follows:

FIM = F0

N−1

∑
i=1

(
(pi+1)

1/2 − (pi)
1/2

)2
, (A8)

where F0 = 1 if pi∗ = 1 for i∗ = 1 or i∗ = N, and p∗i = 0 ∀i ̸= i∗; otherwise, F0 = 1
2 . This

measure depends on the ordering of the probabilities pi, as was discussed in Ref. [14],
but the overall behavior is captured by all sorting arrays.

Vignat and Bercher [16] introduced the Fisher–Shannon information plane to use
the complementarity aspects of both measures as an effective method to characterize the
non-stationary behavior of a complex signal.

Appendix A.3. Chaotic Maps

The 1D chaotic iterative maps studied in this paper are as follows:

• Logistic map: xi+1 = rxi(1 − xi), for 3.5 ≤ r ≤ 4.
• Tent map: xi+1 = r min{xi, 1 − xi}, for 0 ≤ r ≤ 1.
• Cusp map: xi+1 = 1 − r

√
|xi|, for 0 ≤ r ≤ 1.

• Ricker’s population model: xi+1 = rxe−xi , for 15 ≤ r ≤ 20.
• Sine map: xi+1 = r sin(πxi), for 0.85 ≤ r ≤ 1.
• Cubic map: xi+1 = rxi(1 − xi)

2, for 2.3 ≤ r ≤ 2.6.
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