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Abstract: The impact of uncertainty in information systems is difficult to assess, especially when
drawing conclusions from human observation records. In this study, we investigate survival variation
in a population experiencing infectious disease as a proxy to investigate uncertainty problems. Using
Centers for Medicare and Medicaid Services claims, we discovered 1,543,041 HIV+ persons, 363,425
of whom were observed dying from all-cause mortality. Once aggregated by HIV status, year of birth
and year of death, Age-Period-Cohort disambiguation and regression models were constructed to
produce explanations of variance in survival. We used Age-Period-Cohort as an alternative method
to work around under-observed features of uncertainty like infection transmission, receiver host
dynamics or comorbidity noise impacting survival variation. We detected ages that have a consistent,
disproportionate share of deaths independent of study year or year of birth. Variation in seasonality
of mortality appeared stable in regression models; in turn, HIV cases in the United States do not have
a survival gain when uncertainty is uncontrolled for. Given the information complexity issues under
observed exposure and transmission, studies of infectious diseases should either include robust
decedent cases, observe transmission physics or avoid drawing conclusions about survival from
human observation records.

Keywords: HIV; human immunodeficiency virus; information theory; correlation and variance;
complexity; medicare; medicaid; child health insurance program; age; period; cohort; regression;
survival analysis; clinical demography

1. Introduction

This study attempts to detect anomalies using information theory concepts in at-scale
life course data for people living with HIV in the United States. People living with HIV are
very different from each other for multiple under-observed and non-trivial reasons that
likely impact any attempt at evaluating affected populations. Population sample studies
often attempt to control for under-observed features, but their scale (small) is often not
representative of the wider population over time. In turn, answering population level
questions, such as, “is HIV epidemic or endemic in the United States”, or “is survival
improving”, becomes fundamentally difficult to answer due to under-observed and out-of-
scale local features.

Theoretically, anomalies should exist in any series of information if underlying vari-
ance is present. Said variance could be caused by real world improvements to treatment
efficacy, and access or a worsening of ground conditions from viral resistance to treatment
or other effects. Age-Period-Cohort (APC) is a logical choice to explore anomalies in tem-
poral reference network data due to the availability of period and birth cohort features in
at-scale clinical data. There is precedent for APC’s usage to explore Temporal Reference
Network problems among the ‘global burden of disease studies’ (GBDS) that compare
clinical conditions within countries across nations and over time [1–4]. The data used here
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is more specific than GBDS because it is sourced from identifiable patient-encounter-level
records, whereas GBDS uses publicly available aggregates.

Using APC disambiguation, we observe the variance, if any, between HIV+ cases across
birth cohorts and over time as they age. Detected anomalies should implicate changes in
how people are living and dying over time. The absence of variance in a temporal reference
network likely indicates that a continuous era is present on the ground despite political
or small-scale observations. Emergent survival time stability is one such concern, as are
the case stability (endemic) or case variation (epidemic) conditions in this study. The use
case presented here is not comparative, but anomaly detection, where the absence of an
anomaly indicates a stable era where cases are aging and dying in similar ways over time.
Such mortality stability, if detected, would preclude treatment improvement macro effects,
and case stability would indicate stable endemic effects. To consider mortality stability,
decedents observed dying over the study period are handled separately from survivors to
better understand observed survival time.

Emergent survival time and case variation in an infectious disease (ID) cohort is
a classical information theory signal problem but is seldom remembered to be one [5].
Information theory signal problems are typically problems of signal interpretation assessed
or resolved through observations of the physics of transmission, noise and receiver states.
Information theory for infectious diseases could be thought of as a discrete infectious agent
(signal) provoking a common physiology–pathology (physics) via infection (transmission)
to a person with preexisting and forthcoming pathologies (noise) observed at different
points in time (era) across very different hosts (receivers). Evaluating simple questions
with complex materials such as, ‘are HIV+ patients living longer,’ or ‘is HIV epidemic
or endemic,’ requires engagement with signal complexity, implicit human observation
subunits and inherent materials being observed (human observation records).

Human observation records as a material site of complexity can inform solutions to
signal problems by pre-classifying information (even erroneously) and then observing
the physics of an information theory of Transmission, Receiver or Noise (TRN). Such a
theory can be proposed and evaluated. This proposal and evaluation are constructive
and will likely generate an informed classification scheme to produce a natural history of
information, or a true signal interpretation of a given ID-TRN relationship. Measuring
individuals over time within populations is one way of drawing conclusions about TRN;
but, evaluating the quality of those conclusions should still be pursued to improve a
given model.

Because the underlying unit of ID analysis is a person who becomes infected, transmits
and dies, mortality, aging and observation period are key dimensions in any evaluation
of demic or survival states. But TRN physics are seldom observed or reported in ID or
HIV studies. As a candidate physics system to manage TRN, APC may be of some use [6].
APC is the disaggregation of an observed effect by the age (at observation), (time) period
observed and (birth) cohort the observation was sampled from or is attributable to. The
core concern of APC is that different time periods, ages and different birth cohorts will
have different effects on observed physics because age confers vulnerability, period confers
era and birth confers origination effects. APC confounding occurs when conclusions drawn
about units are false because of an under appreciation of the subunit age, time period and
origination effects [4,7,8]. Whenever similar phenomena are being observed over time,
APC can assist in the correct interpretation of known, and under-observed, TRNs.

Several authors have, over the last 20 years, used non-systematic, convenience samples
with unresolved TRN physics to conclude that HIV patients have improved survival rates
despite declines in life expectancy nationally in the United States [9–11]. How detectable
these effects are in an at-scale, human observation record system, like the Centers for
Medicare and Medicaid Services (CMS), remains under-described.

With no clear bright line between epidemic or endemic HIV conditions, the United
States warrants specific engagement with birth cohort risks [12,13]. It may be that preven-
tion tools are unfit for use if HIV in the 21st century in the United States is endemic rather
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than a series of geographic, resource and racial epidemics, as in the 20th century [14–17].
Without concrete and universal surveillance capture of date of infection (not diagnosis),
alternative measures should be considered to benchmark outcomes. Year of birth, or
as it is known in epidemiology circles, ‘birth cohort’ may be one such measure. Year
of birth is a recoverable data point (in most settings) which likely has high recall and
verification potential.

There is also a curious anthropological question inherent in HIV-TRN problems; specif-
ically, as HIV is a blood-borne pathogen and sexually transmissible disease. Maternity
confusion (confusion regarding to whom or when one was born) is rare in human societies
relative to paternity confusion (regarding by whom or when one was inseminated). This
distinction between paternity confusion (common) and maternity confusion (rare) has
implications for the kinds of information available in human observation records. While
paternity confusion (frequent, lack of witnesses, unattended) is common and maternity con-
fusion is not (once per lifetime, wealth of witnesses, unattended birth is rare) the availability
of maternity data to draw inferences from paternity events could be a wider opportunity
to interrogate TRN physics by considering their maternal (lower entropy), rather than
paternal (higher entropy), observations. Gorban, A. N.; Tyukina, T. A.; Pokidysheva, L. I.;
and Smirnova, E. V. argue that when interpreting complex information, especially adap-
tation cost, variance and correlation is required; yet, in the case of HIV-TRN problems or
wider ID-TRN problems, when the subject was born may create an artificial, modulating
measure against which candidate’s hidden layer paternal signals could be plotted and
interrogated [18].

Here, we consider APC effects on observations of HIV+ cases and deaths among hu-
man observation records from Medicare and Medicaid, 1999–2020. Medicare is a SafetyNet
insurance program that provides payment for clinical care for adults over the age of 65 and
permanently disabled individuals. Medicaid is a collection of federal/state matching dollar
insurance programs administered by states with highly varied eligibility criteria. Medicaid
claims include Child Health Insurance Program (CHIP) records as well. CMS administers
Medicare and Medicaid payments; CMS provides payment for 39% of health expenditure in
the United States and provided varying levels of coverage to 160 million people in 2022 [19].
Medicare and Medicaid are the nation’s largest payers for HIV care [20,21].

This study finds that as they age, millennial HIV+ cases known to CMS appear on-track
to have the same (bad) outcomes (HIV infection) as their baby boomer forbears. In this study,
as younger birth cohorts accrue time, they are expected to present with similar HIV case
volumes and mortality volumes as older birth cohorts and they do present so. Consequently,
the epidemic era in the United States could be over. It would be more accurate to say HIV
is endemic to the United States, or regularly occurring due to common local conditions
rather than rare foreign, vector-specific ones, within birth cohorts with transmission and
age-specific risk profiles. Further, this study does not detect generalizable survival gains
for the national population except in very rare, specific kinds of patients (HIV+ children,
very old adults). This study also detects co-morbid mortality impacts, likely due to the
COVID-19 pandemic and influenza mortality. Living longer is perhaps an oxymoron, as
an individual can only die once, in one given moment, the complexity/adaptation cost of
which is immutable and non-transferable. It could be that the use value of cox regression is
political, rather than clinical.

2. Materials and Methods

Study data were sourced from the Chronic Conditions Warehouse, Virtual Research
Data Center; a 100% sample of Medicare and Medicaid research-identifiable file records
for the study years 1999–2020 were considered. Records were eligible for the study if they
were attributable to an individual. Do note that Medicare records detail many individual
beneficiaries with life course durations which exceed popular expectations (observed over
age 110), and Medicaid attributes maternal care to pre-birth cases who go on to be born
as CHIP beneficiaries (observed at years old at observation 0 or −1). Being observed at
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birth year zero is practical in this study, as is being observed at age 110+. Individuals with
‘implausible’ birthdates were considered, but only individuals who could be assigned a
‘Years Old At Observation (year)’ or YOAO within study years (1999–2020) between 0 and
100 years old were included in this study. Consequently, individuals observed more than
one year before their date of birth and individuals observed more than 100 years after their
birthdates had their over- and under-reaching observation years excluded. Cases with
over-reaching and under-reaching observation years were considered as such, and their
study-qualifying years included.

The study case index was created out of individuals described in Medicare or Medicaid
records who were either ‘ever HIV+’ on a Medicare or Medicaid claim from 1999 to 2020 or
‘never HIV+’ in a study period claim. Qualifying as ‘ever-positive’ was assigned through
ICD9-CM code 042 or ICD10-CM codes Z21 or B20. No ‘ground truth’ was sought to verify
HIV status for beneficiaries. This case definition for HIV+ is fairly broad; and traditionally
studies of the HIV+ CMS population use more restrictive case definitions to ensure the HIV
cases captured are fit for use in complex research models [22–24].

Because APC analysis only requires a date of birth, a year observed, date of death (if
dead) and a status (to disambiguate cases and controls), this general HIV case definition is
likely sufficient. More complex study models may benefit from a more restrictive definition.
It is likely that individuals who are considered HIV− in this study could survive to contract
HIV and have their HIV status become ‘known’ to Medicare or Medicaid, or are infected
with HIV and simply never sought HIV care or are not (yet) known to Medicare or Medicaid.
In turn, conclusions about the HIV− cohort should also be made with care. Findings from
the HIV− cohort, specifically their APC effects, are not presented here.

The case index contained date of birth, service observation year, subject ID, date of
death, date of enrollment (for Medicare), years observed (submitting claims) and HIV+ ever
status. One index was created for each program, Medicare and Medicaid. A third index
was also created out of distinct case-age-observation year triplets to integrate multiple
payor programs as a distinct population. In the integrated index (referred to as CMS below),
cases could have one observation year per study year, even if they were dual enrolled in
the observation year (in both Medicare and Medicaid administered programs). The study
dataset aggregated the case indexes by YOAO and then counted cases and decedent cases
observed within the observation year by HIV status and program (Medicare, Medicaid
or CMS). Small cells where the number of case observation years was less than 11 were
redacted (set to 0) to remain in compliance with CMS privacy standards.

3. Results

The study analyses are meant to detect anomalies within age, period and birth cohort
dynamics when evaluating APC as a proxy for TRN physics among HIV+ cases and HIV+
decedents in the United States who are known to CMS. Of particular interest are anomalies
that inform interpretation of survival time and demic status. Four analyses are presented
here. First, we review the underlying data for context and to familiarize readers with CMS
data. Second, we consider case inflow, and overflow dynamics, using two factor APC plots
to relay the stability of human observation records. Third, we observe cases and decedents
directly using two factor APC plots. Lastly, we consider a statistical model evaluating
stability among mortality cases.

3.1. CMS Data Considered in This Study

The study analysis first considers summary counts of case attribution by diagnostic
code over study observation years (Table 1), followed by cases, deaths and observation
years in total by program (Table 2) and by CMS group over time (Table 3). Figure 1 plots
each case index over time.
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Table 1. HIV+ distinct individual-case attribution by diagnostic code utilization.

Study Year Medicaid 042 Medicaid B20 Medicaid Z21 Medicare 042 Medicare B20 Medicare Z21

1999 142,664 - - 56,090 - -
2000 150,651 - - 61,622 - -
2001 159,848 - - 66,041 - -
2002 166,384 - - 72,565 - -
2003 174,245 - - 79,110 - -
2004 178,291 - - 77,319 - -
2005 180,045 - - 75,755 - -
2006 179,379 - - 76,870 - -
2007 177,276 - - 77,966 - -
2008 181,134 0 - 80,344 - -
2009 191,199 - - 83,599 - -
2010 197,567 - - 86,708 - -
2011 216,568 - - 90,071 - -
2012 225,621 - - 91,735 - -
2013 259,146 - - 92,694 - -
2014 357,026 - - 94,175 - -
2015 363,461 199,374 56,738 85,309 53,901 27,541
2016 10,417 354,413 142,011 - 95,132 65,355
2017 10,323 282,717 135,929 - 95,969 62,276
2018 14 288,042 109,706 - 97,607 54,347
2019 11 293,815 123,430 - 94,155 56,237
2020 0 274,540 121,049 - 68,294 38,315

Table 2. Distinct cases, deaths and observation years.

1999 Through 2020 Medicare Medicaid Medicare and
Medicaid (CMS)

HIV− Life Courses 109,925,470 207,544,824 283,688,152
HIV+ Life Courses 580,702 1,446,290 1,543,041

HIV+ Rate 0.53% 0.70% 0.54%
HIV− Deaths 45,547,376 13,596,200 48,598,568

HIV− Mortality Rate 41.43% 6.55% 17.13%
HIV+ Deaths 233,055 246,083 363,425

HIV+ Mortality Rate 40.13% 17.01% 23.55%
HIV− Obs Years 1,120,737,536 1,468,669,711 2,372,643,661

Obs Year Per HIV− 10.2 7.08 8.36
HIV+ Obs Years 6,269,195 15,748,212 17,940,305

Obs Year Per HIV+ 10.8 10.89 11.63
HIV− Decedent Obs

Years 457,763,732 93,979,728 480,935,555

Obs Year Per HIV−
Decedent 10.05 6.91 9.9

HIV+ Decedent Obs
Years 2,165,840 2,155,055 3,364,932

Obs Year Per HIV+
Decedent 9.29 8.76 9.26



Entropy 2024, 26, 970 6 of 28

Table 3. HIV+ life courses observed with deaths for the CMS group.

Study Year HIV+ CMS Cases HIV+ CMS Deaths Mortality Rate

1999 633,663 9555 1.51%
2000 653,120 11,286 1.73%
2001 674,510 12,689 1.88%
2002 709,227 13,752 1.94%
2003 731,761 14,566 1.99%
2004 746,915 14,773 1.98%
2005 755,021 15,508 2.05%
2006 757,359 15,717 2.08%
2007 753,680 14,822 1.97%
2008 766,146 14,856 1.94%
2009 786,178 15,192 1.93%
2010 824,100 15,321 1.86%
2011 850,870 15,230 1.79%
2012 864,101 15,213 1.76%
2013 858,419 15,838 1.85%
2014 948,523 16,833 1.77%
2015 981,513 18,104 1.84%
2016 973,816 21,009 2.16%
2017 955,187 21,874 2.29%
2018 932,512 21,779 2.34%
2019 905,949 22,110 2.44%
2020 877,735 27,398 3.12%
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In Table 1, individuals can be counted once per diagnostic code per year. Diagnostic
code utilization appears stable, except in the ICD-9CM to ICD-10CM transition period
(2015). Some providers still bill ICD9-CM HIV code 042 well into the 2020 observation
year. HIV cases were qualified as HIV+ if they ever had qualifying HIV codes on any
program. Do note that Z21 is ‘a-symptomatic’ HIV, and B20 is meant for AIDS diagnosis in
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the ICD10-CM era. Aspects denominated by ‘0’ in Table 1 are not truly zero but contain
fewer than 11 cases and were redacted to comply with dataset specific privacy policies.

Table 2 shows an almost 100% difference in the size of programs, with Medicaid
at 207 million distinct individuals considered and Medicare at 109 million individuals.
Medicaid has almost three times the distinct HIV+ volume of Medicare (.580 hundred
thousand vs. 1.44 hundred thousand). Nearly all (save 96,751, or 16.66%) Medicare HIV+
cases will be observed on Medicaid at some point over the study period. Four in ten
HIV− Medicare cases died over the observation period, with a similar proportion for the
Medicare HIV+ group. The HIV+ group within Medicaid are nearly three times more
likely to be observed dying than their HIV− counterparts. HIV+ Medicaid cases have
longer observation periods than their HIV− counterparts; parity is observed for Medicare.
Observation years among decedent cases also have parity for Medicare and are slightly
longer for Medicaid. Combining Medicare and Medicaid records provides 1.5 million HIV+
life courses and 0.363 million HIV+ deaths for analysis.

Mortality rates peak twice in Table 3, first in 2006 and again in 2020. The elevated 2020
mortality may be due to COVID-19 pandemic impacting cases. In turn, there could be a
‘hidden peak’ in 2019 where COVID-19 mortality is not yet available as a mortality drain
for the HIV+ cohort. HIV+ cases observed peaks in 2015, and a deceleration is observed
through study year 2020 in case observation.

Figure 2 plots HIV+ and HIV− cases, decedent mortality rates and the mortality
relative rate (OR) over study time. HIV cases peak in Medicaid in 2014 and decrease
towards the end of the study period, perhaps due to Medicaid expansion. HIV+ mortality
has three peaks when programs are disambiguated, in 2006, 2016, and in 2020 for HIV+
cases. HIV− mortality appears stable over time until the 2020 study year. HIV− mortality
rates decrease over the study period, but spike in 2020 while HIV+ mortality rates rise and
fall for the Medicare population across the study period. All HIV+ mortality ORs reach
HIV+ overburdened (greater than 1) by 2016, though Medicaid HIV OR is always above
parity. HIV− cases have increasing case observation, though Medicaid case observation
plateaus, possibly due to Medicaid expansion during the study period. Decedent cases
spike in 2020 for all populations, perhaps due to COVID-19.

3.2. Observation Stability Dynamics

Next, the study considers more complex data physics with tile plots of HIV+ case
and HIV+ decedent capture (Figure 2). Figure 2 indicates that multiple populations of
HIV+ cases are being observed with different life courses and end points. Note bimodal
case observation before and after age 65. A bimodal distribution for mortality shows an
early and a late study death group. Observation years for HIV+ cases and deaths show a
distribution where cases are observed until age 65, suggesting that the CMS population
enrolls and dies out prior to age 65 and then is ‘back-filled’ with 65-year-olds enrolling in
Medicare and older adults contracting HIV late in life. Deaths are observed across ages
and the under-25 cases experience mortality. It becomes more difficult over time to observe
pediatric HIV+ cases. Mortality is elevated in 2020. Medicaid expansion in 2014 is likely
the cause of the case volume increase observed in 2014.

Inflow, outflow (death) and overflow candidate dynamics are also presented as tile
plots. Figure 3 details the outflow, overflow and inflow candidacy dynamics by their YOAO
and study year. Outflow cases are decedent cases who are ineligible for observation in
the following study year and YOAO step. Overflow candidates are cases involving an
individual who did not die in the prior YOAO tile over the study time and is eligible for
the following YOAO and study year. Inflow candidates are cases in which the individual
was observed and could not have overflowed from prior cells: most likely new or return
enrollees. Inflow is the current YOAO and study year subtracted from the overflow, to
produce candidate inflow case volumes who could not be overflow cases. HIV+ inflow
candidates can have negative number ranges because mortality is highly concentrated
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in YOAO cells, and disenrollment mechanics which confound observation year capture
are detected.
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Outflows in Medicare are bimodal with a low band for 64-year-olds, suggesting cases
where individuals survive to 64 and are backfilled by new enrollees at 65 YOAO. Medicaid
outflows occur in two distinct groups as well, with a low decedent period from 2009 to 2014.
CMS outflows lose the Medicare backfill effect, suggesting that some HIV+ Medicaid cases
join Medicare at 65 and conceal prior Medicare deaths at 60–64. Medicare overflow cases
are most common after age 50, while Medicaid overflow is trimodal. CMS overflow retains
features of Medicare and Medicaid overflow, suggesting underlying disease dynamics are
not resolved with data integration. Medicaid inflow cases show negative values at the age
of 19–20, indicating that CHIP disenrollment impacts HIV+ ever case observation years,
perhaps prior to infection, though perhaps not. Medicaid expansion may be responsible
for the dense bands from 2014 onward in Medicaid HIV+ inflows. CMS HIV+ inflow
shows both the high band across study years at 65 years old (perhaps traditional Medicare
enrollment), and low band at 19 years (CHIP exodus).

3.3. Two by Two Plots of Interactions Between Age, Period and Cohort Effects

Next, the study considers the relationships between APC effects themselves. Plots
of two Age-Period-Cohort indices are provided for inflow, overflow, outflow and case
volumes. As above in Figure 3, cases are the baseline measurement for cases observed in a
given year, age, or birth cohort. Outflow is the explicit mortality among CMS HIV+ cases.
Overflow candidacy was calculated as year prior cases minus the prior year’s mortality.
Inflow candidacy refers to cases that cannot be overflow cases, or next year’s cases minus
overflow. Inflow can be a negative number.

3.3.1. Inflow Candidates or Cases Entering the Study

Figure 4 subplots inflow, or HIV+ CMS cases entering this study by two factor APC
plots, considering two age, period or cohort features at a time for a total of six subplots.
Key points are summarized below on a subplot-by-subplot basis.

Entropy 2024, 26, x FOR PEER REVIEW 10 of 29 
 

 

and 2011 which could have a third peak that is possibly affected by the addition of ex-

panded Medicaid cases. Note that age 65 and age 20 appear linear, indicating a regular 

inflow of cases at 65 and a negative inflow of CHIP cases. 

Subplot 4e shows the inflow of ages within birth cohorts. The trimodal distribution 

conceals a subgroup of cases from birth cohort 1945 through 1995. Older adults, adult and 

pediatric cases are clearly differentiated. 

Subplot 4f shows the select inflow of birth cohorts within study periods. The impact 

of Medicaid expansion in 2014 is observed. Birth cohort ‘high points’ co-occur when indi-

viduals would be 65 years old, indicating Medicare inflow. Pediatric birth cohorts leave 

the model during expected CHIP exodus. 

 

(a) 

 Figure 4. Cont.



Entropy 2024, 26, 970 10 of 28Entropy 2024, 26, x FOR PEER REVIEW 11 of 29 
 

 

 

(b) 

 

 

(c) 

 Figure 4. Cont.



Entropy 2024, 26, 970 11 of 28Entropy 2024, 26, x FOR PEER REVIEW 12 of 29 
 

 

 

(d) 

 

 

(e) 

 
Figure 4. Cont.



Entropy 2024, 26, 970 12 of 28Entropy 2024, 26, x FOR PEER REVIEW 13 of 29 
 

 

 

(f) 

Figure 4. (a) Inflow among CMS HIV+ cases, YOAO in period. (b) Inflow among CMS HIV+ cases, 

YOAO in cohort. (c) Inflow among CMS HIV+ cases, cohort per period. (d) Inflow among CMS 

HIV+ cases, period in YOAO. (e) Inflow among CMS HIV+ cases, cohort in YOAO. (f) Inflow 

among CMS HIV+ cases, period in cohort. 

3.3.2. Overflow Candidates or Cases Moving Through the Study 

Figure 5 subplots overflow, or HIV+ CMS cases observed year on year in this study 

by two factor APC plots, considering two age, period or cohort features at a time for a 

total of six subplots. Key points are summarized below on a subplot-by-subplot basis. 

Subplot 5a shows the overflow of study periods within age ranges. Early and middle 

study years follow a three-peak distribution between 0 and 25, 25 and 50 and at 65. Later 

study years show a movement of the first and second peaks from 0–25 to 25+ and 25–50 to 

50+. This may indicate cases breaking through previous survival ceilings or individuals 

becoming infected and being observed later in life. The 25+ anomaly is likely due to Med-

icaid expansion, and prior years are likely missing from these epidemic cases as they were 

not observed in CMS but likely existed in the real world. 

Subplot 5b shows the overflow of birth cohorts by age. Cases at age 50 have the great-

est overflow (aging through) followed by cases aged 25. The younger birth cohorts did not 

have as much ‘time’ to be observed as adults as of this writing. The decrease in observing 

overflow over birth cohort time may indicate that cases are reaching their survival ceilings 

and leaving the model (outflow) when their birth cohort lines peak (start dropping). Birth 

cohorts also see overflow peaks once they qualify for Medicare at 65. 

Subplot 5c shows the overflow of study periods within birth cohorts. Distributions 

are consistent across study years with peaks in the 1960 and 1990 birth cohorts for over-

flow case observation. Note that later study years contributed more cases than expected 

from cohorts 1975–2000. This may indicate another wave of transmission which is impact-

ing younger people. 

Subplot 5d shows selected ages within study period for overflow cases. The overflow 

in 40- and 35-year-olds drops over the study period and increases in 2014. In 55–70-year-

olds, there is increased overflow over the study period. Further, 20- and 25-year-olds have 

decreased overflow, while 30-year-olds have a consistent increase. 
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Subplot 4a shows the inflow in the study period within the age for HIV+ CMS cases.
Spikes are observed for ages 19 and 65, reflecting Medicare enrollment and CHIP disenroll-
ment dynamics. In early study years, inflow is highest at age 40, and in later study years
inflow has peaks after age 20 and at age 50. The 2014 anomaly may be caused by Medicaid
expansion. Most inflow candidates are 25–64 years old.

Subplot 4b shows the inflow for birth cohort relative to age. Cases that are born
in CHIP eligible birth cohorts have CHIP disenrollment effects, and birth cohorts that
are eligible to be age 65 in this study have Medicare enrollment effects. Younger birth
cohorts are observed at younger ages, while middle and late birth cohorts follow a trimodal
distribution (peaks at age 10, 35 and 65). There is an additional subset, between 25 and 64,
under 5000 cases. This lower group has different inflow dynamics relative to the primary,
trimodal population. They could be non-public or Ryan White AIDS cases moving to
Medicare via Social Security Disability Insurance or may have other explanations.

Subplot 4c shows the inflow of study periods by birth cohort. Older birth cohorts were
present in a distinct region on the left side, from 1925 to 1950. A middle group ranges from
the years 1950 to 2000 and a final group is observed over the study years themselves. This
first group are older adults who most likely contracted HIV very late in life. The middle
group are observed as adults. This group has such acute mortality (outflow) that the inflow
volume cannot be explained from overflowing cases, hence the negative adult region values.
The birth cohorts that are included in study years are indicated as pediatric HIV cases,
as they are too young to have contracted HIV before the study years. The comparative
variance in the adult group is likely due to the different ages at infection and diversity of
kinds of HIV infected cases (i.e., otherwise healthy adults, AIDS cases, Intravenous Drug
Users, Hepatitis C+ cases).

Subplot 4d shows the inflow of select ages within study periods. Medicaid expansion
in 2014 increases case observation year volume. There is a dual peak space between
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2002 and 2011 which could have a third peak that is possibly affected by the addition of
expanded Medicaid cases. Note that age 65 and age 20 appear linear, indicating a regular
inflow of cases at 65 and a negative inflow of CHIP cases.

Subplot 4e shows the inflow of ages within birth cohorts. The trimodal distribution
conceals a subgroup of cases from birth cohort 1945 through 1995. Older adults, adult and
pediatric cases are clearly differentiated.

Subplot 4f shows the select inflow of birth cohorts within study periods. The impact
of Medicaid expansion in 2014 is observed. Birth cohort ‘high points’ co-occur when
individuals would be 65 years old, indicating Medicare inflow. Pediatric birth cohorts leave
the model during expected CHIP exodus.

3.3.2. Overflow Candidates or Cases Moving Through the Study

Figure 5 subplots overflow, or HIV+ CMS cases observed year on year in this study by
two factor APC plots, considering two age, period or cohort features at a time for a total of
six subplots. Key points are summarized below on a subplot-by-subplot basis.

Subplot 5a shows the overflow of study periods within age ranges. Early and middle
study years follow a three-peak distribution between 0 and 25, 25 and 50 and at 65. Later
study years show a movement of the first and second peaks from 0–25 to 25+ and 25–50 to
50+. This may indicate cases breaking through previous survival ceilings or individuals
becoming infected and being observed later in life. The 25+ anomaly is likely due to
Medicaid expansion, and prior years are likely missing from these epidemic cases as they
were not observed in CMS but likely existed in the real world.

Subplot 5b shows the overflow of birth cohorts by age. Cases at age 50 have the
greatest overflow (aging through) followed by cases aged 25. The younger birth cohorts
did not have as much ‘time’ to be observed as adults as of this writing. The decrease
in observing overflow over birth cohort time may indicate that cases are reaching their
survival ceilings and leaving the model (outflow) when their birth cohort lines peak (start
dropping). Birth cohorts also see overflow peaks once they qualify for Medicare at 65.

Subplot 5c shows the overflow of study periods within birth cohorts. Distributions are
consistent across study years with peaks in the 1960 and 1990 birth cohorts for overflow
case observation. Note that later study years contributed more cases than expected from
cohorts 1975–2000. This may indicate another wave of transmission which is impacting
younger people.

Subplot 5d shows selected ages within study period for overflow cases. The overflow
in 40- and 35-year-olds drops over the study period and increases in 2014. In 55–70-year-
olds, there is increased overflow over the study period. Further, 20- and 25-year-olds have
decreased overflow, while 30-year-olds have a consistent increase.

Subplot 5e shows ages within birth cohorts. Age within birth cohorts appears normal
given the progression of study time. Birth cohorts from 1975 to 1990 show increases,
perhaps suggesting that the baby boomer epidemic and millennial HIV have different
observational mechanisms.

Subplot 5f shows select patterns in overflow by birth cohort within study periods, with
normal distributions observed throughout. Note the decreases in very old birth cohorts
(1915–1935).
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3.3.3. Outflow Candidates or Cases Leaving the Study Due to Death

Figure 6 subplots outflow, or HIV+ CMS deaths observed in this study by two factor
APC plots, considering two age, period or cohort features at a time for a total of six subplots.
Key points are summarized below on a subplot-by-subplot basis. Subplot 6a shows CMS
HIV+ deaths by age in study period. In early study years, peaks for death are seen at
45–50 years old. In later study years, death peaks are at 60–65 years old. Note the increased
mortality in 2020 starting at age 50. In later study years, decedent cases are still observed
at prior study year volumes for prior peak ages 45–50. This means individuals are still
dying at 45–50 in later years, but there is additional, later in life mortality observed as the
study progresses.

Subplot 6b shows CMS HIV+ deaths by age in the birth cohort. Birth cohorts over
the age of 50 continue to accelerate, and peak deflation is only observed after age 75. This
means it is harder to survive to later ages for older birth cohorts. Younger birth cohorts
who are not yet observed at YOAO 50 do not show increasing peaks (yet). This could mean
that younger cases have mortality seasons (at 45–50 and at 64 years old) they have yet
to experience.

Subplot 6c shows CMS HIV+ deaths by birth cohort in study period. Deaths appear
uniform across birth cohorts with increasing mortality across study periods. Cases in-
volving individuals born in 1960 are currently the center of CMS HIV mortality; however,
mortality is observed at all ages.

Subplot 6d shows select CMS HIV+ deaths by study period in ages. Deaths at age
30–45 are decreasing across the study period. Deaths at 55–80 are increasing. This may
reflect mortality eligibility, or case-by-case side dynamics such as underlying vulnerability
or adaptation.

Subplot 6e shows CMS HIV+ deaths by birth cohort in ages. Death is birth-banded,
with younger birth cohorts dying at younger ages and older birth cohorts at older ages. For
example, peak death volume by birth cohort for cases of individuals born in 1960 show
deaths at age 60, while younger birth cohorts have younger deaths. Very young birth
cohorts have few deaths. Mortality appears ‘ongoing’ as bands do not show decreases
except for some young birth cohorts who are likely to encounter more mortality seasons
later in life.

Subplot 6f shows select CMS HIV+ deaths by study period in birth cohort. All
birth cohorts have increasing mortality except for birth cohorts originated in the study
period and cases born in 1915, who are perhaps reaching their survival maximum over the
study period.

3.3.4. Cases Observed in the Study

Figure 7 subplots HIV+ CMS observed in this study by two factor APC plots, consid-
ering two age, period or cohort features at a time for a total of six subplots. Key points are
summarized below on a subplot-by-subplot basis.

Subplot 7a shows CMS HIV+ cases by age in the study period. Case observation
volumes are normal, except for 2014 onward for 20- to 30-year-olds who have study year-
specific volume increases. This is perhaps due to Medicaid expansion in 2014. All study
years have another volume increase at age 65. This is perhaps due to Medicare enrollment
at 65+. Cases present as older over time, which does not imply a survival time increase.

Subplot 7b shows CMS HIV+ cases by age in birth cohort. HIV cases have specific
observational seasonality. Cases observed for those under 25, 20–45, 30–55, 50–75 and cases
observed for those 65–100. These wave groups could be transmission wave groups for HIV,
impacting birth cohorts at different, yet clustered ages.
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Subplot 7c shows CMS HIV+ cases by birth cohort in study period. Case observation
is bimodal. Millennial HIV birth cohorts have volumes that are increasingly approaching
parity with the volume peak in the 1960 birth cohort.
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Subplot 7d shows select CMS HIV+ cases by study period in ages. Case observation
dips for 35- and 40-year-olds but recovers over the study period. For 25- and 20-year-olds, it
dips and does not recover as it does for 45-year-olds. This could be partly due to decreases
in pediatric infections for early ages and increases in age at infection. For 50–80-year-olds,
there are increasing case volumes.

Subplot 7e shows CMS HIV+ cases by birth cohort relative to age. Peak case obser-
vation by birth cohort is for individuals born in the 1960s. They are typically observed in
their 50s. Case observation volumes appear generational, with the emerging generation
showing an emerging volume (1975–2000) that older generations are not observed at. Indi-
viduals born after the ‘epidemic’ started (1980s) have a wider observed age span than other
birth cohorts.

Subplot 7f shows select CMS HIV+ cases by study period in birth cohorts. Cases
involving individuals born after 1935 have increasing volumes generally. Pediatric cohorts
are depressed (2005, 2020).

3.4. Poisson Linear Models

Two by two plots detect some variation in mortality/outflow. To locate emergent
mortality stability, HIV+ decedent cases were fitted, by program, to Poisson linear models,
and the effect within age, period and cohort was plotted to highlight detectable differences
(Figure 8) within ages, periods and cohorts, if any. All plots and study dataset analyses were
conducted in R. Values for Figure 8 were computed using the APC package [25]. A score of
zero means no difference from expected prior observations, while positive and negative
numerical scores highlight when changes are observed. The age panel shows variation
before age 25 for Medicare, suggesting that pediatric groups may have survival differences.
Younger and older birth cohorts, before 1925 for CMS and after 2000 for Medicare, also
show mortality variation/instability. The time period shows Medicare-specific differences,
which perhaps reflect influenza mortality.
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4. Discussion

While treatment changes (Highly Active Anti-Retroviral Therapy) may be at the top of
one’s mind in segmenting outcome eras, birth cohort effects may be more important. This
is perhaps due to under-observed local effects such as AIDS deaths peaking in the US in
1995–1996, making study cases eligible for other causes of death (potentially at similar ages)
while improvements in medications bring their own opportunities for AIDS avoidance as
well as challenges of cost, access to care, toxicity and drug interactions [26–32]. Testing,
mortality and disease course assessments (viral load testing) lent HIV virus-specific changes
to understanding survival and case discovery [33–35]. These complex changes highlight
the importance of taking an APC perspective when studying complexity in HIV-TRN in
the United States.

The linear model did not show meaningful survival time instability between periods,
ages, or cohorts, except for extremely young and extremely old cases. If birth cohort does
not produce meaningful APC disambiguation, we could be witnessing an HIV endemic
flowing across generations, rather than an epidemic. Decreases observed in YOAO mortal-
ity units are likely reflective of underlying case dynamics involving pediatric (collapse) or
older adult (expansion) infections, rather than improvements in treatment amidst obser-
vations of decedent cases at younger and older ages. Observing pediatric cases became
more difficult over the study period. This is likely due to improvements in controlling
mother-to-child transmission [36–39]. The expansion of older adult cases is likely due to
older adults increasingly encountering HIV risks rather than adults surviving to older ages.

Concluding that HIV is a solved problem in the United States forgoes generational
HIV outcomes. This study shows millennial HIV cases and mortality burdens as well as
HIV mortality burdens for adults remaining stable with endemic expansion for older adults.
Given these findings, HIV may still hold some surprises for US epidemiologists, as HIV+
millennials age into adult HIV+ mortality seasons observed at middle age among older
birth cohorts. As the oldest millennials are not yet 45 in this dataset, the beginning of the
first adult HIV mortality season, it could be that decreases in HIV mortality observed by
some projects are APC-confounded. Withstanding the progress on eradicating pediatric
HIV in the United States, there are few comparable birth cohorts across treatment eras, let
alone mortality waves to draw a defensible conclusion about survival time at large.

Given the consistency of birth cohort case and mortality features observed in this study,
it may be better to say the US has an ‘endemic HIV’ rather than ‘epidemic HIV’ problem.
The utility of using epidemic tools in leu of endemic eradication tools may be grounds for
future study. The future will tell if millennial cases and mortality peak sooner than previous
generations, but given the presence of decedent cases among ‘young’ people in the late
study period, it is unlikely that additional aging will benefit survival prospects which are
already lacking. Though not well understood, COVID-19 likely impacted mortality in 2020
HIV studies [40–45]. Future (post 2020) COVID-19 mortality may also contribute to HIV+
mortality dynamics. Aging itself has inherent risks which should not be conflated with
those of younger cohorts [46].

Time periods are complex features which are often flattened or evacuated of complexity
when evaluating HIV-TRN outcomes. Flattening includes ignoring eras prior to the start
of the study and their implications for study events. Increases in chronic disease and the
opioid crisis should have ‘all cause’ mortality effects in an HIV+ cohort [47,48]. Despite
these profound non-HIV era changes, HIV survival is traditionally evaluated using a point-
in-time life table model, where year of infection is assumed to be deterministic and observed
or simulated mortality assumed accurate [9,49–51]. Such estimation approaches likely run
into ceiling and floor effects, where cases achieve high or low survival years relative to
an assumed infinity or HIV-matched survival time rather than observing decedent cases
within birth cohorts [52].

APC disaggregation allows for the identification of model effects which can confound
or mislead even skilled scientists. Attempts to evaluate outcomes, comorbidity and case
volumes should disaggregate by age, birth cohort and, if known, age at infection and
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year of infection to avoid APC-confounding. HIV is a ‘new’ disease and there has not
been a full generational cycle of hosts since the disease emerged, became epidemic and
potentially endemic. Consequently, finding a ‘prior base line’ to compare outcomes without
APC-confounding may prove challenging, though the use of birth cohorts may provide
some assistance.

5. Conclusions

On some level you only die once; and, until you are dead, we do not really know if you
lived longer than a similar person in a different era, let alone why you did or did not. Prior
observation may inform survival expectations; however, this review of 1.5 million HIV+
cases from the United States finds varying mortality over the study period but increasing
mortality within birth cohorts. Claims that HIV+ cases are ‘living longer’ without context
is most likely the product of conflating the complex interplay of case age, study period, and
birth cohort. Studies that do not control for multiple mortality seasons within their HIV
cohorts most likely confuse signal complexity for clinical outcomes. APC may be a useful
foil when considering TRN in human observation records. There are also anthropological
factors worth considering when making mathematical models of or attempting to simulate
human observation record systems.

Funding: This work was supported by the Lister Hill National Center for Biomedical Communica-
tions of the National Library of Medicine (NLM), National Institutes of Health.

Institutional Review Board Statement: Though counter intuitive, this study does not constitute
human subject research. This study was exempted from traditional Internal Review Board (IRB)
review under exemption category four subsection two: “Exemption Category Four Applies to
secondary research of identifiable private information or identifiable biospecimens, if at least one of
the following criteria is met: (1) When the identifiable materials are publicly available or (2) when the
data is recorded by the investigator in a de-identified manner (analysis dataset), i.e., no identifiers are
accessible to the research once the analysis begins. For example, the research conducts a retrospective
medical chart review and records the necessary data in a datasheet for future analysis without any
personal identifiers nor a code which would allow the investigator to link back to subjects.”.

Data Availability Statement: The study dataset is available upon request to the corresponding author
at nick.williams@nih.gov. For identifiable or encounter-level CMS data, requests should be made
through https://www2.ccwdata.org/web/guest/home/ (accessed on 3 November 2024).

Conflicts of Interest: The author declares no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Cai, Y.; Zhang, J.; Liang, J.; Xiao, M.; Zhang, G.; Jing, Z.; Lv, L.; Nan, K.; Dang, X. The Burden of Rheumatoid Arthritis: Findings

from the 2019 Global Burden of Diseases Study and Forecasts for 2030 by Bayesian Age-Period-Cohort Analysis. J. Clin. Med.
2023, 12, 1291. [CrossRef] [PubMed]

2. Cao, Y.; Chen, S.; Chen, X.; Zou, W.; Liu, Z.; Wu, Y.; Hu, S. Global trends in the incidence and mortality of asthma from 1990
to 2019: An age-period-cohort analysis using the global burden of disease study 2019. Front. Public Health 2022, 10, 1036674.
[CrossRef] [PubMed]

3. Gao, D.; Zou, Z.; Zhang, W.; Chen, T.; Cui, W.; Ma, Y. Age-Period-Cohort Analysis of HIV Mortality in China: Data from the
Global Burden of Disease Study 2016. Sci. Rep. 2020, 10, 7065. [CrossRef] [PubMed]

4. Wang, T.; Gu, Y.; Ran, L.; Tan, X.; Peng, S. Ways of HIV transmission in China: The effect of age, period, and cohort. Front. Public
Health 2022, 10, 941941. [CrossRef]

5. Macdonald, G. Epidemiologic models in studies of vector-borne diseases. Public Health Rep. 1961, 76, 753–764. [CrossRef]
6. Yang, Y.; Land, K.C. Age-Period-Cohort Analysis: New Models, Methods, and Empirical Applications; Chapman and Hall/CRC: Boca

Raton, FL, USA, 2013; 352p.
7. King, J.T.; Justice, A.C.; Roberts, M.S.; Chang, C.C.H.; Fusco, J.S.; Collaboration in HIV Outcomes Research-US Program Team.

Long-term HIV/AIDS survival estimation in the highly active antiretroviral therapy era. Med. Decis. Mak. Int. J. Soc. Med. Decis.
Mak. 2003, 23, 9–20. [CrossRef]

8. Houweling, H.; Wiessing, L.G.; Hamers, F.F.; Termorshuizen, F.; Gill, O.N.; Sprenger, M.J. An age-period-cohort analysis of 50,875
AIDS cases among injecting drug users in Europe. Int. J. Epidemiol. 1999, 28, 1141–1148. [CrossRef]

nick.williams@nih.gov
https://www2.ccwdata.org/web/guest/home/
https://doi.org/10.3390/jcm12041291
https://www.ncbi.nlm.nih.gov/pubmed/36835827
https://doi.org/10.3389/fpubh.2022.1036674
https://www.ncbi.nlm.nih.gov/pubmed/36483262
https://doi.org/10.1038/s41598-020-63141-1
https://www.ncbi.nlm.nih.gov/pubmed/32341364
https://doi.org/10.3389/fpubh.2022.941941
https://doi.org/10.2307/4591271
https://doi.org/10.1177/0272989X02239652
https://doi.org/10.1093/ije/28.6.1141


Entropy 2024, 26, 970 27 of 28

9. Siddiqi, A.-E.-A.; Irene Hall, H.; Hu, X.; Song, R. Population-Based Estimates of Life Expectancy After HIV Diagnosis. United
States 2008–2011. J. Acquir. Immune Defic. Syndr. 2016, 72, 230–236. [CrossRef]

10. Marcus, J.L.; Chao, C.R.; Leyden, W.A.; Xu, L.; Quesenberry, C.P.; Klein, D.B.; Towner, W.J.; Horberg, M.A.; Silverberg, M.J.
Narrowing the Gap in Life Expectancy Between HIV-Infected and HIV-Uninfected Individuals with Access to Care. J. Acquir.
Immune Defic. Syndr. 2016, 73, 39–46. [CrossRef]

11. Marcus, J.L.; Leyden, W.A.; Alexeeff, S.E.; Anderson, A.N.; Hechter, R.C.; Hu, H.; Lam, J.O.; Towner, W.J.; Yuan, Q.; Horberg,
M.A.; et al. Comparison of Overall and Comorbidity-Free Life Expectancy Between Insured Adults with and Without HIV
Infection, 2000–2016. JAMA Netw. Open. 2020, 3, e207954. [CrossRef]

12. Colasanti, J.A.; Armstrong, W.S. Challenges of reaching 90-90-90 in the Southern United States. Curr. Opin. HIV AIDS 2019, 14,
471–480. [CrossRef] [PubMed]

13. Reif, S.; Pence, B.W.; Hall, I.; Hu, X.; Whetten, K.; Wilson, E. HIV Diagnoses, Prevalence and Outcomes in Nine Southern States. J.
Community Health 2015, 40, 642–651. [CrossRef] [PubMed]

14. Piggott, D.A.; Muzaale, A.D.; Mehta, S.H.; Brown, T.T.; Patel, K.V.; Leng, S.X.; Kirk, G.D. Frailty, HIV infection, and mortality in
an aging cohort of injection drug users. PLoS ONE 2013, 8, e54910. [CrossRef] [PubMed]

15. Dasgupta, S.; Tie, Y.; Lemons, A.; Wu, K.; Burnett, J.; Shouse, R.L. Injection Practices and Sexual Behaviors Among Persons with
Diagnosed HIV Infection Who Inject Drugs—United States, 2015–2017. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 653–657.
[CrossRef]

16. Quan, V.M.; Steketee, R.W.; Valleroy, L.; Weinstock, H.; Karon, J.; Janssen, R. HIV Incidence in the United States, 1978–1999. J.
Acquir. Immune Defic. Syndr. 2002, 31, 188. [CrossRef]

17. Prejean, J.; Song, R.; Hernandez, A.; Ziebell, R.; Green, T.; Walker, F.; Lin, L.S.; An, Q.; Mermin, J.; Lansky, A.; et al. Estimated HIV
Incidence in the United States, 2006–2009. PLoS ONE 2011, 6, e17502. [CrossRef]

18. Gorban, A.N.; Tyukina, T.A.; Pokidysheva, L.I.; Smirnova, E.V. Dynamic and thermodynamic models of adaptation. Phys. Life
Rev. 2021, 37, 17–64. [CrossRef]

19. NHE Fact Sheet|CMS [Internet]. Available online: https://www.cms.gov/data-research/statistics-trends-and-reports/national-
health-expenditure-data/nhe-fact-sheet (accessed on 21 October 2024).

20. Dawson, L.; Kates, J.; Roberts, T.; Chidambaram, P. Medicaid and People with HIV [Internet]. KFF. 2023. Available online:
https://www.kff.org/hivaids/issue-brief/medicaid-and-people-with-hiv/ (accessed on 22 October 2024).

21. Dawson, L.; Kates, J.; Roberts, T.; Cubanski, J.; Neuman, T.; Damico, A. Medicare and People with HIV [Internet]. KFF. 2023.
Available online: https://www.kff.org/hivaids/issue-brief/medicare-and-people-with-hiv/ (accessed on 22 October 2024).

22. Williams, N.D.; Huser, V.; Rhame, F.; Mayer, C.S.; Fung, K.W. The changing patterns of comorbidities associated with human
immunodeficiency virus infection, a longitudinal retrospective cohort study of Medicare patients. Medicine 2021, 100, e25428.
[CrossRef]

23. Friedman, E.E.; Duffus, W.A. Chronic health conditions in Medicare beneficiaries 65 years old, and older with HIV infection.
AIDS 2016, 30, 2529–2536. [CrossRef]

24. Yang, H.Y.; Beymer, M.R.; Suen, S.C. Chronic Disease Onset Among People Living with HIV and AIDS in a Large Private
Insurance Claims Dataset. Sci. Rep. 2019, 9, 18514. [CrossRef]

25. Nielsen, B. apc: An R Package for Age-Period-Cohort Analysis. R. J. 2015, 7, 52. [CrossRef]
26. Ezzati, M.; Friedman, A.B.; Kulkarni, S.C.; Murray, C.J.L. The Reversal of Fortunes: Trends in County Mortality and Cross-County

Mortality Disparities in the United States. PLoS Med. 2008, 5, e66.
27. Beer, L.; Tie, Y.; Weiser, J.; Shouse, R.L. Nonadherence to Any Prescribed Medication Due to Costs Among Adults with HIV

Infection—United States, 2016–2017. MMWR Morb. Mortal Wkly. Rep. 2019, 68, 1129–1133. [CrossRef] [PubMed]
28. Schackman, B.R.; Finkelstein, R.; Neukermans, C.P.; Lewis, L.; Eldred, L.; Center for Adherence Support and Evaluation (Case)

Team. The cost of HIV medication adherence support interventions: Results of a cross-site evaluation. AIDS Care 2005, 17,
927–937. [CrossRef]

29. Goyal, R.; Luca, D.; Klein, P.W.; Morris, E.; Mandsager, P.; Cohen, S.M.; Hu, C.; Hotchkiss, J.; Gao, J.; Jones, A.; et al. Cost-
Effectiveness of HRSA’s Ryan White HIV/AIDS Program? J. Acquir. Immune Defic. Syndr. 2021, 86, 174–181. [CrossRef]

30. Swiss HIV Cohort Study; Marzolini, C.; Elzi, L.; Gibbons, S.; Weber, R.; Fux, C.; Furrer, H.; Chave, J.P.; Cavassini, M.; Bernasconi,
E.; et al. Prevalence of comedications and effect of potential drug-drug interactions in the Swiss HIV Cohort Study. Antivir. Ther.
2010, 15, 413–423.

31. Marzolini, C.; Back, D.; Weber, R.; Furrer, H.; Cavassini, M.; Calmy, A.; Vernazza, P.; Bernasconi, E.; Khoo, S.; Battegay, M.; et al.
Ageing with HIV: Medication use and risk for potential drug-drug interactions. J. Antimicrob. Chemother. 2011, 66, 2107–2111.
[CrossRef]

32. Williams, N.; Mayer, C.; Huser, V. A Descriptive Study of HIV Patients Highly Adherent to Antiretroviral. AMIA Annu. Symp.
Proc. 2021, 2020, 1295–1304.

33. Bosh, K.A.; Johnson, A.S.; Hernandez, A.L.; Prejean, J.; Taylor, J.; Wingard, R.; Valleroy, L.A.; Irene Hall, H. Vital Signs: Deaths
Among Persons with Diagnosed HIV Infection, United States, 2010–2018. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 1717–1724.
[CrossRef]

https://doi.org/10.1097/QAI.0000000000000960
https://doi.org/10.1097/QAI.0000000000001014
https://doi.org/10.1001/jamanetworkopen.2020.7954
https://doi.org/10.1097/COH.0000000000000577
https://www.ncbi.nlm.nih.gov/pubmed/31425179
https://doi.org/10.1007/s10900-014-9979-7
https://www.ncbi.nlm.nih.gov/pubmed/25524210
https://doi.org/10.1371/journal.pone.0054910
https://www.ncbi.nlm.nih.gov/pubmed/23382997
https://doi.org/10.15585/mmwr.mm6830a1
https://doi.org/10.1097/00126334-200210010-00010
https://doi.org/10.1371/journal.pone.0017502
https://doi.org/10.1016/j.plrev.2021.03.001
https://www.cms.gov/data-research/statistics-trends-and-reports/national-health-expenditure-data/nhe-fact-sheet
https://www.cms.gov/data-research/statistics-trends-and-reports/national-health-expenditure-data/nhe-fact-sheet
https://www.kff.org/hivaids/issue-brief/medicaid-and-people-with-hiv/
https://www.kff.org/hivaids/issue-brief/medicare-and-people-with-hiv/
https://doi.org/10.1097/MD.0000000000025428
https://doi.org/10.1097/QAD.0000000000001215
https://doi.org/10.1038/s41598-019-54969-3
https://doi.org/10.32614/RJ-2015-020
https://doi.org/10.15585/mmwr.mm6849a1
https://www.ncbi.nlm.nih.gov/pubmed/31830009
https://doi.org/10.1080/09540120500100635
https://doi.org/10.1097/QAI.0000000000002547
https://doi.org/10.1093/jac/dkr248
https://doi.org/10.15585/mmwr.mm6946a1


Entropy 2024, 26, 970 28 of 28

34. Harris, N.S.; Johnson, A.S.; Huang, Y.A.; Kern, D.; Fulton, P.; Smith, D.K.; Valleroy, L.A.; Irene Hall, H. Vital Signs: Status
of Human Immunodeficiency Virus Testing, Viral Suppression, and HIV Preexposure Prophylaxis—United States, 2013–2018.
MMWR Morb. Mortal Wkly. Rep. 2019, 68, 1117–1123. [CrossRef]

35. Wertheim, J.O.; Oster, A.M.; Switzer, W.M.; Zhang, C.; Panneer, N.; Campbell, E.; Saduvala, N.; Johnson, J.A.; Heneine, W. Natural
selection favoring more transmissible HIV detected in United States molecular transmission network. Nat. Commun. 2019, 10,
5788. [CrossRef] [PubMed]

36. Kourtis, A.P.; Lee, F.K.; Abrams, E.J.; Jamieson, D.J.; Bulterys, M. Mother-to-child transmission of HIV-1: Timing and implications
for prevention. Lancet Infect. Dis. 2006, 6, 726–732. [CrossRef] [PubMed]

37. Nesheim, S.R.; FitzHarris, L.F.; Mahle Gray, K.; Lampe, M.A. Epidemiology of Perinatal HIV Transmission in the United States in
the Era of Its Elimination. Pediatr. Infect. Dis. J. 2019, 38, 611. [CrossRef]

38. Rogers, M. Epidemiology of HIV/AIDS in women and children in the USA. Acta Paediatr. 1997, 86, 15–16. [CrossRef]
39. Lindegren, M.L.; Byers, R.H.; Thomas, P.; Davis, S.F.; Caldwell, B.; Rogers, M.; Gwinn, M.; Ward, J.W.; Fleming, P.L. Trends in

Perinatal Transmission of HIV/AIDS in the United States. JAMA 1999, 282, 531–538. [CrossRef]
40. Beaney, T.; Clarke, J.M.; Jain, V.; Golestaneh, A.K.; Lyons, G.; Salman, D.; Majeed, A. Excess mortality: The gold standard in

measuring the impact of COVID-19 worldwide? J. R. Soc. Med. 2020, 113, 329–334. [CrossRef]
41. Bergquist, S.; Otten, T.; Sarich, N. COVID-19 pandemic in the United States. Health Policy Technol. 2020, 9, 623–638. [CrossRef]
42. Biggs, E.N.; Maloney, P.M.; Rung, A.L.; Peters, E.S.; Robinson, W.T. The Relationship Between Social Vulnerability and COVID-19

Incidence Among Louisiana Census Tracts. Front. Public Health 2020, 8, 617976. [CrossRef]
43. Bhaskaran, K.; Rentsch, C.T.; MacKenna, B.; Schultze, A.; Mehrkar, A.; Bates, C.J.; Eggo, R.M.; Morton, C.E.; Bacon, S.C.; Inglesby,

P.; et al. HIV infection and COVID-19 death: A population-based cohort analysis of UK primary care data and linked national
death registrations within the OpenSAFELY platform. Lancet HIV 2021, 8, e24–e32. [CrossRef]

44. Brown, L.B.; Spinelli, M.A.; Gandhi, M. The interplay between HIV and COVID-19: Summary of the data and responses to date.
Curr. Opin. HIV AIDS 2021, 16, 63–73. [CrossRef]

45. Millett, G.A. New pathogen, same disparities: Why COVID-19 and HIV remain prevalent in U.S. communities of colour and
implications for ending the HIV epidemic. J. Int. AIDS Soc. 2020, 23, e25639. [CrossRef] [PubMed]

46. Kaplan, G.A.; Haan, M.N.; Wallace, R.B. Understanding changing risk factor associations with increasing age in adults. Annu.
Rev. Public Health 1999, 20, 89–108. [CrossRef] [PubMed]

47. Kegler, S.R.; Simon, T.R.; Zwald, M.L.; Shen, M.S.; Mercy, J.A.; Jones, C.M.; Mercado-Crespo, M.C.; Blair, J.M.; Stone, D.M.; Ottley,
P.G.; et al. Vital Signs: Changes in Firearm Homicide and Suicide Rates—United States, 2019–2020. MMWR Morb. Mortal Wkly.
Rep. 2022, 71, 656–663. [CrossRef] [PubMed]

48. Colon-Berezin, C.; Nolan, M.L.; Blachman-Forshay, J.; Paone, D. Overdose Deaths Involving Fentanyl and Fentanyl Analogs—New
York City, 2000–2017. MMWR Morb. Mortal Wkly. Rep. 2019, 68, 37–40. [CrossRef] [PubMed]

49. Harrison, K.M.; Song, R.; Zhang, X. Life expectancy after HIV diagnosis based on national HIV surveillance data from 25 states,
United States. J. Acquir. Immune Defic. Syndr. 2010, 53, 124–130. [CrossRef]

50. Samji, H.; Cescon, A.; Hogg, R.S.; Modur, S.P.; Althoff, K.N.; Buchacz, K.; Burchell, A.N.; Cohen, M.; Gebo, K.A.; Gill, M.J.; et al.
Closing the gap: Increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS ONE
2013, 8, e81355. [CrossRef]

51. Nakagawa, F.; May, M.; Phillips, A. Life expectancy living with HIV: Recent estimates and future implications. Curr. Opin. Infect.
Dis. 2013, 26, 17–25. [CrossRef]

52. Šimkovic, M.; Träuble, B. Robustness of statistical methods when measure is affected by ceiling and/or floor effect. PLoS ONE
2019, 14, e0220889. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.15585/mmwr.mm6848e1
https://doi.org/10.1038/s41467-019-13723-z
https://www.ncbi.nlm.nih.gov/pubmed/31857582
https://doi.org/10.1016/S1473-3099(06)70629-6
https://www.ncbi.nlm.nih.gov/pubmed/17067921
https://doi.org/10.1097/INF.0000000000002290
https://doi.org/10.1111/j.1651-2227.1997.tb18313.x
https://doi.org/10.1001/jama.282.6.531
https://doi.org/10.1177/0141076820956802
https://doi.org/10.1016/j.hlpt.2020.08.007
https://doi.org/10.3389/fpubh.2020.617976
https://doi.org/10.1016/S2352-3018(20)30305-2
https://doi.org/10.1097/COH.0000000000000659
https://doi.org/10.1002/jia2.25639
https://www.ncbi.nlm.nih.gov/pubmed/33222424
https://doi.org/10.1146/annurev.publhealth.20.1.89
https://www.ncbi.nlm.nih.gov/pubmed/10352851
https://doi.org/10.15585/mmwr.mm7119e1
https://www.ncbi.nlm.nih.gov/pubmed/35550497
https://doi.org/10.15585/mmwr.mm6802a3
https://www.ncbi.nlm.nih.gov/pubmed/30653482
https://doi.org/10.1097/QAI.0b013e3181b563e7
https://doi.org/10.1371/journal.pone.0081355
https://doi.org/10.1097/QCO.0b013e32835ba6b1
https://doi.org/10.1371/journal.pone.0220889

	Introduction 
	Materials and Methods 
	Results 
	CMS Data Considered in This Study 
	Observation Stability Dynamics 
	Two by Two Plots of Interactions Between Age, Period and Cohort Effects 
	Inflow Candidates or Cases Entering the Study 
	Overflow Candidates or Cases Moving Through the Study 
	Outflow Candidates or Cases Leaving the Study Due to Death 
	Cases Observed in the Study 

	Poisson Linear Models 

	Discussion 
	Conclusions 
	References

