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Abstract: We calculate the second-order moments, the Robertson–Schrödinger uncertainty product,
and the Mandel factor for various superpositions of coherent phase states with opposite arguments,
comparing the results with similar superpositions of the usual (Klauder–Glauber–Sudarshan) coher-
ent states. We discover that the coordinate variance in the analog of even coherent states can show
the most strong squeezing effect, close to the maximal possible squeezing for the given mean photon
number. On the other hand, the Robertson–Schrödinger (RS) uncertainty product in superpositions
of coherent phase states increases much slower (as function of the mean photon number) than in
superpositions of the usual coherent states. A nontrivial behavior of the Mandel factor for small
mean photon numbers is discovered in superpositions with unequal weights of two components. An
exceptional nature of the even and odd superpositions is demonstrated.

Keywords: coherent phase states; even/odd superpositions; Yurke–Stoler superpositions; squeezing;
the Mandel factor; the Robertson–Schrödinger uncertainty product

1. Introduction

Since the beginning of 1960s, one of the main tools in quantum mechanics and quantum
optics is the Klauder–Glauber–Sudarshan coherent state (CS) [1–3],

|α⟩ = exp
(
−|α|2/2

) ∞

∑
n=0

αn
√

n!
|n⟩, (1)

where the Fock state |n⟩ [4] is the eigenstate of the number operator â† â: â† â|n⟩ = n|n⟩, and
α = |α|eiφ may be an arbitrary complex number. Here, â† and â are the bosonic creation
and annihilation operators satisfying the canonical commutation relation [â, â†] = 1. The
coherent state (1) is the eigenstate of the annihilation operator â:

â|α⟩ = α|α⟩. (2)

Among numerous generalizations of the state (1) (see, e.g., reviews [5–11]), we distin-
guish here the family of the coherent phase states (CPS) [12–21] (called also as “harmonious
states” [22] and “pseudothermal states” [23]),

|ε⟩ =
√

1 − |ε|2
∞

∑
n=0

εn|n⟩, ε = |ε|eiφ, |ε| < 1, (3)

introduced as eigenstates of the Susskind–Glogower exponential phase operator [24],

Ê− |ε⟩ = ε |ε⟩ , Ê− =
(

ââ†
)−1/2

â, Ê+ = Ê†
−, (4)
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Ê+ |n⟩ = |n + 1⟩ , Ê− |n⟩ = (1 − δn0) |n − 1⟩ . (5)

Another important family of quantum states, which turned out useful for many
applications of quantum mechanics and quantum information, consists of normalized
superpositions of coherent states |α⟩ and |−α⟩ of the form [7]

|Ψ⟩rα = Nrα(|α⟩+ r |−α⟩), r = |r|eiθ , N2
rα =

[
1 + |r|2 + 2Re(r)χα

]−1
, (6)

χα = ⟨−α|α⟩ = exp
(
−2|α|2

)
. (7)

The most interesting choices of parameter r are related to the values r = ±1, which corre-
spond to the even and odd coherent states introduced by Dodonov, Malkin, and Man’ko [25].
The choice r = i was made by Yurke and Stoler [26].

In this paper, we study the properties of analogs of states (6), where the usual coherent
states are replaced with the coherent phase states (3):

|Ψ⟩rε = Nrε(|ε⟩+ r |−ε⟩), N2
rε =

[
1 + |r|2 + 2Re(r)χε

]−1
, (8)

χε = ⟨−ε|ε⟩ = 1 − |ε|2
1 + |ε|2 . (9)

If r = exp(iθ), the normalization factor assumes the form

N2
θε =

1 + |ε|2

4
[
cos2(θ/2) + |ε|2 sin2(θ/2)

] , (10)

with the following special values:

N2
0ε =

1 + |ε|2
4

, N2
πε =

1 + |ε|2
4|ε|2 , N2

π/2,ε =
1
2

. (11)

The superpositions (6) and (8) are eigenstates of squares of the corresponding annihi-
lation operators:

â2 |Ψ⟩rα = α2 |Ψ⟩rα , Ê2
− |Ψ⟩rε = ε2 |Ψ⟩rε .

Even and odd superpositions of the CPS have the following expansions in the Fock basis:

|Ψ⟩1ε =
√

1 − |ε|4
∞

∑
n=0

ε2n|2n⟩, |Ψ⟩−1ε = |ε|−1
√

1 − |ε|4
∞

∑
n=0

ε2n+1|2n + 1⟩. (12)

The states (12) were considered in paper [27]. However, their statistical properties were
studied in that paper for moderate values of parameter ε only, while the most interesting
features can be observed in the limit |ε| → 1, as will be shown in the following sections.
Truncated series were considered in [28] but only for small truncation numbers.

Functions χα and χε characterize the overlaps between the wave functions with
opposite arguments. In the case of usual coherent states, these Gaussian functions are rather
narrow and well localized. For this reason, their scalar product decreases exponentially
when the distance between two components of the superposition increases. On the other
hand, the non-Gaussian wave functions of the coherent phase states are rather wide so
that the related overlap integral decays much more slowly as function of parameter ε. The
goal of this paper is to study what the physical consequences of these differences are. For
example, it is known that usual coherent states have no squeezing of the canonical position
and momentum operators (we assume h̄ = 1),

x̂ =
(

â + â†
)

/
√

2, p̂ =
(

â − â†
)

/(i
√

2), (13)
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for any value of the complex parameter α. On the other hand, we discovered recently [21]
that strong squeezing is possible for the CPS with φ = π/2 when |ε| → 1. Therefore,
it is interesting to know whether the degree of squeezing can be enhanced even more
in the states (8), remembering that small squeezing was observed in the even coherent
states [29]. This question is discussed in Section 3. All necessary formulas for the mean
values, variances, and covariances

σA ≡ ⟨Â2⟩ − ⟨Â⟩2, σAB ≡ 1
2
⟨ÂB̂ + B̂Â⟩ − ⟨ÂB̂⟩,

for the pair of operators (x̂, p̂) in the states (6) and (8) are derived in Section 2.
In Section 4, we compare the Robertson–Schrödinger uncertainty relations [30,31] in

the states (6) and (8). It is known that the Heisenberg product of uncertainties attains the
minimal possible value for all usual coherent states. On the other hand, its generalization
– the Robertson–Schrödinger uncertainty combination – slowly increases logarithmically
as |ε| → 1 in the CPS [21]. Therefore, it is interesting to know the behavior of the RS
uncertainty product in the superposition states.

In Section 5, we compare the Mandel factor for two families of superposition states.
This factor equals zero identically for all coherent states. On the other hand, it can be
negative for usual odd coherent states. Now, we study the dependence of this factor on ε
and r in the superpositions of coherent phase states.

2. Mean Values and Variances

The mean value of any operator Â in the superposition (8) is a sum of four terms:

⟨Â⟩rε = N2
rε

(
⟨ε| Â |ε⟩+ |r|2 ⟨−ε| Â |−ε⟩+ r ⟨ε| Â |−ε⟩+ r∗ ⟨−ε| Â |ε⟩

)
. (14)

Taking Â = â and Â = â†, we obtain the following expressions for mean values of the
creation and annihilation operators:

⟨â⟩rε = N2
rεε

(
1 − |ε|2

)[
S+1(|ε|)

(
1 − |r|2

)
+ S−1(|ε|)(r∗ − r)

]
, (15)

⟨â†⟩rε = ⟨â⟩∗rε,

S±1(|ε|) =
∞

∑
n=0

(
±|ε|2

)n√
n + 1. (16)

Mean values of the quadrature components (13) are as follows:

⟨x̂⟩rε =
√

2N2
rε

(
1 − |ε|2

)[
S+1(|ε|)

(
1 − |r|2

)
Re(ε) + 2S−1(|ε|)Im(r)Im(ε)

]
, (17)

⟨ p̂⟩rε =
√

2N2
rε

(
1 − |ε|2

)[
S+1(|ε|)

(
1 − |r|2

)
Im(ε)− 2S−1(|ε|)Im(r)Re(ε)

]
. (18)

The most simple expressions arise for the “equal weights” superpositions with |r| = 1.
Then, ⟨x̂⟩rε = ⟨ p̂⟩rε = 0 if Im(r) = 0, i.e., for even and odd superpositions, for all values of
ε. On the other hand, these mean values can be nonzero for the Yurke–Stoler superpositions
with r = i.

For the second-order mean values, Equation (14) leads to the following formulas:

⟨â2⟩rε = N2
rεε

2
(

1 − |ε|2
)[

S+2(|ε|)
(

1 + |r|2
)
+ S−2(|ε|)(r∗ + r)

]
, (19)

⟨â†2⟩rε = ⟨â2⟩∗rε,

S±2(|ε|) =
∞

∑
n=0

(
±|ε|2

)n√
(n + 1)(n + 2). (20)
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The mean number of quanta, ⟨â† â⟩rε, can be calculated with the aid of Equation (14)
and formulas

∞

∑
n=0

xn = (1 − x)−1,
∞

∑
n=0

nxn = x
d

dx

∞

∑
n=0

xn = x(1 − x)−2.

The result is

⟨â† â⟩rε =
N2

rε|ε|2
1 − |ε|2

[
1 + |r|2 − 2Re(r)

(
1 − |ε|2
1 + |ε|2

)2]
. (21)

In particular,

⟨â† â⟩ev =
2|ε|4

1 − |ε|4 , ⟨â† â⟩od =
1 + |ε|4
1 − |ε|4 , ⟨â† â⟩YS =

|ε|2
1 − |ε|2 . (22)

Note that, as a matter of fact, three apparently different expressions in Equation (22) give
the same results in the limit |ε| → 1.

The coordinate and momentum variances in the three special cases are as follows:

σx
σp

}
ev

=
1
2
+

2|ε|4
1 − |ε|4 ± 1

2
|ε|2

(
1 − |ε|4

)
cos(2φ)[S+2(|ε|) + S−2(|ε|)], (23)

σx
σp

}
od

=
1
2
+

1 + |ε|4
1 − |ε|4 ± 1

2

(
1 − |ε|4

)
cos(2φ)[S+2(|ε|)− S−2(|ε|)], (24)

σx
σp

}
YS

=
1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)2
S2
−1(|ε|)

± |ε|2
(

1 − |ε|2
)

cos(2φ)
[
S+2(|ε|) +

(
1 − |ε|2

)
S2
−1(|ε|)

]
. (25)

For r = 0, we have

σx
σp

}
r=0

=
1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)2
S2
+1(|ε|)

± |ε|2
(

1 − |ε|2
)

cos(2φ)
[
S+2(|ε|)−

(
1 − |ε|2

)
S2
+1(|ε|)

]
. (26)

In all four special cases, the coordinate variances attain minimal values for φ = π/2. The
explicit formulas in this case are as follows:

σmin
x,ev =

1
2
+

2|ε|4
1 − |ε|4 − 1

2
|ε|2

(
1 − |ε|4

)
[S+2(|ε|) + S−2(|ε|)], (27)

σmin
x,od =

1
2
+

1 + |ε|4
1 − |ε|4 − 1

2

(
1 − |ε|4

)
[S+2(|ε|)− S−2(|ε|)], (28)

σmin
x,YS =

1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)
S+2(|ε|)− 2|ε|2

(
1 − |ε|2

)2
S2
−1(|ε|), (29)

σmin
x,r=0 =

1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)
S+2(|ε|). (30)

The following expressions are obtained for the coordinate-momentum covariance:

σev
xp =

1
2
|ε|2

(
1 − |ε|4

)
sin(2φ)[S+2(|ε|) + S−2(|ε|)], (31)

σod
xp =

1
2

(
1 − |ε|4

)
sin(2φ)[S+2(|ε|)− S−2(|ε|)], (32)
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σYS
xp = |ε|2

(
1 − |ε|2

)
sin(2φ)

[
S+2(|ε|) +

(
1 − |ε|2

)
S2
−1(|ε|)

]
, (33)

σr=0
xp = |ε|2

(
1 − |ε|2

)
sin(2φ)

[
S+2(|ε|)−

(
1 − |ε|2

)
S2
+1(|ε|)

]
. (34)

Approximate analytical expressions can be obtained for the series S±2 if one uses
the expansion√

(n + 1)(n + 2) = (n + 1)

√
1 +

1
n + 1

= (n + 1)
[

1 +
1

2(n + 1)
− 1

8(n + 1)2 + . . .
]

≈ n +
3
2
− 1

8(n + 1)
. (35)

The three-term approximate equality (35) is quite reasonable even for n = 0, and its
accuracy improves significantly for bigger values of n. Then, using the exact formula

∞

∑
n=0

xn

n + 1
= x−1

∫ x

0
dy

∞

∑
n=0

yn = − ln(1 − x)
x

,

we obtain the following approximate analytical expressions:

S±2(|ε|) =
3/2

1 ∓ |ε|2 ± |ε|2

(1 ∓ |ε|2)2 ±
ln
(
1 ∓ |ε|2

)
8|ε|2 . (36)

Usual Coherent States

For superposition (6) of usual coherent states, mean values have the same form (14),
where ε is replaced with α. In this case, all calculations can be performed explicitly due to
Equation (2) and the known scalar product ⟨±α|α⟩ = exp

[
(±1 − 1)|α|2

]
. The following

relations hold:
⟨â⟩rα = N2

rαα
[
1 − |r|2 + exp

(
−2|α|2

)
(r∗ − r)

]
, (37)

⟨â†⟩rα = ⟨â⟩∗rα,

⟨â2⟩rα = α2, ⟨â†2⟩rα = α∗2, (38)

⟨â† â⟩rα = N2
rα|α|2

[
1 + |r|2 − 2Re(r) exp

(
−2|α|2

)]
, (39)

N2
0α =

[
2
(

1 + e−2|α|2
)]−1

, N2
πα =

[
2
(

1 − e−2|α|2
)]−1

, N2
π/2,α =

1
2

, (40)

⟨â† â⟩ev = |α|2 tanh
(
|α|2

)
, ⟨â† â⟩od = |α|2 coth

(
|α|2

)
, ⟨â† â⟩YS = |α|2, (41)

σx
σp

}
ev

=
1
2
+ |α|2 tanh

(
|α|2

)
± |α|2 cos(2φ), (42)

σx
σp

}
od

=
1
2
+ |α|2 coth

(
|α|2

)
± |α|2 cos(2φ), (43)

σx
σp

}
YS

=
1
2
+ |α|2

(
1 − e−4|α|2

)
± |α|2 cos(2φ)

(
1 + e−4|α|2

)
, (44)

σev
xp = σod

xp = |α|2 sin(2φ), (45)

σYS
xp = |α|2 sin(2φ)

[
1 + exp

(
−4|α|2

)]
. (46)

3. Squeezing

Formulas for the variances of the coordinate and momentum operators obtained in
Section 2 show that the coordinate variance attains minimal values for the phase φ = π/2,
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both for superpositions of usual coherent states and superpositions of coherent phase states.
However, concrete minimal values are quite different for these two kinds of superpositions.

3.1. Usual Coherent States

Equations (42)–(44) show that a moderate squeezing can be achieved for the even and
Yurke–Stoler superpositions with φ = π/2:

σev
x =

1
2
+ |α|2

[
tanh

(
|α|2

)
− 1

]
, σYS

x =
1
2
− 2|α|2e−4|α|2 . (47)

For |α| ≪ 1, a stronger squeezing is observed for the YS-superpositions. However, the
minimal absolute squeezing is attained for the even superpositions. The concrete minimal
values in two superpositions are as follows:

σev
x ||α|≈0.80 ≈ 0.2215, σYS

x

∣∣∣
|α|=1/2

=
1
2

(
1 − e−1

)
≈ 0.316.

When |α| → ∞ and φ = π/2, all coordinate variances tend to the asymptotic value 1/2.
Two functions of Equation (47) are illustrated in Figure 1.

0 1 2 3 4 5
| |2

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

=
/2

x

r = i
r = 1

Figure 1. Variances σx as functions of |α|2 in the even and YS superpositions of the usual coherent
states with φ = π/2.

3.2. Coherent Phase States

On the contrary, the coordinate variances in the superpositions of coherent phase
states go to zero when |ε| → 1 and φ = π/2. This behavior is shown in Figure 2.

Equations (29) and (30) show that the minimal variance in the Yurke–Stoler super-
positions is always smaller than in the coherent phase state (when r = 0). Moreover, the
squeezing in the YS-superpositions is the strongest for small values of |ε|2, as can be seen
in the first terms of the Taylor expansions of exact formulas (23)–(26):

σr=0
x ≈ 1

2
− (

√
2 − 1)|ε|2, σev

x ≈ 1
2
−
√

2|ε|2, σYS
x ≈ 1

2
− (

√
2 + 1)|ε|2.

However, if |ε| > 1/2, the strongest squeezing is observed in the even superpositions.
The variances σmin

x,YS and σmin
x,r=0 practically coincide for the values of |ε| close to unity

because the sign-variable series S−1(|ε|) in Equation (29) remains limited when |ε| → 1.
The behavior of the minimal variances for small differences 1 − |ε|2 can be described
analytically with the aid of Equation (36). The leading terms of asymptotical forms of all
functions (27)–(30) at |ε|2 → 1 are as follows:

σmin
x,r ≈

(
1 − |ε|2

)[
−1

8
ln
(

1 − |ε|2
)
− rS

]
=

ln(1 + ⟨n̂⟩)− 8rS
8(1 + ⟨n̂⟩) , (48)
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S ≡ S−2(|ε|)|ε|=1 =
1
2
− 1

8
ln(2) ≈ 0.413 ≈

√
2 − 1, r = ±1, 0. (49)

A thorough analysis and the comparison of (48) with a similar result of paper [21] for r = 0
show that the approximation (48) is valid for extremely high values of the mean photon
number ⟨n̂⟩, namely, under the condition ln(1 + ⟨n̂⟩) ≫ 1.

0.0 0.2 0.4 0.6 0.8 1.0
| |2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
=

/2
x

r = 1
r = 0
r = i
r = 1

0 2 4 6 8 10
n

0.0

0.1

0.2

0.3

0.4

0.5

=
/2

x

Even
Squeezed

Figure 2. (Left) Variances of x̂ as functions of |ε|2 in the superpositions of the coherent phase states
with φ = π/2. (Right) Variances of x̂ as functions of ⟨n̂⟩ in the even superposition of the coherent
phase states with φ = π/2 compared with the variances (50) in the ideal vacuum squeezed state. All
numeric results were obtained taking into account 10, 000 terms in series S±1 and S±2.

Remember that the coordinate variance in the ideal pure vacuum squeezed (Gaussian)
state, σx = (1/2)e−2r with ⟨n̂⟩ = sinh2(r), as a function of the mean number of quanta ⟨n̂⟩,
is given by the known formula

σ
sqz
x =

1
2

[
1 + 2⟨n̂⟩+ 2

√
⟨n̂⟩(⟨n̂⟩+ 1)

]−1
. (50)

This is the minimal possible value of σx for the fixed mean photon number ⟨n̂⟩ [8,32,33].
On the right-hand side of Figure 2, we compare functions (27) and (50) for moderate values
of the mean photon number ⟨n̂⟩. The asymptotic form of function (50)

σ
sqz
x ≈ [4(1 + 2⟨n̂⟩)]−1 for⟨n̂⟩ ≫ 1,

shows that the squeezing effect in the coherent phase states and their superpositions is only
slightly weaker than in the squeezed vacuum states when ⟨n̂⟩ ≫ 1.

4. The Robertson–Schrödinger Uncertainty Products

The Robertson–Schrödinger uncertainty relation has the form

D ≡ σxσp − σ2
xp ≥ 1/4. (51)

The equality D ≡ 1/4 holds for Gaussian pure states, including the usual coherent states
with arbitrary values of parameter α. Since D > 1/4 for non-Gaussian states, it is interesting
to know how this generalized uncertainty product depends on parameters α, ε, and r.

4.1. Usual Coherent States

Equations (42)–(46) result in the following expressions:

Dev = 1/4 + |α|2 tanh
(
|α|2

)
− |α|4/ cosh2

(
|α|2

)
, (52)

Dod = 1/4 + |α|2 coth
(
|α|2

)
+ |α|4/ sinh2

(
|α|2

)
, (53)
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DYS = 1/4 + |α|2
(

1 − e−4|α|2
)
− 4|α|4e−4|α|2 . (54)

For |α| ≪ 1, we see a small growth:

Dev ≈ 1/4 + 2|α|8/3, DYS ≈ 1/4 + 8|α|6, Dod ≈ 9/4 + 2|α|8/45.

If |α| ≫ 1, the difference D − 1/4 grows as |α|2, with exponentially small corrections. In
the most general case, the asymptotic formula is

D ≈ 1/4 +
2|r|2|α|2
1 + |r|2 , |α| ≫ 1.

4.2. Coherent Phase States

The following expressions hold for the superpositions of coherent phase states:

Dev =

(
1
2
+

2|ε|4
1 − |ε|4

)2

− 1
4
|ε|4

(
1 − |ε|4

)2
[S+2(|ε|) + S−2(|ε|)]2, (55)

Dod =

(
1
2
+

1 + |ε|4
1 − |ε|4

)2

− 1
4

(
1 − |ε|4

)2
[S+2(|ε|)− S−2(|ε|)]2, (56)

DYS =

[
1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)2
S2
−1(|ε|)

]2

− |ε|4
(

1 − |ε|2
)2[

S+2(|ε|) +
(

1 − |ε|2
)

S2
−1(|ε|)

]2
, (57)

Dr=0 =

[
1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)2
S2
+1(|ε|)

]2

− |ε|4
(

1 − |ε|2
)2[

S+2(|ε|)−
(

1 − |ε|2
)

S2
+1(|ε|)

]2
. (58)

In Figure 3, we compare the RS uncertainty products in the superpositions of usual
coherent states and coherent phase states, plotting these quantities as functions of the
argument n0 = ⟨n̂⟩r=0. This means that n0 = |ε|2/(1 − |ε|2) on the right-hand side,
whereas n0 = |α|2 on the left-hand side.

0 1 2 3 4 5
| |2

1

2

3

4

5

D

r = 1
r = i
r = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
n0

0.0

0.5

1.0

1.5

2.0

2.5

D

r = 1
r = i
r = 1
r = 0

Figure 3. The Robertson–Schrödinger uncertainty product D for superpositions of coherent states
(left) and coherent phase states (right) as functions of the mean number of quanta n0 in the states
with r = 0. All numeric results were obtained taking into account 10, 000 terms in series S±1 and S±2.
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All expressions, (52)–(58), do not contain the phase φ of the complex arguments α
and ε. This fact can be understood if one takes into account the equivalence between the
phase change and time evolution. Indeed, the time evolution of states (1) and (3) of a
quantum harmonic oscillator with frequency ω is reduced to the linear evolution of phases
of complex parameters α and ε: φ(t) = φ(0)− ωt. On the other hand, the quantity D is the
simplest quantum universal invariant, which preserves its value during the time evolution
governed by any quadratic one-dimensional Hamiltonian [34,35].

Finding exact numeric values of functions Dev(|ε|) ≡ D1(|ε|) and Dod(|ε|) ≡ D−1(|ε|)
is rather difficult task when |ε| is close to unity. Indeed, using Equations (55)–(56), one has
to find the small difference of very big numbers. The main difficulty is to calculate the
slowly convergent series S+2(|ε|) with high precision. For example, if |ε|2 = 0.99999 (i.e.,
⟨n̂⟩ ≈ 105), we have tn = n|ε|2n < 0.001 if only n > 2.2 × 106. However, an approximate
asymptotical behavior of functions (55) and (56) can be easily found if one takes into
account that a consequence of Equations (23)–(24) and (55)–(56) is the formula

D(|ε|) = σmin
x (|ε|)σmax

x (|ε|). (59)

On the other hand, for r = ±1, when ⟨x̂⟩ = ⟨ p̂⟩ = 0, we have the relations

σmin
x (|ε|) = 1

2
+ ⟨n̂⟩ −

∣∣∣⟨â2⟩
∣∣∣, σmax

x (|ε|) = 1
2
+ ⟨n̂⟩+

∣∣∣⟨â2⟩
∣∣∣. (60)

Since σmin
x (|ε|) → 0 when |ε| → 1, in this limit, we can write

1
2
+ ⟨n̂⟩ ≈

∣∣∣⟨â2⟩
∣∣∣, σmax

x (|ε|) ≈ 1 + 2⟨n̂⟩.

Taking into account Equation (48), we arrive at the following asymptotic expression:

Dr(|ε|) ≈
1
4

ln(1 + ⟨n̂⟩)− 2rS, r = ±1, ln(1 + ⟨n̂⟩) ≫ 1. (61)

The difference ∆D = Dod − Dev remains finite when ⟨n̂⟩ → ∞ (contrary to the case of usual
coherent states): ∆D ≈ 4rS ≈ 1.6.

5. The Mandel Factor

The Mandel factor [36]

Q =
σn − ⟨n̂⟩

⟨n̂⟩ =
⟨â†2 â2⟩ − ⟨â† â⟩2

⟨â† â⟩ (62)

can be easily calculated analytically, both for superpositions (6) and superpositions (8).

5.1. Usual Coherent States

For superpositions (6), we obtain

Qrα =
4Rχα|α|2
1 − R2χ2

α
, R =

2Re(r)
1 + |r|2 , (63)

where χα is defined in Equation (7). Note the (anti)symmetry property Qrα = −Q−rα.
The Mandel factor equals zero not only for the coherent states but for their Yurke–Stoler
superpositions as well. Asymptotically, Qrα ≈ 4R|α|2 exp

(
−2|α|2

)
for |α| ≫ 1. If |α| ≪

1, then Qrα ≈ 4R|α|2/
(
1 − R2), provided R2 ̸= 1. For the exceptional even and odd

superpositions, we have another behavior: Q±1α ≈ ±
(
1 − 2

3 |α|4
)

at |α| ≪ 1. All these
features are clearly seen on the left-hand side of Figure 4.
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Figure 4. The Mandel factors of superpositions of coherent states (left) and coherent phase states
(right) as functions of the mean number of quanta n0 = |α|2 in the original coherent state (1) and
n0 = |ε|2/

(
1 − |ε|2

)
in the original coherent phase state (3) for different values of parameter r.

5.2. Coherent Phase States

The general formula for superpositions (8) has the form

Qrε =
n0

[
1 + R2χ4

ε + 2Rχε

(
1 + χε + χ2

ε

)]
(1 − Rχ2

ε )(1 + Rχε)
. (64)

Here, χε was defined in Equation (9). It can also be written in terms of the mean number of
quanta in the coherent phase state

χε =
1

1 + 2n0
, n0 =

|ε|2
1 − |ε|2 . (65)

We see that Qrε = n0 (as for the thermal states), if R = 0 (in particular, for the single
coherent phase states and the Yurke–Stoler superpositions). The asymptotical behavior
for n0 ≫ 1 is given by the formula Q ≈ n0 + R/2. For n0 ≪ 1, we obtain Qev ≈ 1 + 2n2

0 if
R = 1, while Qod ≈ −1 + 4n2

0 if R = −1. If |R| ̸= 1, the Mandel factor goes to zero when
n0 → 0. However, its behavior is different for positive and negative values of parameter R.
If Im(r) = 0 and |r| ̸= 1, then

Qrε ≈ n0

[
2
(

1 + r
1 − r

)2
−

(
1 − r
1 + r

)2
]

, n0 ≪ 1. (66)

Illustrations of the function Qrε(n0) are given on the right-hand side of Figure 4.

6. Conclusions

We have compared the most popular measures of “non-classicality” – the degree of
squeezing and the Mandel factor – in two families of quantum superposition states. The
strongest squeezing can be observed in the even superpositions. In the case of coherent
phase states, the minimal quadrature variance goes to zero in all three basic kinds of
superpositions: even, odd, and Yurke–Stoler ones, when the mean number of quanta goes
to infinity. For small mean numbers of quanta, the squeezing effect is stronger for the
Yurke–Stoler superpositions, both for the usual and coherent phase states.

Significant differences are observed also in the behavior of the Mandel factor. In
the case of usual coherent states, the type of statistics (sub- or super-Poissonian) does
not depend on the mean photon number in the initial coherent state n0, and the Q-factor
tends to zero with an exponential accuracy when n0 → ∞, for all superpositions. On the
other hand, the sub-Poissonian statistics of superpositions of the coherent phase states
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is observed for odd superpositions with small mean photon numbers. For high mean
photon numbers, the statistics is super-Poissonian for all kinds of superpositions. It is
interesting that the difference Qev − Qod tends to the nonzero (unit) value if n0 → ∞. In
this limit, Q ∼ n0, almost as in the thermal quantum states. Another interesting feature
of the Q-factor is that this factor tends to zero when α → 0 or ε → 0 for all superpositions,
except for two distinguished special cases: Q(0) = ±1 for r = ±1. If the coefficient r is
close to ±1, the functions Qr(α) or Qr(ε) rapidly become very close to the corresponding
exceptional functions Q±1(α) or Q±1(ε). If r is a pure imaginary number, the photon
statistics in superpositions coincides with that of the initial coherent states (or coherent
phase states).

In the case of superpositions of usual coherent states, each component is described
by the Gaussian wave function. It is known that the Robertson–Schrödinger uncertainty
product does not depend on the argument α for all Gaussian states. However, this product
increases approximately as ⟨n̂⟩ = |α|2 in the case of superpositions with |α|2 ≫ 1. On the
other hand, the RS uncertainty product in superpositions of coherent phase states (where
each component is non-Gaussian) grows much more slowly (approximately logarithmically)
as the function of the mean number of quanta ⟨n̂⟩ ∼

(
1 − |ε|2

)−1.
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