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Abstract: Gravity and electromagnetic interactions are the only fundamental physical interactions
(outside the nuclear domain). In this work, we shall concentrate on Hamiltonians containing gravita-
tional interaction, which according to general relativity must be retarded. In recent years, retarded
gravity has explained many of the mysteries surrounding the “missing mass” related to galactic
rotation curves, the Tully–Fisher relations, and gravitational lensing phenomena. Indeed, a recent
paper analyzing 143 galaxies has demonstrated that retarded gravity will suffice to explain galaxies’
rotation curves without the need to postulate dark matter for multiple types of galaxies. Moreover, it
also demystified the “missing mass” related to galactic clusters and elliptic galaxies in which excess
matter was derived through the virial theorem. Here, we give a mathematical criterion that specifies
the cases in which retardation is important for gravity (and when it is not). The criterion takes the
form of an inequality.

Keywords: gravity; general relativity; dark matter

1. Introduction

From a practical standpoint, general relativity (GR) has been validated by numerous
observations spanning various fields. However, its current status presents challenges.
While supported by substantial observational evidence, GR faces significant hurdles. Its
verifications in cosmology and astrophysics are under scrutiny, primarily because it relies
on unproven concepts like dark matter and energy to explain phenomena on a large
scale, such as galaxies and the universe. Often, these unconfirmed elements are employed
while simultaneously overlooking a crucial aspect of GR, retardation, which contradicts
Newtonian principles of action at a distance. This discrepancy may be connected to the
problems we have understanding of gravitational interactions on cosmic scales.

The mystery surrounding dark matter has long been a topic of discussion within the
astronomical community, dating back to the 1930s, and possibly even earlier in the 1920s,
when it was referred to as the “question of missing mass”. Over time, this enigma has only
grown more prominent, particularly as the need for dark matter (and the tendency to over-
look retardation) has increased on larger scales under examination. Despite extensive and
costly efforts, including a forty-year search conducted underground and using accelerators,
dark matter’s existence remains unproven. Recent years have only added to the challenge,
as the Large Hadron Collider’s failure to detect any super-symmetric particles—a favored
form of dark matter among astroparticle physicists—poses further complications. These
particles are not only crucial for understanding dark matter but also play a pivotal role in
string theory, which is anticipated to provide insights into the quantization of gravity.

As far back as 1933, Zwicky observed anomalies in the velocities of galaxies inside the
Coma Cluster that exceeded predictions based on Newtonian theory. He calculated [1,2]
that the required amount of matter to explain these velocities could be about 400 times
greater than that of visible matter, although later adjustments mitigated this discrepancy to
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some extent. Had Zwicky utilized the concept of retarded gravity in his calculations, this
issue might have been resolved without significant complication [3]. In 1959, Volders [4]
noted similar discrepancies on a smaller scale within the outer parts of the nearby spiral
galaxy M33, where velocities did not follow the expected 1√

r pattern. This observation
was corroborated in subsequent years by Rubin and Ford [5–7], who demonstrated that
velocities at the outer rim of many spiral galaxies either plateaued or continued to increase,
each at a different velocity. Previous studies have indicated that such velocity patterns can
be directly inferred from general relativity (GR) if retardation effects are considered [8–11].
The mechanism underlying retardation is intricately linked to the dynamics of the matter
density within galaxies, specifically to the second derivative of density. Changes in density
may result from various factors, including gas depletion in surrounding intergalactic
gas [10] or dynamic processes such as star formation and supernova explosions [8,9]. These
processes can be characterized by three different typical length scales: the density gradient
length, velocity field gradient length, and dynamical length scale. The importance of
retardation is determined by the shortest among these length scales [12].

The famous Tully–Fisher relation [13], which links the baryonic mass of a galaxy to
the fourth power of its rotational velocity at the outer rim, can also be derived from the
principles of retarded gravity [14]. It was shown that the effects of retarded gravity extend
beyond just slowly moving particles and also apply to photons. While there may be some
differences in the mathematical analysis for each case, it is ultimately concluded that the
observed “dark mass” inferred from galactic rotation curves must be identical in both the
lensing and rotation curves scenarios [12].

While the prevailing notion of dark matter remains prominent, the current circum-
stances warrant consideration of the case that this prevailing paradigm may need to be
reevaluated. Several challenges cast doubt on this common idea:

Firstly, in order to align with observed phenomena and structure formation simula-
tions, a set of properties has been assigned to dark matter (DM) [2]. However, despite being
over 50 years since its inception, dark matter has yet to be directly observed, nor have any
known particles been identified that match its purported properties.

Secondly, simulations involving dark matter often encounter what is known as the
core-cusp problem. The Navarro–Frenk–White (NFW) [15] profile, derived from Cold
Dark Matter (CDM) simulations and commonly used to fit rotation curves, is a prime
example. However, this profile faces challenges, particularly when applied to Low-Surface-
Brightness galaxies (LSBs). Derivations made using the NFW profile regarding rotational
velocities frequently diverge from actual observations, leading to discrepancies. Specifically,
while the NFW profile anticipates a “cuspy” internal region for a dark halo (where density
changes rapidly), observations tend to favor a “core-like” behavior (where density remains
approximately constant). Efforts to address this issue have often relied on specific and
somewhat contrived adjustments, raising doubts about whether these solutions were
devised primarily to maintain the current paradigm.

Thirdly, Sancisi’s Law [16] presents a significant and broadly applicable observation.
It suggests that changes in the luminosity profile of a galaxy correspond to changes in its
rotation curve, and vice versa. This phenomenon applies to various types of dark halos.
However, from a dark matter perspective, this relationship is unexpected: the dark halo
is typically assumed to be much more massive than the baryonic matter. Consequently,
fluctuations in the distribution of baryonic matter should not significantly affect the velocity
distribution, contrary to what is observed. This discrepancy is particularly pronounced
in LSBs, where the dark halo is believed to dominate at every radius, yet the velocity
distribution exhibits fluctuations corresponding to each “baryonic bump”. This suggests
that, somehow, the overall velocity distribution is influenced by small fluctuations in
baryonic matter.

Hence, the current retarded gravity proposition offers a unique perspective. Unlike
alternative theories that propose modifications to general relativity, such as Milgrom’s
Modified Newtonian Dynamics (MOND) [17], Mannheim’s Conformal Gravity [18,19], or
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Moffat’s Modified Gravity (MOG) [20], our approach does not seek to alter the fundamental
framework of general relativity. Instead, we adhere strictly to the principle of Occam’s razor,
as advocated by both Newton and Einstein. Our objective is to replace the need for dark
matter with phenomena inherent within standard general relativity itself (retardation). It’s
worth noting that recent research has shed light on the relationship between retardation and
MOND [21], demonstrating how criteria for low acceleration MOND can be deduced from
retardation theory, and how the MOND interpolation function can approximate retarded
gravity effectively.

It is essential to highlight that significant retardation effects are not contingent upon
high velocities of matter within galaxies, although higher velocities may enhance these
effects. In reality, the majority of galactic constituents, such as stars and gas, move relatively
slowly compared with the speed of light. This is indicated by the ratio of the velocity
v to the speed of light in vacuum c, denoted as v

c , which is much smaller than 1. For
instance, typical velocities within galaxies are around 100 km/s, resulting in a ratio of 0.001
or smaller. This will be discussed in more detail in the sections that follow.

In contrast to the solar system, where retardation effects are considered negligible [22],
observations of galaxies’ velocity curves suggest that these effects become significant
beyond a certain distance [8–10]. Recent research [23] has expanded the empirical basis
for the theory of retarded gravity. Building upon previous studies that analyzed eleven
galaxies [9], the latest research extends its scope to a larger sample of 143 galaxies sourced
from the SPARC Galaxy collection. These galaxies vary in type, size, and luminosity. The
analysis indicates that in most cases, an excellent fit to the observed data is achieved
without the need to postulate dark matter or modify general relativity (see Figure 1 for
some examples).

Figure 1. Some rotation curves of ‘Sbc’ type galaxies.

As we show below, this is not an accident but is rather dictated by general relativity.

2. Hamiltonian Systems

Consider a system of N particles, each with a displacement x⃗i, mass mi, and momen-
tum p⃗i. The index i is an integer such that i ∈ [1 − N]. Thus, the dimensions of the phase
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space of such a system are 6N. The classical dynamics of such a system may be derived
from a Hamiltonian H and the Hamilton equations:

−̇→p i = −∂H
∂x⃗i

, −̇→x i =
∂H
∂ p⃗i

(1)

in which ḟ is the temporal derivative of f . The Hamiltonian H is often partitioned into two
parts; kinetic K and potential V:

H(x⃗1 . . . x⃗N , p⃗1 . . . p⃗N) = K( p⃗1 . . . p⃗N) + V(x⃗1 . . . x⃗N) (2)

In which:

K =
N

∑
i=1

p⃗2
i

2mi
, V =

N

∑
i=1,j>i

ϕij(x⃗i, x⃗j). (3)

Now, in nature, there are only four fundamental forces: electromagnetic, gravitational,
nuclear strong, and nuclear weak. The last two are only relevant for the nuclear and
elementary particle scales. Thus, for classical systems, the only important potentials are
electromagnetic and gravitational. In both cases, the two body interaction potentials ϕij
of the type appearing in Equation (3) must be retarded. This is due to the structure of the
Maxwell equations in the electromagnetic case and the structure of general relativity for
the gravitational case. It is the purpose of this paper to derive criteria in which the retarded
potentials may be replaced by an action at a distance potential; this is discussed in the
following sections.

3. A Discrete Model

Retarded gravity emerges from the weak field approximation of general relativity [10].
In this framework, the metric perturbation h00 can be expressed in terms of a retarded
potential ϕ as follows [10,12]:

ϕ = −G
∫

ρ(x⃗′, t − R
c )

R
d3x′, ϕ ≡ c2

2
h00, h00 =

2
c2 ϕ (4)

where G represents the gravitational constant, x⃗ denotes the location where the potential
is calculated, x⃗′ signifies the whereabouts of the mass element producing the potential,
R⃗ ≡ x⃗ − x⃗′, R ≡ |R⃗|, and ρ represents the mass distribution. The characteristic duration R

c
for galaxies might span a few tens of thousands of years, but this is small relative to the
timescale over which galactic density significantly changes. Therefore, we can express the
density using a Taylor series expansion:

ρ(x⃗′, t − R
c
) =

∞

∑
n=0

1
n!

ρ(n)(x⃗′, t)(−R
c
)n, ρ(n) ≡ ∂nρ

∂tn . (5)

By substituting Equation (5) into Equation (4) and retaining the first three terms, we can
derive the following:

ϕ = −G
∫

ρ(x⃗′, t)
R

d3x′ +
G
c

∫
ρ(1)(x⃗′, t)d3x′ − G

2c2

∫
Rρ(2)(x⃗′, t)d3x′ (6)

The initial term in the series is referred to as the Newtonian potential:

ϕN = −G
∫

ρ(x⃗′, t)
R

d3x′ (7)
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The second term does not influence the force acting on subluminal particles since its
gradient is zero. As for the third term, it serves as a lower-order amendment to the
Newtonian potential.

ϕr = − G
2c2

∫
Rρ(2)(x⃗′, t)d3x′ (8)

The geodesic equation governing the motion of a “slow” test particle in the given space–
time metric can be evaluated by utilizing the force per unit mass [10]:

a⃗ ≡ dv⃗
dt

= −∇⃗ϕ. (9)

The total acceleration is thus as follows:

a⃗ = a⃗N + a⃗r

a⃗N ≡ −∇⃗ϕN = −G
∫

ρ(x⃗′, t)
R2 R̂d3x′, R̂ ≡ R⃗

R
,

a⃗r ≡ −∇⃗ϕr = − G
2c2

∫
ρ(2)(x⃗′, t)R̂d3x′ (10)

Now, let us examine a point particle with a mass mj positioned at r⃗j(t). The particle will
possess a mass density given by

ρj = mjδ
(3)(x⃗′ − r⃗j(t)) (11)

Here, δ(3) represents a three-dimensional Dirac delta distribution. This particle induces a
Newtonian potential given by

ϕNj = −G
mj

Rj(t)
, R⃗j(t) = x⃗ − r⃗j(t), Rj(t) = |R⃗j(t)| (12)

and a retardation potential in the following form:

ϕrj = −
Gmj

2c2
∂2

∂t2 Rj(t) =
Gmj

2c2

(
R̂j · a⃗j −

v⃗2
j − (⃗vj · R̂j)

2

Rj(t)

)
,

R̂j ≡
R⃗j

Rj
, v⃗j ≡

d⃗rj

dt
, a⃗j ≡

dv⃗j

dt
. (13)

A test particle at the vicinity of particle j will be accelerated as follows:

a⃗Tj = a⃗Nj + a⃗rj

a⃗Nj = −∇⃗ϕNj = −G
mj

R2
j

R̂j, a⃗rj = −∇⃗ϕr =
Gmj

2R2
j c2

(
R j⃗a⊥j + R̂jv⃗2

⊥j − 2(⃗vj · R̂j )⃗v⊥j

)
a⃗⊥j ≡ a⃗j − (⃗aj · R̂j)R̂j, v⃗⊥j ≡ v⃗j − (⃗vj · R̂j)R̂j. (14)

in which the reader should not confuse the acceleration of the point particle j denoted a⃗j
and the acceleration caused by particle on a test particle located at point x⃗ denoted a⃗Tj.

4. The Inequality of Retarded Gravity

First, we notice that

aNj = |⃗aNj| = G
mj

R2
j

⇒ a⃗rj = aNj

(
R j⃗a⊥j + R̂jv⃗2

⊥j − 2(⃗vj · R̂j )⃗v⊥j

)
2c2 (15)
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For nonrelativistic matter:
β ≡ v

c
≪ 1, (16)

hence, we may approximately write:

a⃗rj ≃ aNj
R j⃗a⊥j

2c2 , a⃗Tj = a⃗Nj + a⃗rj ≃ aNj

(
−R̂j +

R j⃗a⊥j

2c2

)
. (17)

Thus, in order for retarded gravity to have a significant effect,
R j⃗a⊥j

2c2 must be of the order
of a prescribed fraction of unity f r (|R̂j| = 1) or larger, in which f r = 1%, 10%, 100% etc.;
this leads to the retarded gravity inequality (to some readers this may be reminiscent of the
quantum “uncertainty relation” while others may find the suggested resemblance shallow
and even offensive, in any case this has nothing to do with the statistical nature of variables
of quantum mechanics and their related standard deviations):

Rja⊥j

2c2 > f r ⇒ Rja⊥j > 2c2 f r ⇒ a⊥j > ac =
2c2 f r

Rj
. (18)

Consider a point mass located on a circle that serves as a border of the M33 galaxy; then,
we may ask what will be the amount of acceleration suffered by the point mass that will
cause a retardation effect on a test particle located across the diameter of the galaxy (which
is the furthest point on the imaginary circle from the point mass). Now, the radius of the
galaxy M33 is Rs ≃ 30,000 light years =2.8 × 1020 m. Hence, we will need an acceleration
of about (we take f r = 1):

ac =
2c2

Rj
=

2c2

2Rs
=

c2

Rs
≃ 0.00032 m/s2 (19)

to observe the effect of retarded gravity. This does not seem to be such a huge acceleration
and many point masses (atoms, molecules, etc.) in the galaxy may have accelerations that
need to be considered in the total galactic balance of gravitational forces. From this point
of view, we may partition the galactic point masses into two classes: Newtonian gravity
particles and retarded (+Newtonian) gravity particles the difference depends on how big
the Newtonian radius (which depends on the particle’s acceleration; we take f r = 1 for
simplicity, but the reader may choose another value of f r):

Rja⊥j

2c2 < 1 Rj < RNj ≡
2c2

a⊥j
. (20)

This reality is depicted in Figure 2. Of course, each test particle is not affected by just
one massive particle but by all Np massive particles this leads to the equation:

a⃗T =
Np

∑
j=1

a⃗Tj =
Np

∑
j=1

(⃗
aNj + a⃗rj

)
=

Np

∑
j=1

a⃗Nj +
Np

∑
j=1

a⃗rj ≃
Np

∑
j=1

a⃗Nj +
Np

∑
j=1,j∈RG

aNj
R j⃗a⊥j

2c2 (21)

in which RG means particles that have a retarded influence in point x⃗, that is, particles in
which point x⃗ is outside their Newtonian radius. We point out that the stellar component
of disk galaxies is not responsible for the retardation effects. To see this look at the velocity
and acceleration curves of the M33 galaxy depicted in Figure 3:
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Figure 2. Point particles in the galaxy and their Newtonian spheres of influence. For some point
particles, RNint is within the galaxy of Radius Rs; hence, retarded gravity due to those particles does
affect the galaxy dynamics, while for other particles, RNext contains the entire galaxy, and hence
those particle only cause gravitational Newtonian effects.
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Figure 3. Rotation and acceleration curves for M33 [24]. On the left-hand side, we have the complete
rotation curve, depicted by the solid line, representing the combined effect of two contributions:
the dotted line represents the contribution from retardation, while the dashed line represents the
contribution from Newtonian gravity [10]. On the right-hand side is the acceleration, assuming that
the stars and gas move in circles around the galactic center and thus have an acceleration of v2

r , where
r denotes the distance from the galactic center.

Assuming stars (and gas) moving in circles, we obtain accelerations that do not exceed
1.4 × 10−10 m/s2, yielding a Newtonian radius not smaller than RN ≃ 4 × 107 kpc; hence,
the effects of those stars and rotating gas are completely Newtonian within the galaxy. Thus,
to obtain retardation corrections, one must look at other processes taking place in a galaxy
like stellar winds, supernovae explosions [9], and the depletion of gas in the intergalactic
medium [10] leading to the deceleration of the rate of mass accretion by the galaxy and to
an attractive gravitational retardation effect.

5. Conclusions

A recent paper [25] (see also [26–28]) highlights that measurements of gas speed in
the outer regions of galaxies at high redshifts indicate a prevalence of steeply declining
rotation curves, contrasting with the nearly universal flat rotation curves observed in nearby
galaxies. This aligns with the proposition put forth by [10], suggesting that gas depletion
plays a role in generating significant M̈ and implies that older galaxies should not exhibit
significantly smaller M̈, resulting in steep rather than flat rotation curves. Furthermore, the
paper suggests that once a smooth stellar disk forms within the baryonic matter, resembling
properties of high-redshift galaxies, the computed rotation curves consistently remain
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relatively flat at large radii in the gas disk. Strikingly, only simulations devoid of a dark
matter halo successfully replicate observed rotation curves. This finding supports our
theory, which dismisses the presence of dark matter. Moreover, the paper implies that the
flat rotation curves observed in low-redshift galaxies may either result from dark matter
falling into the galactic potential well or necessitate an alternative explanation apart from
dark matter. Indeed, an alternative explanation, considering retardation, is plausible.

This paper does not delve into dark matter on a cosmological scale, as that analysis is
reserved for future work. Instead, it uses a retarded gravity approach that explains local
dark matter phenomena, such as galactic rotation curves, gravitational lensing, and mass
discrepancies inferred from the virial theorem. However, retarded gravity, which is based
on weak-field approximations and a Lorentzian metric, is not suitable for cosmological
scales without further adaptation. An early attempt [29] was made to correct for these scales
through perturbations in the Friedman–Robertson–Walker metric. This may eventually
explain phenomena like the cosmic microwave background (CMB) spectrum and galaxy
formation. A complete cosmological model would also need to explain dark energy in
addition to dark matter to derive the results of ΛCDM cosmology.

Recently, new approaches to cosmology were suggested by Gupta [30–32], with a
model in which the speed of light and gravitational constant vary over time. This leads
to modified Friedman–Robertson–Walker equations that produce dark-energy-like effects
without invoking dark energy and predict an older universe, potentially explaining distant,
mature galaxies observed by the James Webb Space Telescope. This approach complements
the current approach, which is only applicable up to galaxy cluster scales.

Additionally, recently, ref. [33] proposed an initial Euclidean phase of the universe,
avoiding an initial singularity and allowing for early rapid processes that could account
for mature galaxies at high redshifts but without postulating temporal changes in nature’s
fundamental constants. This model, as well as the retarded gravity approach, may offer
complementary explanations for dark matter on different scales, with future perturbation
analysis of the hybrid Euclidean–Lorentzian model possibly shedding further light on
these issues.
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