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Abstract: Performance metrics are measures of success or performance that can be used to evaluate
how well a model makes accurate predictions or classifications. However, there is no single measure
since each performance metric emphasizes a different classification aspect. Model selection proce-
dures based on information criteria offer a quantitative measure that balances model complexity with
goodness of fit, providing a better alternative to classical approaches. In this paper, we introduce
and develop a novel Information Complexity–Receiver Operating Characteristic, abbreviated as
ICOMP-ROC, criterion approach to fit and study the performance of ROC curve models. We construct
and derive the Universal ROC (UROC) for a combination of sixteen Bi-distributional ROC models
to choose the best Bi-distributional ROC by minimizing the ICOMP-ROC criterion. We conduct
large-scale Monte Carlo simulations using the sixteen Bi-distributional ROC models with the Normal–
Normal and Weibull–Gamma pairs as the pseudo-true ROC models. We report the frequency of hits
of the ICOMP-ROC criterion, showing its remarkable recovery rate. In addition to Bi-distributional
fitting, we consider a high-dimensional real Magnetic Resonance Imaging (MRI) of the Brain dataset
and Wisconsin Breast Cancer (WBC) dataset to study the performance of the common performance
metrics and the ICOMP-ROC criterion using several machine learning (ML) classification algorithms.
We use the genetic algorithm (GA) to reduce the dimensions of these two datasets to choose the best
subset of the features to study and compare the performance of the newly proposed ICOMP-ROC
criterion along with the traditional performance metrics. The choice of a suitable metric is not just
contingent upon the ML model used, but it also depends upon the complexity and high dimensional-
ity of the input datasets, since the traditional performance metrics give different results and have
inherent limitations. Our numerical results show the consistency and reliability of the ICOMP-ROC
criterion over the traditional performance metrics as a clever model selection criterion to choose
the best fitting Bi-distributional ROC model and the best classification algorithm among the ones
considered. This shows the utility and the versatility of our newly proposed approach in ROC curve
modeling that integrates and robustifies currently used procedures.

Keywords: Information Complexity; ROC curve; model selection; ICOMP-ROC; Bi-distributional
ROC; Universal ROC; genetic algorithm; performance of classifiers

1. Introduction

A Receiver Operating Characteristic (ROC) curve is a unit square plot for simultane-
ously displaying the tradeoff between the True Positive Rate (TPR), which is the probability
that the model correctly predicts the positive class, and the False Positive Rate (FPR), which
is the probability that the model incorrectly predicts the positive class, for a binary classifier
at different classification thresholds. Therefore, the ROC curve is one of the widely used
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classification tools that helps in assessing the performance of the diagnostic tests and
comparing these tests using intrinsic and accuracy measures, such as sensitivity, specificity,
and the Area Under the Curve (AUC).

In the vast literature on ROC, in terms of Bi-distributions, we see that the most
commonly used Bi-distributional ROC is the Bi-normal ROC model. The Bi-normal ROC
model assumes that the random variables X1 and X2 are distributed according to normal
(Gaussian) distributions with their respective means and variances [1]. Numerous studies
have applied the Bi-normal model, including the recent papers in medical research by
Shibata et al. [2] and Wei et al. [3]. However, in most scientific fields of investigation,
there is no guarantee that the data will follow a normal distribution. Hence, there can
be substantial bias in the pointwise estimates of the estimated ROC curve, which in turn
can creates inaccurate thresholds for the final decision rule. This situation has created a
new opportunity and need for new research direction in ROC models when the normal
distributional assumption is not achievable. In terms of other Bi-distributions, some notable
studies include Bi-Beta [4], Bi-Exponential [5], Bi-Gamma [6], and Bi-Weibull [7], to mention
a few. Despite many years of scientific effort, achieving a comprehensive generalization
has remained elusive and an open area of new research work by many others, as briefly
reviewed in recent related work (Section 2). For example, for the Bi-distributional ROC
curve model, Gneiting and Walz [8] and Gneiting and Vogel [9] proposed the Universal ROC
(UROC) curve, which represents a generalized form of ROC curve model that overcomes
the extent of the present shortcomings in the literature. The UROC curve combines multiple
individual ROC curves into a single curve, weighted based on class configurations. These
configurations are determined by the unique values of the outcome. This process is
performed in a well-defined manner, ensuring the accurate representation of the overall
model performance.

For high-dimensional datasets, the success of statistical modeling techniques depends
on identifying and selecting the most informative predictor variables. High-dimensional
data often have many redundant variables (or features) and a small number of relevant
variables. The presence of redundant variables deteriorates the performance of classification
machine learning (ML) algorithms. Therefore, it is crucial to identify and choose the relevant
variables when datasets contain numerous explanatory variables and there is limited prior
knowledge about their importance. Because of this, choosing the most relevant variables is
a challenge for researchers. When the goal is to classify the high-dimensional datasets and
to minimize the number of false positives and false negatives while maximizing the number
of true positives and true negatives, model selection procedures based on information
criteria offer a superior alternative to classical approaches.

Therefore, in summary, our objective and contributions in this paper are several-fold.

• To address and resolve the existing problems in currently practiced ROC curve mod-
eling, for the first time, we introduce and develop a new Information Complexity–
Receiver Operating Characteristic (ICOMP-ROC) criterion.

• Using the UROC curve formalism, we generalize the Bi-distributional ROC curve
model to the inventory of Bi-distributions and show how to choose the best-fitting
ROC curve model with the ICOMP-ROC criterion.

• The performance metrics fall short because they do not simultaneously consider model
complexity, especially in complex high-dimensional datasets. To robustify the perfor-
mance metrics of classifiers in high dimensions we use the genetic algorithm (GA)
in selecting the best subset of features with ICOMP-ROC that provides a compre-
hensive framework for evaluating model performance and complexity at the same
time, thereby facilitating more informed, reliable, and interpretable results in the
decision-making process.

We organize the rest of the paper as follows. In Section 2, we review the most recent
work on ROC models related to our study and their applications. In Section 3, we briefly
provide the definition of the Universal ROC Curve (UROC). In Section 4, we discuss
the general background of the Information Complexity (ICOMP) criterion. In Section 5,
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we introduce the new ICOMP-ROC criterion and give its derived form for the bivariate
normal (Gaussian) distribution in matrix form. Section 6 presents an inventory of Bi-
distributional ROC curve models using different combinations of probability distributions,
with the Normal–Normal (BiNormal) and Weibull–Gamma being the pseudo-true pair
of Bi-distributional models. The results of large Monte Carlo simulations under two
pseudo-true and a large class of symmetric and asymmetric Bi-distributions commonly
fitted to real datasets are provided in Section 6.1, along with AUC, AIC-ROC, and ICOMP-
ROC values for all the positive and negative classes of distributions. Further, we present
the frequency of success for the Monte Carlo simulation studies. Section 7 is devoted
to two real numerical examples and presents the results of the analysis conducted on
Magnetic Resonance Imaging (MRI) of the Brain data with preprocessing and feature
extraction of the Brain data and Wisconsin Breast Cancer data. In Section 7.1, we present
and use the genetic algorithm (GA) to select the optimal subset of features for dimension
reduction to improve the classification accuracies of the machine learning (ML) classification
algorithms. Section 7.2 presents several ML classification algorithms, including logistic
regression (LR), support vector machines (SVMs), Naive Bayes (NB), k-nearest neighbor
(KNN), and Decision Trees (DT), which are also considered in the recent related work in
Section 2. Section 7.3 presents briefly the traditional performance metrics and how our
newly proposed ICOMP-ROC model selection criteria are computed in the classification
problems. In Section 7.4, we present our main computational results on the two real datasets
and compare the performance of our newly proposed ICOMP-ROC model selection criteria
with other traditional performance metrics. Finally, Section 8 provides our conclusions
and discussion.

2. Recent Related Work

In reviewing the vast literature on Receiver Operating Characteristic (ROC) curve
modeling, most recently, similar to our proposed approach in this paper, we see a new
direction of work by several authors who have studied the utility and performance of the
ROC curve model in various application areas.

Pendrill et al. [10] discuss how the popular ROC curves are evaluated with an attempt
to modernize the ROC curve with its inherent limitations of classic test theory (CTT) such
as non-linearity, the effects of ordinality and confounding task difficulty, and instrument
ability. They take an approach of combining Measurement System Analysis (MSA) and
Item Response Theory (IRT) and examine ROC curves in explicit terms of the Rasch model.
They present a case study in pregnancy testing in order to exemplify the need for improved
performance metrics and the establishment of performance goals for devices with binary
responses. They advocate the linearisation of the traditional ROC curve.

Reshan et al. [11] use the Wisconsin Breast Cancer (WBC) benchmark dataset and
explore automated breast cancer (BC) prediction using multi-model features and ensemble
machine learning (EML) techniques. In the feature extraction process, they suggest a
Recursive Feature Elimination (RFE) technique to find the most important features of the
WBC that are pertinent to BC detection and classification. They propose machine learning
(ML) models to obtain high classification accuracy by adapting and combining the EML
model for BC diagnosis. The ML models they consider include many well-established
classification algorithms to study the performance metrics and to compare their results.

Han [12] presented the results of the performance of the ROC curve in educational
assessment and studied the accuracy and consistency of classification results.

Hichri et al. [13] used the genetic algorithm (GA)-based neural network (NN) for fault
detection and diagnosis with applications to grid-connected photovoltaic (PV) systems to
reduce the number of input features, presenting different scenarios of faults. They used the
performance metrics for validation on a grid-connected PV system using a neural network
(NN) and a GA-based NN to study the accuracy of fault classification results. To validate
the robustness and effectiveness of their method, they proposed other classifiers such as
the Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Convolution
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Neural Network (CNN), Feed-Forward Neural Network (FFNN), and Cascade-Forward
Neural Network (CFNN).

Ibrahim et al. [14] presented a new hybrid Invasive Weed Optimization (IWO) and
machine learning approach for fault detection. They used an IWO-based optimal subset
to reduce the data dimension to increase the average accuracy of the model. The optimal
subset of features was fed into three well-known classification algorithms, which were
trained using k-fold cross-validation to distinguish between the induction motor faults.
A similar strategy was performed by applying the genetic algorithm (GA) to compare
with the performance of the proposed method. The suggested fault detection model’s
performance was evaluated by calculating the ROC curve and the performance metrics.
Their experimental results showed the superiority of IWO for selecting the discriminant
features, which has achieved more than 99.7% accuracy.

In summary, despite all these most recent advances in ROC curve modeling, still
there is a gap in the literature in terms of model selection via the Information Complexity
approach, whether it is choosing the best Bi-distributional ROC curve model or the best
classification technique among a portfolio of machine learning (ML) classification algo-
rithms. To this end, our proposed new approach, as we listed under our contributions, is a
unique contribution to the new direction of research in ROC curve modeling.

3. Universal ROC Curve

Consider a pair of random variables, X and Y, with the joint distribution Q. In this
context, X represents a real-valued score, while Y is a binary event, with the implicit
understanding that higher values of X indicate stronger support for the event Y to occur
(Y = 1). The joint distribution Q for the pair (X, Y) is defined by the prevalence that falls
within the range of [0, 1]. Let π0 = 1− π1 = Q(Y = 0), and let

F(x) = Q(X ≤ x) = π0F0(x) + π1F1(x) (1)

denote the marginal cumulative distribution function (cdf) of the score X. In addition,
this distribution is characterized by conditional cumulative distribution functions (cdf’s)
defined by

F1(x) = Q(X ≤ x|Y = 1) and F0(x) = Q(X ≤ x|Y = 0). (2)

Any threshold value x can be used to predict a positive outcome (Y = 1) if X > x and
a negative outcome (Y = 0) if X ≤ x , to yield a classifier with TPR and FPR, as given in
Equations (3) and (4), respectively.

TPR(x) = Q(X > x|Y = 1) = 1− F1(x) (3)

FPR(x) = Q(X > x|Y = 0) = 1− F0(x) (4)

The ROC curve is a representation that is created through the linear interpolation of
raw ROC diagnostics. It is also a point set that may admit a direct interpretation as a
function. In the case where both F1 and F0 are continuous and strictly increasing functions,
the raw ROC diagnostic and the ROC curve can be identified by a function R, as given in
Equation (5):

R(p) =


0, p = 0,
1− F1(F−1

0 (1− p)), p ∈ (0, 1),
1, p = 1.

(5)

In data analytic practice, the measure Q is the empirical distribution of a sample (xi, yi)
n
i=1

of real-valued scores xi and corresponding binary observations yi. Considering the unique
values of x1, . . . , xn is sufficient for generating the raw ROC diagnostic, and linear interpo-
lation yields the empirical ROC curve [8,9].
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4. A Brief Background of Information Complexity Criterion

In the literature, the importance of model selection based on information criteria has
been recognized and well established by the introduction of the celebrated Akaike’s Infor-
mation Criterion (AIC) by Akaike [15] as an alternative to classical inferential procedures.

AIC is a criterion based on assessing the model’s lack of fit and penalizing the number
of parameters defined by

AIC = −2logL(θ̂k) + 2k (6)

where k is the number of estimated parameters in the model, θ̂k is the maximum likelihood
estimate (MLE) of θk, and L(θ̂k) is the maximized likelihood function. The first term in the
AIC serves as the lack-of-fit component, and 2k is the penalty term. The model with the
minimum AIC value is chosen as the best model to fit the data. Many penalized likelihood-
based model selection criteria (AICc, CAIC, CAICF, TIC, etc.) have been developed based
on Akaike’s work. See Bozdogan [16].

Later, inspired by Akaike’s AIC, Bozdogan developed the informational complexity
(ICOMP) criterion. ICOMP not only considers the goodness of fit and model simplicity
but also it takes the complexity of the model into account.

The general formulation of ICOMP is based on the covariance complexity index of van
Endem [17] in parametric estimation. Instead of penalizing the number of free parameters
directly, the ICOMP penalizes the covariance complexity of the model. Consider a general
multivariate linear or nonlinear model defined by

Statistical Model = Signal + Noise. (7)

ICOMP is designed to estimate the loss function
Lack o f f it

Loss = +Lack o f Parsimony

}
⇒ AIC

+Pro f usion o f Complexity

⇒ ICOMP

in several ways using the additivity properties of information theory. In AIC, a compromise
occurs between the maximized log-likelihood, −2logL(θ̂k) (the lack-of-fit component), and
k, the number of free parameters estimated within the model (the penalty component),
which is a measure of complexity that compensates for the bias in the lack of fit when the
MLE is used. On the other hand, ICOMP has a third term in the loss function called the
’Profusion of Complexity’, which measures how the parameter estimates are correlated
with one another in the model fitting process. Therefore, instead of penalizing the number
of free parameters directly, the ICOMP penalizes the covariance complexity of the model.
It is defined by

ICOMP = −2logL(θ̂k) + 2C(Σ̂model) (8)

where L is the likelihood function, θ̂k is an estimator of the unknown parameter θk, C
represents a real-valued complexity measure; Ĉov(θ̂k) = Σ̂model represents the estimated
covariance matrix of the parameter vector of the model. The most general form of ICOMP,
called ICOMP (IFIM) based on Equation (9), takes advantage of the well-known asymptotic
optimality properties of MLEs and uses the estimated inverse Fisher information matrix
(IFIM) to measure the complexity of a model. In this case, the most general form of the
ICOMP is given by

ICOMP(IFIM) = −2log(θ̂) + 2C1(F̂−1), (9)

where C1 denotes the maximal Information Complexity of (F̂−1) given by

C1(F̂−1) =
s
2

logL

(
tr(F̂−1)

s
,

)
− 1

2
log
∣∣∣F̂−1

∣∣∣, (10)
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where F̂−1 = Ĉov(θ̂k), s = dim(F̂−1) = rank(F̂−1), tr(F̂−1) denotes the trace of IFIM
which measures the average total variation, and

∣∣F̂−1
∣∣ denotes the determinant of IFIM,

which measures the generalized variance. In this way, entropic complexity combines the
two measures of variations in a high-dimensional dataset. For more details on this clever
criterion and its other general forms, we refer the readers to Bozdogan [18] and Sun and
Bozdogan [19].

5. A Newly Proposed ICOMP-ROC Criterion

To define the ICOMP-ROC criterion, let X1 and X2 denote False Positive Rate (FPR)
and True Positive Rate (TPR). Let (X1, X2) have the bivariate normal (Gaussian) distribution
with the joint probability density function given by

fX1X2(x1, x2) =
1

2πσ1σ2(1− ρ)1/2 (11)

× exp

{
− 1

2(1− ρ)2

[(
x1 − µ1

σ1

)2
− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+

(
x2 − µ2

σ2

)2
]}

(12)

where ρ is the correlation coefficient between X1 and X2. It is given by

ρ =
Cov(x1, x2)

σ1σ2
. (13)

In matrix notation, we denote the bivariate normal distribution as(
X1
X2

)
∼ Np=2

(
µ =

[
µ1
µ2

]
, Σ =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

])
. (14)

This pdf is often used in many applications to model the joint pdf of two random
variables X1 and X2. It has five parameters θ =

{
µ1, µ2, σ2

1 , σ2
2 , ρ
}

.
The standard bivariate normal distribution in terms of the sample correlation matrix R is

denoted as (
X1
X2

)
∼ Np=2

(
µ =

[
0
0

]
,R =

[
1 r
r 1

])
. (15)

In general, the probability density function (pdf) of the p-dimensional multivariate
normal (or Gaussian) distribution is

f (x, µ, Σ) =
1√

(2π)p | Σ |
exp

(
−1

2
(x− µ)Σ−1(x− µ)′

)
, (16)

where x and µ are (1× p) vectors and Σ is a (p× p) symmetric, positive definite matrix.
Under the bivariate normal, in terms of the correlation matrix R, the estimated inverse

Fisher information matrix (IFIM), after some work, is given by

F̂−1 =

[
R 0
0 2

n D+
2 (R⊗ R)D+′

2

]
(17)

where D+
p = (D′pDp)−1D′p is the Moore–Penrose inverse of the duplication matrix. The du-

plication matrix is a unique p2 × 1
2 p(p + 1) matrix that transforms, for symmetric matrix A,

vech(A) into vec(A). That is,

Dpvech(A) = vec(A)
(

A = A′
)
, (18)
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where vech(A) denotes the 1
2 p(p+ 1)× 1 vector that is obtained from vec(A) by eliminating

all subradiagonal elements of A. For example, for p = 2; that is, for a (2× 2) symmetric
matrix A, we have

A =

(
a11 a12
a21 a22

)
vec(A) = (a11, a21, a12, a22)

′ and vech(A) = (a11, a21, a22)
′, (19)

where the supradiagonal element a12 has been removed. Then,

D2vech(A) =


1 0 0
0 1 0
0 1 0
0 0 1


 a11

a21
a22

 =


a11
a21
a21
a22

 = vec(A). (20)

The duplication matrix improves the computational time of very large estimated
inverse Fisher information matrix (IFIM) in many applications.

Using the definition of ICOMP in Equation (9), based on IFIM, we now define the
ICOMP-ROC criterion as

ICOMP− ROC(F̂−1) = −2logL
(
θ̂
)
+ 2C1(F̂−1), (21)

and derive its analytical form for the ROC curve model as our fitness function given by

ICOMP− ROC(F̂−1) = n(log(2π) + log|R|+ 1) + 2C1(F̂−1), (22)

where n = n1 + n2 is the total sample size. Note that the sample sizes do not need to be
equal. Further,

C1(F̂−1) =
s
2

log

(
tr(F̂−1)

s

)
− 1

2
log
∣∣∣F̂−1

∣∣∣ (23)

is the maximal entropic complexity of F̂−1, IFIM of the bivariate normal (Gaussian) model.
For the bivariate case, for p = 2, the opened-up form of C1(F̂−1) in terms of the

correlation matrix R is obtained as

C1(F̂−1) =
s
2

log

 tr(R) + 1
n

[
tr(R) + (tr(R))2 + 4

]
s

− 2log|R|+ 3
2

log(n)− log(2), (24)

where s = rank
(
F̂−1). Note that by computing the complexity in this way, we avoid

building the large IFIM, and we only need traces and determinants of IFIM, which is
computationally efficient.

AIC-ROC is defined by

AIC− ROC = n(log(2π) + log|R|+ 1) + 2rank(R). (25)

The rationale for proposing bivariate normal (Gaussian) distribution to fit and score
the ROC curve models stems from the fact that FPR and TPR are dependent, rather than
being independent.

Similar to the interpretation of AIC and ICOMP values, the best result is determined by
the minimum value of AIC-ROC and ICOMP-ROC. Lower values of these criteria indicate a
better model fit and a more accurate identification of the true distribution. This follows the
general principle in model selection, where minimizing AIC or ICOMP reflects an optimal
balance between model complexity and goodness of fit, as commonly discussed in the
literature [16,18]. Applying this concept to ROC analysis ensures that the models with the
lowest AIC-ROC and ICOMP-ROC values are considered the most suitable.
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6. Large Scale Monte Carlo Simulation Studies

In this section, we present the large-scale Monte Carlo simulations that empirically
compare the AIC-ROC and ICOMP-ROC criteria with the widely known AUC from the
literature. The aim of these simulations is to demonstrate that when the distributions of
the negative class (X1) and positive class (X2) are unknown, the ICOMP-ROC criterion
is more effective at identifying the correct distribution compared to AUC. For this
purpose, we assume that the distributions of X1 and X2 are derived from Normal–Normal
and Weibull–Gamma distributions, respectively, with sample sizes of nX1 = 200 and
nX2 = 300. Then, sixteen different Bi-distribution combination scenarios are constructed
by using the probability distributions Normal, Exponential, Weibull, Gamma, EV, GEV
and GP for the negative class X1 and positive class X2 . Table 1 represents several of these
distributions. Table 2 presents the cumulative distribution functions (cdf’s), and Table 3
presents the inverse cumulative distributions (icdf’s) of the probability distributions in
Table 1.

Table 1. Probability distributions.

Distributions pdf

Normal f (x | µ, σ) = 1
σ
√

2π
exp
{
− (x−µ)2

2σ2

}
, for x ∈ R

Exponential f (x | µ) = 1
µ e−

x
µ

Weibull f (x | α, β) = α
βα xα−1e−

(
x
β

)α

, x > 0, α, β > 0

Gamma f (x | α, β) =
βα

Γ(α) xα−1e−βx, x > 0, α, β > 0

EV f (x | µ, σ) =
(

1
σ

)
e(

x−µ
σ ) exp

(
−e(

x−µ
σ )
)

GEV
f (x | µ, σ, k) =

(
1
σ

)
g(x)e−g(x),

where g(x) =
[
1 + k

(
x−µ

σ

)]−1/k
if k 6= 0

GP
f (x | µ, σ, k) =

(
1
σ

)(
1 + k(x−µ)

σ

)(− 1
k−1)

for x ≥ µ when k ≥ 0, and µ ≤ x ≤ µ− σ/k when k < 0

Table 2. Cumulative distributions functions.

Distributions cdf

Normal F(x | µ, σ) = 1
σ
√

2π

∫ x
−∞ e−(

t−µ )
2

dt

Exponential F(x | µ) = 1− e−
x
µ

Weibull F(x | α, β) = 1− e−
(

x
β

)α

Gamma
F(x | α, β) =

I(α,βx)
Γ(α) ,

I(α, βx) = incomplete gamma function

EV F(x | µ, σ) = 1− exp
(
−e(

x−µ
σ )
)

GEV F(x | µ, σ, k) = e−g(x)

GP F(x | µ, σ, k) = 1−
(

1 +
k(x− µ)

σ

)−1/k
for k 6= 0
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Table 3. Inverse cumulative distributions functions.

Distributions icdf

Normal
xp = F−1(p | µ, σ) = {x : F(x | µ, σ) = p}

where p = F(x | µ, σ) = 1
σ
√

2π

∫ x
−∞ e−(

t−µ )
2

dt

Exponential xp = F−1(p | µ) = −µlog(1− p)

Weibull xp = F−1(p | α, β) = −α[log(1− p)]1/β

Gamma
xp = F−1(p | α, β) = {x : F(x) = p}

where p = F(x | α, β) = 1
βαΓ(α)

∫ x
0 tα−1e−

t
β dt

EV xp = F−1(p | µ, σ)

GEV xp = F−1(p | µ, σ, k) = µ + σ
k

((
−log(p)−k − 1

))
for k > 0

GP xp = F−1(p | µ, σ, k)

These cdf’s and icdf’s are then used to derive the Universal ROC Curve (UROC)
in Equation (5) by pairing combinations of each of these distributions. For illustration,
the Weibull–Gamma pair as our pseudo-true distribution is obtained by Equation (26) for
Monte Carlo simulation.

RWG(p) = 1− FW

((
F−1

G
(
1− p, α̂G, β̂G

))
, α̂W , β̂W

)
, (26)

where FW is the cumulative distribution function (cdf) of the Weibull probability den-
sity function (pdf) and F−1

G is the inverse cumulative distribution function (icdf) of the
Gamma pdf.

Let
(
α̂W , β̂W

)
and

(
α̂G, β̂G

)
denote the maximum likelihood estimators (MLEs) of the

Weibull and Gamma distribution, respectively. The MLEs of βW and αW for the Weibull
distribution are the solutions of the simultaneous equation:

β̂W =

[
1
n

n

∑
i=1

xα̂W
i

]1/α̂W

(27)

α̂W =
n

n log β̂W +
(

1
β̂W

)α̂W
∑n

i=1 xα̂W
i log

(
xi

β̂W

)
−∑n

i=1 log xi

. (28)

Similarly, for the Gamma distribution, using the log-likelihood function

logL(αG, βG | x) = n(αGlogβG − logΓ(αG))− (αG − 1)
n

∑
i=1

logxi − βG

n

∑
i=1

xi (29)

we obtain the MLEs by solving the following equations:

∂logL
∂αG

= n
(

logβG −
d

dαG
logΓ(αG)

)
+

n

∑
i=1

logxi = 0 (30)

∂logL
∂βG

= n
αG
βG
−

n

∑
i=1

xi = 0. (31)

From the second equation, we obtain x = αG
βG

. Substituting βG = αG
x into the first

equation, we have

n
(

αG − logx− d
dαG

logΓ(αG) + logx
)
= 0 (32)
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where d
dαG

logΓ(αG) = ψ(αG) is known as the digamma function. Using Equation (32), we
obtain the MLE of αG.

From the above equations, we note that for the Weibull–Gamma pair, the maximum
likelihood estimators (MLEs) cannot be obtained in a closed analytical form. In such cases,
to find the MLEs, we use numerical optimization algorithms. These algorithms begin by
assuming starting initial values for the unknown parameters and then proceed iteratively
until a convergence or stopping criterion is satisfied.

The estimation of the Area Under the Curve (AUC) is inherently dependent upon the
estimation of the ROC curve. The AUC is

AUC =
∫ 1

0
RWG(p)dp (33)

=
∫ 1

0
1− FW

((
F−1

G
(
1− p, α̂G, β̂G

))
, α̂W , β̂W

)
dp. (34)

In general, for Bi-distributions this integral numerically is evaluated using the Gauss–
Kronrod Quadrature (GKQ) algorithm. See Calvetti et al. [20].

In the final step of the simulation, ICOMP-ROC and AIC-ROC values are computed
for the Weibull and Gamma distributions by using Equations (21) and (25), respectively.
These steps are then repeated for each of the sixteen Bi-distribution pairs, with the criteria
recalculated for every pair.

6.1. Results of Monte Carlo Simulation Study
6.1.1. Case 1: Normal–Normal Bi-Distribution Pair

Figure 1a and Figure 1b represent the real and fitted distribution of Normal–Normal
pair as our pseudo-true distribution, respectively.

(a) Real distributions (b) Fitted distributions

Figure 1. Demonstration of real (a) and fitted (b) negative and positive classes for the Normal–Normal
Bi-distribution pair.

In the simulation study for pseudo-true Normal–Normal distribution pair, Table 4
displays the AUC, AIC-ROC, and ICOMP-ROC values of sixteen different Bi-distribution
combination scenarios, covering both symmetric and asymmetric cases commonly en-
countered in real-world data. Bold values indicate the best result for AUC, AIC-ROC,
and ICOMP-ROC. In Table 4, the highest AUC value is obtained for the GP–Normal distri-
bution pair, while the lowest AIC-ROC value is observed for the Exponential–Exponential
distribution pair, and the lowest ICOMP-ROC value is achieved for the Normal–Normal
distribution pair. As a result, the ICOMP-ROC criterion accurately identifies the correct
distribution. In contrast, both AIC-ROC and AUC misidentify the distribution. Further-
more, it is important to emphasize that AUC lacks the information-theoretic foundations
provided by AIC-ROC and ICOMP-ROC and that AIC-ROC itself does not account for
model complexity as robustly as ICOMP-ROC.
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Table 4. Results obtained by running the Monte Carlo simulation once for the Normal–Normal
Bi-distribution pair.

Positive Class Negative Class AUC AIC-ROC ICOMP-ROC

Normal (120.25, 10.88) Normal (121.44, 9.91) 0.5322 924.2721 926.1975
Exponential (120.25, 0) Exponential (121.44, 0) 0.5025 922.9439 930.3891
Weibull (125.28, 11.03) Weibull (125.94, 13.37) 0.5289 925.1229 926.5540
Gamma (123.19, 0.98) Gamma (147.58, 0.82) 0.5335 924.3183 926.2096
EV (125.81, 11.71) EV (126.31, 9.47) 0.5261 925.2603 926.6303
GEV (116.01, 10.43) GEV (118.06, 10.18) 0.5404 926.7968 927.6573
GP (−1.43, 222.86) GP (−1.6, 236.08) 0.4863 925.4887 926.7646
Exponential (120.25, 0) Normal (121.44, 9.91) 0.6345 1036.5695 1033.9353
Gamma (123.19, 0.98) Normal (121.44, 9.91) 0.5370 925.3379 926.6749
Weibull (125.28, 11.03) Normal (121.44, 9.91) 0.5210 925.5925 926.8284
EV (125.81, 11.71) Normal (121.44, 9.91) 0.5177 927.6919 928.3429
GEV (116.01, 10.43) Normal (121.44, 9.91) 0.5385 926.6435 927.5447
GP (−1.43, 222.86) Normal (121.44, 9.91) 0.6558 1019.5691 1017.1146
Weibull (125.28, 11.03) Gamma (147.58, 0.82) 0.4817 926.0646 927.1363
Exponential (125.28, 11.03) Exponential (121.44, 0) 0.6245 1027.2664 1024.7273
Exponential (123.19, 0.98) Exponential (121.44, 0) 0.6270 1032.3725 1029.7804

Note: Normal (µ, σ) with mean µ and standard deviation σ; Exponential (λ) with rate parameter λ; Weibull (α, β)
with scale β, and shape α; Gamma (α, β) with scale β, and shape α; Extreme Value (EV) (µ, σ) with mean µ and
standard deviation σ; Generalized Extreme Value (GEV) (k, σ, µ) with location parameter µ, scale parameter σ,
and shape parameter k; Generalized Pareto (GP) (k, σ) with shape parameter k and, scale parameter σ.

The ROC curves for the sixteen Bi-distribution pairs are presented in Figure 2. A curve
that is closer to the top-left corner represents a better classifier. According to Figure 2,
the GP–Normal distribution pair is closest to the top-left corner. However, the real distribu-
tion pair could not be reliably identified.

Figure 2. The ROC curves for the sixteen Bi-distribution pairs for pseudo-true Normal–Normal
Bi-distribution pair.

Table 5 illustrates the frequency of success for the Monte Carlo simulation study across
different distribution pairs, comparing the performance of AUC, AIC-ROC, and ICOMP-
ROC for 100 runs. Bold values indicate the best result for AUC, AIC-ROC, and ICOMP-
ROC. The results indicate that the Normal–Normal Bi-distribution pair achieves a 100%
success rate using ICOMP-ROC, correctly identifying the true distribution. In contrast,
AUC identifies the GP–Normal distribution pair and AIC-ROC identifies the Exponential–
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Exponential distribution pair as the best fit, with a 100% success rate in this scenario,
but fails to recognize the correct distribution for Normal–Normal. As a result, this further
supports the notion that ICOMP-ROC criteria are more reliable and consistent in identifying
the real distribution pair, particularly when accounting for information criteria.

Table 5. Frequency of success for the Monte Carlo simulation study for the Normal–Normal Bi-
distribution pair.

Positive Class Negative Class AUC AIC-ROC ICOMP-ROC

Normal (1, 1.87) Normal (0.99, 0.71) 0 0 100
Exponential (1.98) Exponential (0.99) 0 100 0
Weibull (2.00, 1.02) Weibull (1.10, 1.47) 0 0 0
Gamma (1.03, 1.91) Gamma (1.98, 0.50) 0 0 0
EV (3.03, 2.54) EV (1.39, 0.93) 0 0 0
GEV (0.49, 0.92, 0.90) GEV (0.16, 0.46, 0.64) 0 0 0
GP (−0.07, 2.13) GP (−0.25, 1.23) 0 0 0
Exponential (1.98) Normal (0.99, 0.71) 0 0 0
Gamma (1.03, 1.91) Normal (0.99, 0.71) 0 0 0
Weibull (2.00, 1.02) Normal (0.99, 0.71) 0 0 0
EV (3.03, 2.54) Normal (0.99, 0.71) 0 0 0
GEV (0.49, 0.92, 0.90) Normal (0.99, 0.71) 0 0 0
GP (−0.07, 2.13) Normal (0.99, 0.71) 100 0 0
Weibull (2.00, 1.02) Gamma (1.98, 0.50) 0 0 0
Weibull (2.00, 1.02) Exponential (0.99) 0 0 0
Gamma (1.03, 1.91) Exponential (0.99) 0 0 0

Note: Normal (µ, σ) with mean µ and standard deviation σ; Exponential (λ) with rate parameter λ; Weibull
(α, β) with scale β, and shape α; Gamma (α, β) with scale β, and shape α; EV (µ, σ) with mean µ and standard
deviation σ; GEV (k, σ, µ) with location parameter µ, scale parameter σ, and shape parameter k; GP (k, σ) with
shape parameter k and, scale parameter σ.

6.1.2. Case 2: Weibull–Gamma Bi-Distribution Pair

Figure 3a and Figure 3b represent the real and fitted distribution of Weibull–Gamma
pair as our pseudo-true distribution, respectively.

(a) Real distributions (b) Fitted distributions

Figure 3. Demonstration of real (a) and fitted (b) negative and positive classes for the Weibull–Gamma
Bi-distribution pair.

In the simulation study for pseudo-true Weibull–Gamma distribution pair, Table 6
displays that the best AUC value is obtained for the Weibull-Exponential distribution,
while the lowest ICOMP-ROC and AIC-ROC values are achieved for the Weibull–Gamma
distribution with bold values indicating the best results for AUC, AIC-ROC, and ICOMP-
ROC. As a result, the ICOMP-ROC and AIC-ROC criteria correctly identify this distribution.
In contrast, the AUC incorrectly predicts the distribution. Moreover, it is essential to
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highlight that the AUC lacks the information criteria foundations provided by AIC-ROC
and ICOMP-ROC.

Table 6. Results obtained by running the Monte Carlo simulation once for the Weibull–Gamma
Bi-distribution pair.

Positive Class Negative Class AUC AIC-ROC ICOMP-ROC

Normal (1.98, 1.87) Normal (0.99, 0.71) 0.3106 1003.7150 1001.4560
Exponential (1.98) Exponential (0.99) 0.3338 953.0782 951.8567
Weibull (2.00, 1.02) Weibull (1.10, 1.47) 0.3542 957.7638 956.3931
Gamma (1.03, 1.91) Gamma (1.98, 0.50) 0.3542 960.5215 959.0718
EV (3.03, 2.54) EV (1.39, 0.93) 0.3620 988.2994 986.2680
GEV (0.49, 0.92, 0.90) GEV (0.16, 0.46, 0.64) 0.3579 955.4247 954.1259
GP (−0.07, 2.13) GP (−0.25, 1.23) 0.3340 952.7373 951.5275
Exponential (1.98) Normal (0.99, 0.71) 0.3693 951.8894 950.7093
Gamma (1.03, 1.91) Normal (0.99, 0.71) 0.3641 952.3061 951.1113
Weibull (2.00, 1.02) Normal (0.99, 0.71) 0.3624 952.7872 951.5757
EV (3.03, 2.54) Normal (0.99, 0.71) 0.3676 1006.6130 1004.3160
GEV (0.49, 0.92, 0.90) Normal (0.99, 0.71) 0.3774 941.7358 940.9978
GP (−0.07, 2.13) Normal (0.99, 0.71) 0.3571 955.0989 953.8105
Weibull (2.00, 1.02) Gamma (1.98, 0.50) 0.6475 938.0450 937.5293
Weibull (2.00, 1.02) Exponential (0.99) 0.6728 944.7688 943.8782
Gamma (1.03, 1.91) Exponential (0.99) 0.6715 944.0736 943.2161

Note: Normal (µ, σ) with mean µ and standard deviation σ; Exponential (λ) with rate parameter λ; Weibull (α, β)
with scale β, and shape α; Gamma (α, β) with scale β, and shape α; Extreme Value (EV) (µ, σ) with mean µ and
standard deviation σ; Generalized Extreme Value (GEV) (k, σ, µ) with location parameter µ, scale parameter σ,
and shape parameter k; Generalized Pareto (GP) (k, σ) with shape parameter k and, scale parameter σ.

According to Figure 4, the Weibull–Exponential and Gamma–Exponential distribution
pairs are closest to the top-left corner and exhibit very close ROC curves. However, the real
distribution pair could not be reliably identified.

Figure 4. The ROC curves for the sixteen Bi-distribution pairs for the pseudo-true Weibull–Gamma
Bi-distribution pair.

Table 7 illustrates the frequency of success for the Monte Carlo simulation study across
different distribution pairs, comparing the performance of AUC, AIC-ROC, and ICOMP-
ROC for 100 runs. Bold values indicate the best result for AUC, AIC-ROC, and ICOMP-ROC.
The results indicate that the Weibull–Gamma distribution pair achieves a 100% success
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rate using both AIC-ROC and ICOMP-ROC, correctly identifying the true distribution.
In contrast, AUC identifies the Weibull–Exponential distribution as the best fit, with a
100% success rate in this scenario, but fails to recognize the correct distribution for Weibull–
Gamma. As a result, this further supports the notion that the AIC-ROC and ICOMP-ROC
criteria are more reliable and consistent in identifying the real distribution pair, particularly
when accounting for information criteria.

Table 7. Frequency of success for the Monte Carlo simulation study for the Weibull–Gamma Bi-
distribution pair.

Positive Class Negative Class AUC AIC-ROC ICOMP-ROC

Normal (1.98, 1.87) Normal (0.99, 0.71) 0 0 0
Exponential (1.98) Exponential (0.99) 0 0 0
Weibull (2.00, 1.02) Weibull (1.10, 1.47) 0 0 0
Gamma (1.03, 1.91) Gamma (1.98, 0.50) 0 0 0
EV (3.03, 2.54) EV (1.39, 0.93) 0 0 0
GEV (0.49, 0.92, 0.90) GEV (0.16, 0.46, 0.64) 0 0 0
GP (−0.07, 2.13) GP (−0.25, 1.23) 0 0 0
Exponential (1.98) Normal (0.99, 0.71) 0 0 0
Gamma (1.03, 1.91) Normal (0.99, 0.71) 0 0 0
Weibull (2.00, 1.02) Normal (0.99, 0.71) 0 0 0
EV (3.03, 2.54) Normal (0.99, 0.71) 0 0 0
GEV (0.49, 0.92, 0.90) Normal (0.99, 0.71) 0 0 0
GP (−0.07, 2.13) Normal (0.99, 0.71) 0 0 0
Weibull (2.00, 1.02) Gamma (1.98, 0.50) 0 100 100
Weibull (2.00, 1.02) Exponential (0.99) 100 0 0
Gamma (1.03, 1.91) Exponential (0.99) 0 0 0

Note: Normal (µ, σ) with mean µ and standard deviation σ; Exponential (λ) with rate parameter λ; Weibull
(α, β) with scale β, and shape α; Gamma (α, β) with scale β, and shape α; EV (µ, σ) with mean µ and standard
deviation σ; GEV (k, σ, µ) with location parameter µ, scale parameter σ, and shape parameter k; GP (k, σ) with
shape parameter k and, scale parameter σ.

7. Real Numerical Examples to Study the Performance of ML Classification Algorithms

In this section, we study the performance of newly proposed information-based
criteria, AIC-ROC and ICOMP-ROC, on two real datasets, along with other traditional
classification performance metrics.

Example 1: In this example, MRI Brain data were used from the Kaggle repository [21].
A brain tumor is an abnormal growth of cells in the brain. These tumors can be categorized
as either benign, which means they are noncancerous and typically grow slowly, or malig-
nant, which means they are cancerous, grow rapidly, and can invade surrounding tissues.
The dataset contains 253 MRI images with 155 malignant and 98 benign binary classes.
Figure 5 displays the MRI images of the malignant and benign cases.

Figure 5. MR images of two classes: malignant (left) and benign (right) tumors.

Preprocessing: Data augmentation was applied to increase the diversity of a dataset by
applying various transformations to the existing data, such as rotating, scaling, and flipping.



Entropy 2024, 26, 988 15 of 24

A Gaussian filter was used to improve the quality of the image through noise suppression,
contract enhancement, intensity equalization, and outlier elimination.

Feature extraction: Feature extraction is the procedure of data reduction to find a subset
of relevant features based on the image. The gray-level co-occurrence matrix (GLCM) is a
statistical method of examining texture that considers the spatial relationship of pixels and
is widely used in various image processing applications to quantify different aspects of
texture. In this study, the perimeter, area, aspect ratio, bounding rectangle width, bounding
rectangle height, energy, correlation, dissimilarity, homogeneity, contrast, and entropy
features were extracted from each image. Additionally, the sobel versions of some features
(Energy-sobel, Correlation-sobel, Dissimilarity-sobel, Homogeneity-sobel, Contrast-sobel,
Entropy-sobel) were derived. As a result, 17 features are extracted based on the GLCM.

Example 2: In this example, we consider the Wisconsin Breast Cancer (WBC) data also
from the Kaggle repository [22]. These data are widely used to classify breast tumors as
benign or malignant for machine learning tasks. It contains 569 instances with 30 numeric
features. The target variable indicates the diagnosis.

Figure 6 shows the process steps of the flowchart of our study of the two real datasets.

Figure 6. Flowchart of the process.

7.1. Feature Selection with the Genetic Algorithm

Since the MRI Brain data consist of images, preprocessing and feature extraction were
performed using GLCM (Gray Level Co-occurrence Matrix). For the Wisconsin Breast
Cancer dataset, preprocessing is not required and the main features are used directly in
the analysis.

For both datasets, the GA is used on all the features using two different GA methods,
namely GA1 and GA2, to select the best subset of the features to improve the performance
of ML classification algorithms. In addition, the best subset of the overlap features were
obtained from both GAs (i.e., GA1 ∩ GA2) by allowing for consistency in the evaluation
process and enabling a direct comparison of the effectiveness of the ML classification
algorithms under identical conditions. The difference between G1 and G2 approaches is
that G2 improves the computational effort by dynamically changing the crossover scheme
in each generation of the GA.

In the increasingly important case of high-dimensional datasets, a genetic algorithm
(GA) can be used to select the best subset of features. As is well known, GA is a part of
evolutionary algorithms inspired by natural selection and genetic operators. GA, a class of
evolutionary algorithms, was originally developed by Holland [23]. In addition to offering
different approaches to solving problems and consistently outperforming other methods
used in searching highly nonlinear spaces in terms of speed and efficiency. GA begins
with a population, which is a set of solutions. In GA, each solution is represented by a
binary string called a chromosome, which has two possible values: 0 and 1. This will
allow inheritance, mutation, and crossover to prevent the local minimum. The criterion to
rank solutions is often called a fitness function, and the best-fitting solutions are kept to
create the following generation. The retained good solutions will be created when the good
solutions that were kept mate. This process is repeated until a specific convergence criterion
is reached or optimal solutions are found. The natural selection approach is frequently
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employed. The chance that an individual will be chosen under this strategy is proportional
to the ratio.

Many challenges across data science and machine learning (ML) problems can be
solved through the application of GAs. Specifically, the genetic algorithm with ICOMP as
the objective function has been successfully used in several research problems by the third
author and his doctoral students.

The GA parameters used in this study for G1 and G2 methods are given in Table 8
below to select the best subset of features to improve the performance of ML classifica-
tion algorithms.

Table 8. GA parameters.

GA1 GA2

Number generations 50 50
Population size 100 100
Crossover probability 0.8 0.6
Mutation probability 0.3 0.001

7.2. Machine Learning (ML) Classification Algorithms

In this study, we employ fundamental classification algorithms including logistic
regression (LR), support vector machine (SVM), Naive Bayes (NB), k-nearest neighbor
(KNN), and Decision Tree (DT). A brief overview of these algorithms is as follows.

The LR model is a statistical modeling technique used to predict the probability of a
dichotomous variable (e.g., 0 for the event not to occur or 1 for the event to happen) based
on one or more input variables. It works by modeling the relationship between variables
using a sigmoid function and a decision threshold for classification. SVM is a supervised
learning algorithm that finds an optimal hyperplane that maximally discriminates between
various classes in an N-dimensional space. The hyperplane is described as a decision
boundary that separates the two classes. The data points closest to the decision boundary,
called support vectors, have the greatest influence on determining the location of the
hyperplane. After identifying the hyperplane, new data are classified based on which side
of the hyperplane they fall on. The NB classification algorithm is a simple yet powerful
probabilistic classifier based on Bayes’s theorem with the naive feature independence
assumption. The KNN algorithm is a nonparametric method used in classification and
regression. The working principle of this method is the assignment of data that are new
in a previously created sample set to the cluster that has the closest (k) distance. The
DT classification is used to categorize data into distinct classes. The method constructs a
tree-like model of decisions, where each node represents a feature, each branch denotes the
outcome of a decision, and each leaf node assigns a class label. This technique is visually
intuitive, making it easy to understand and interpret. For a detailed explanation of the
algorithms, see James et al. [24].

7.3. Performance Metrics and Information-Based Criteria for Classification

A confusion matrix is a table that is often used to evaluate the performance of a
classification model. It shows the number of correct and incorrect predictions made by
the model compared with the actual outcomes in a test dataset. The rows represent the
actual classes, and the columns represent the predicted test results in Figure 7a. Possibilities
after cross-classification then include a true positive (TP), which occurs when the model
correctly predicts the positive class, and a true negative (TN), which is when the model
correctly predicts the negative class. Conversely, a false positive (FP) arises when the
model incorrectly predicts the positive class, and a false negative (FN) occurs when the
model incorrectly predicts the negative class. Using the confusion matrix, which tabulates
the model’s predictions against actual class labels, several performance metrics can be
derived. These metrics include accuracy, precision, recall (also known as sensitivity), F1
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score, and error rate. Table 9 presents these metrics, which are valuable indicators of a
classification model’s effectiveness in accurately classifying instances.

(a) (b)
Figure 7. Illustration of a confusion matrix (a) and ROC curve (b).

Table 9. Performance metrics.

Performance Metrics Definition

Accuracy
TP+TN

TP+FN+FP+TN (35)

Precision
TP

TP+FP (36)

Recall
TP

TP+FN (37)

F1 Score
2×(Recall×Precision)

Recall+Precision (38)

Error Rate FP+FN
TP+FN+FP+TN (39)

Figure 7b shows the ROC curve, which is a graphical display of sensitivity (True
Positive Rate) on the y-axis and 1−specificity (False Positive Rate) on the x-axis for varying
cut-off points of test values. The overall performance of a classifier, summarized over all
possible thresholds, is given by the area under the ROC curve (AUC). The AUC ranges from
0 to 1, with 0.5 representing a random classifier and 1 representing a perfect classifier [25].
In all performance metrics related to classification models (except for the error rate), higher
values indicate better performance.

The computational form of ICOMP-ROC and AIC-ROC for the ML classification
algorithm is the same as in Equations (21) and (25), except, here, in scoring ROC curves, we
use the results from the ML classification algorithms to compute the probability estimates
since the actual response values and predicted response values are obtained. Then, these
results are used in the standard ROC curve in the perfcurve.m function of MATLAB
R2024a to compute the correlation matrix R to score ICOMP-ROC for each of the ML
classification algorithms.

7.4. Main Computational Results

Results of Example 1: Table 10 presents the performance metrics and information-based
model selection criteria for classification algorithms applied to the MRI Brain dataset.

All of our analysis was performed in MATLAB® computational platform. Bold values
indicate the best classifier according to performance metrics and model selection criteria.

According to Table 10, based on both performance metrics and information-based
criteria, the best classification algorithm across full features, GA1, GA2, and GA1 ∩ GA2 is
a Decision Tree (DT), while the worst-performing algorithm is Naive Bayes (NB). When the
performance metrics are examined individually on full features a GA1, GA2, and GA1 ∩
GA2 datasets for DT classification algorithm, the full feature data perform best for accuracy
(0.9520), recall (0.9726), F1 score (0.9617), and error rate (0.0480), while the GA1 leads in
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precision (0.9603) and GA2 performs best for AUC (0.9873). However, when considering
information-based criteria, both AIC-ROC and ICOMP-ROC identify the GA1 as optimal,
with DT achieving the lowest AIC-ROC (−74,696.0000) and ICOMP-ROC (−74,700.0000)
values. In conclusion, for the Brain MRI dataset, the Decision Tree (DT) should be selected
as the classification method due to its consistently superior performance across all metrics.
While performance metrics do not clearly indicate a single best dataset, both AIC-ROC
and ICOMP-ROC values consistently show that the GA1 is the most optimal among all the
datasets. Therefore, the combination of DT with GA1 provides the most effective solution
for this classification task.

Table 10. Comparison of performance metrics and model selection criteria for the Brain MRI dataset.

Accuracy Precision Recall F1Score Error Rate AUC AIC-ROC ICOMP-ROC

Full Features{1:17}

LR 0.7708 0.8012 0.8387 0.8195 0.2292 0.8269 −68,711.0000 −68,714.0000
SVM 0.7768 0.8040 0.8468 0.8248 0.2232 0.8229 −5369.1000 −5371.7000
NB 0.6467 0.7397 0.6645 0.7001 0.3534 0.7125 2891.6000 2890.0000
KNN 0.8348 0.8331 0.9177 0.8734 0.1652 0.9050 −1419.9000 −1423.0000
DT 0.9520 0.9511 0.9726 0.9617 0.0480 0.9846 −71,927.0000 −71,930.0000

GA1{2,3,4,7,8,9,10,11,14,15,17}

LR 0.7508 0.7756 0.8419 0.8074 0.2493 0.7981 −68,281.0000 −68,284.0000
SVM 0.7458 0.7699 0.8419 0.8043 0.2543 0.7952 −3815.6000 −3818.0000
NB 0.6256 0.7584 0.5823 0.6588 0.3744 0.7155 4063.3000 4061.8000
KNN 0.8459 0.8457 0.9194 0.8810 0.1542 0.9187 −189.6200 −192.8300
DT 0.9369 0.9603 0.9371 0.9486 0.0631 0.9857 −74,696.0000 −74,700.0000

GA2{2,3,5,7,8,11,14,16}

LR 0.7568 0.7818 0.8436 0.8115 0.2432 0.8045 −63,835.0000 −63,837.0000
SVM 0.7538 0.7750 0.8500 0.8108 0.2463 0.8008 −7741.9000 −7744.3000
NB 0.5876 0.7921 0.4548 0.5779 0.4124 0.7154 4883.2000 4881.6000
KNN 0.8348 0.8283 0.9258 0.8743 0.1652 0.9105 −965.5900 −968.7300
DT 0.9490 0.9523 0.9661 0.9592 0.0511 0.9873 −70,752.0000 −70,756.0000

GA1 ∩ GA2{2,3,7,8,11,14}

LR 0.7017 0.7118 0.8726 0.7841 0.2983 0.7249 −63,753.0000 −63,754.0000
SVM 0.7007 0.6999 0.9065 0.7899 0.2993 0.7253 −6817.0000 −6818.8000
NB 0.6777 0.6915 0.8677 0.7697 0.3223 0.6992 171.2600 169.4400
KNN 0.8078 0.8138 0.8952 0.8525 0.1922 0.8929 −1256.7000 −1259.7000
DT 0.9289 0.9449 0.9403 0.9426 0.0711 0.9816 −72,029.0000 −72,033.0000

Figure 8 presents the ROC curves for the classification algorithms applied to the Brain
MRI datasets. In Figure 8, the ROC curves are clearly distinguishable, allowing for a
straightforward comparison of the classifiers’ performance. Based on the AUC values, DT
is the best-performing model across all datasets.

(a) Full features (b) GA1

Figure 8. Cont.
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(c) GA2 (d) GA1 ∩ GA2

Figure 8. Comparison of classification methods ROC curves for the Brain MRI dataset.

Results of Example 2: Table 11 presents the performance metrics and information-based
model selection criteria for classification algorithms applied to the Wisconsin Breast Can-
cer datasets. Bold values indicate the best classifier according to performance metrics and
model selection criteria.

According to Table 11, performance metrics (accuracy, F1 score, error rate), and
information-based criteria (AIC-ROC and ICOMP-ROC), the best classification algorithm
across the full features, GA1, GA2, and GA1 ∩ GA2 is Decision Tree (DT). Precision identi-
fies logistic regression as the best classification algorithm for full features, recall highlights
SVM as the best algorithm for the GA1, while AUC indicates KNN as the leading classifier
for both full features and GA1. When the performance metrics are examined individually
for full features, GA1, GA2 and GA1 ∩ GA2, the full features perform best for precision
(0.9952) and recall (0.9953), while GA2 performs best for accuracy (0.9912), F1 score (0.9882),
error rate (0.0088), AUC (0.9995), and information-based criteria AIC-ROC (−43,266.0000)
and ICOMP-ROC (−43,270.0000) values. In conclusion, for the Wisconsin Breast Cancer
dataset, considering all performance metrics except for precision and recall, and taking into
account information-based criteria, Decision Tree (DT) combined with the GA2 provides
the most effective solution for classification.

Table 11. Comparison of performance metrics and model selection criteria for the WBC dataset.

Accuracy Precision Recall F1Score Error Rate AUC AIC-ROC ICOMP-ROC

Full Features{1:30}

LR 0.9877 0.9952 0.9717 0.9833 0.0123 0.9845 −1205.1000 −1208.8000
SVM 0.9877 0.9904 0.9764 0.9834 0.0123 0.9973 −2051.4000 −2054.9000
NB 0.9403 0.9363 0.9009 0.9183 0.0598 0.9887 −737.5500 −741.2200
KNN 0.9807 0.9951 0.9528 0.9735 0.0193 0.9983 −1251.6000 −1255.5000
DT 0.9895 0.9769 0.9953 0.9860 0.0105 0.9978 −40,899.0000 −40,903.0000

GA1{1,2,3,5,7,9,13,17,19,20,22,25,27}

LR 0.9754 0.9714 0.9623 0.9668 0.0246 0.9950 −40,347.0000 −40,350.0000
SVM 0.9789 0.9717 0.9717 0.9717 0.0211 0.9946 −2188.0000 −2191.5000
NB 0.9473 0.9691 0.8868 0.9261 0.0527 0.9880 −98.4600 −101.9800
KNN 0.9754 0.9714 0.9623 0.9668 0.0246 0.9975 −2040.4000 −2044.3000
DT 0.9842 0.9903 0.9670 0.9785 0.0158 0.9972 −41,051.0000 −41,055.0000

GA2{1,3,5,8,11,14,16,17,18,20,22,26,27}

LR 0.9789 0.9808 0.9623 0.9714 0.0211 0.9974 −39,287.0000 −39,290.0000
SVM 0.9789 0.9808 0.9623 0.9714 0.0211 0.9965 −3225.8000 −3229.3000
NB 0.9315 0.9304 0.8821 0.9056 0.0685 0.9837 −416.0700 −419.5700
KNN 0.9807 0.9809 0.9670 0.9739 0.0193 0.9977 −3290.6000 −3294.5000
DT 0.9912 0.9905 0.9859 0.9882 0.0088 0.9995 −43,266.0000 −43,270.0000

GA1 ∩ GA2{1,3,5,17,20,22,27}

LR 0.9684 0.9664 0.9481 0.9571 0.0316 0.9901 −39,915.0000 −39,918.0000
SVM 0.9649 0.9753 0.9293 0.9517 0.0351 0.9895 −3698.1000 −3701.6000
NB 0.9262 0.9167 0.8821 0.8990 0.0738 0.9780 −2632.4000 −2635.9000
KNN 0.9631 0.9614 0.9387 0.9499 0.0369 0.9944 −790.1600 −794.0500
DT 0.9789 0.9762 0.9670 0.9716 0.0211 0.9972 −41,227.0000 −41,230.0000
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Figure 9 presents the ROC curves for the classification algorithms applied to the Wis-
consin Breast Cancer datasets. In Figure 9, the ROC curves are too close; this indicates that
the classifiers make it harder to differentiate between them based solely on the ROC curves.

(a) Full Features (b) GA1

(c) GA2 (d) GA1 ∩ GA2

Figure 9. Comparison of classification methods ROC curves for Wisconsin Breast Cancer data set.

8. Conclusions and Discussion

In this paper, we proposed and introduced new ICOMP-ROC and AIC-ROC infor-
mation criteria for model selection to choose the best Bi-distributional ROC curve model
among a portfolio of Bi-distributions. More specifically, we constructed sixteen different
Bi-distribution combinations in a large-scale Monte Carlo simulation, and we empirically
compared the performance of ICOMP-ROC and AIC-ROC criteria with the widely known
AUC (Area Under the Curve) from the literature to choose the best-fitting Bi-distribution.
Our simulation results are based on an imbalanced dataset. That is, we used different sam-
ple sizes for the negative class (X1) and positive class (X2). From Case 1 of our simulation
experiment, our results showed that the pseudo true Normal–Normal distribution pair
achieved a 100% success hit rate using ICOMP-ROC compared to AUC, which identified
the GP-Normal distribution pair and AIC-ROC identified the Exponential–Exponential
distribution pair as the best fit, with a 100% success rate, but failed to recognize the correct
distribution as the Normal–Normal distribution pair. In addition, in Case 2 of our simu-
lation experiment, we mixed the Weibull–Gamma distribution as a pair of pseudo-true
distribution. In this scenario, our results showed that ICOMP-ROC and AIC-ROC criteria
correctly identified the pseudo-true Weibull–Gamma distribution pair; in contrast, the AUC
incorrectly identified the Weibull–Exponential pair. This is not surprising for the perfor-
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mance of the AUC, even though it is used as a popular metric in ROC curve modeling.
As discussed in Halligan et al. [26], AUC has some drawbacks and limitations. The com-
putational cost of AUC is high since AUC is inherently dependent upon the estimation of
the ROC curve. The computational complexity of AUC is high for multiclass problems,
as reported in Hand and Till [27], Provost and Domingos [28].

Although we relied on the simulation studies in choosing the best Bi-distributions
in ROC curve modeling in the first part of the paper, our proposed approach can be
easily applied to real dataset scenarios in which Bi-distributional fitting is required for the
negative class (X1) and positive class (X2) .

Encouraged by the results of the Bi-distributional fitting, in the second part of the paper,
we considered several well-known classification machine learning (ML) algorithms and
studied their performance on real Magnetic Resonance Imaging (MRI) of the Brain data and
Wisconsin Breast Cancer datasets. More specifically, we considered logistic regression (LR),
support vector machines (SVMs), Naive Bayes (NB), k-nearest neighbor (KNN), and Decision
Trees (DTs). We briefly provided an overview of these algorithms. There are other classification
algorithms, which are listed in Section 2 on recent related work. Our purpose in this part
of the paper was to understand how to select an optimal ML classification model. As is
well known, there are many traditional performance evaluation measures when it comes
to selecting a classification model. We studied the performance of newly proposed novel
information-based criteria, namely, ICOMP-ROC and AIC-ROC, along with other traditional
classification performance metrics. From the practical point of view, our goal was to choose a
classification algorithm with the best predictive performance on the real datasets considered.

In all the ML classification algorithms, the information regarding the performance of
these algorithms, as we discussed, is summarized in a confusion matrix. This matrix is
built by comparing the observed and predicted classes for a set of observations. It contains
all the information needed to calculate most of the traditional classification performance
metrics such as accuracy, precision, recall, F1-score, error rate, and others.

While attempting to determine the true distribution pair for TPR and FPR, and to
identify the best ML classification algorithm for real data, it was observed that performance
metrics introduced challenges in the decision-making process. The inconsistencies and
differing recommendations provided by each performance metric made it difficult to
arrive at a clear conclusion regarding the optimal choice. However, we showed that
ICOMP-ROC provides a clearer and more reliable assessment of classifier performance by
effectively integrating both predictive accuracy and model complexity, thus supporting a
more informed decision-making process in classifier selection. As noted in the literature,
the basic key difference between the ICOMP criterion and AIC is ICOMP’s inclusion of
complexity, which takes into account the correlation structure in the parameter estimates.
Although in the classification results, ICOMP-ROC and AIC-ROC are minimized at the
same ML classifier, we emphasize the fact that ICOMP-ROC, due to its ability to account
for model complexity through the complexity of the celebrated inverse Fisher information
matrix, provides a more robust criterion in high dimensions and eliminates counting and
penalizing the number of parameters in the model explicitly.

Additionally, the use of genetic algorithms (GA) in this study plays a crucial role in
optimizing the feature selection process. GA was employed to reduce the dimensionality
of the datasets by identifying the most relevant features that contribute to classification
accuracy. By mimicking the process of natural selection, GA iteratively refines the fea-
ture set, improving classification performance while reducing computational complexity.
The usage of the GA is particularly important in this study as it helps minimize the model’s
complexity, which is essential for more efficient and interpretable models, thereby helping
to improve the accuracy of ML classification algorithms.

We are cognizant of the fact that in some complex data problems, GA can be slow,
and it will need speeding up. For more on the theoretical and convergence properties of the
GA, we refer the readers to Vose [29]. Further, we do not assume that ROC curve modeling
is suitable for all datasets. The study of the impact of class imbalance on classification
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performance has been undertaken by Luque et al. [30]. Our approach can also handle the
imbalanced data, as we illustrated in the Monte Carlo simulation study as well as in the
real datasets.

There are other bivariate probability distributions to consider to score the ROC curve
other than the bivariate normal (or Gaussian) distribution to guard against the non-
Gaussianity in datasets. In future studies, we will consider other bivariate probability
distributions along with relaxing the Bi-distributional assumption and study the perfor-
mance of the nonparametric approach to ROC curve modeling using the kernel density
estimation (KDE) approach. Further, we will generalize binary classification results to
multi-class classification problems when we have more than two groups.
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NN Neural Network TP True positive
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RNN Recurrent Neural Network FP False positive
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CNN Convolution Neural Network TPR True Positive Rate
FFNN Feed-Forward Neural Network FPR False Positive Rate
CFNN Cascade-Forward Neural Network LR Logistic regression
IWO Invasive Weed Optimization SVM Support vector machine
AUC Area under curve NB Naive Bayes
UROC Universal ROC KNN K-nearest neighbor
AIC Akaike’s information criterion DT Decision Tree
ROC Receiver Operating Characteristic TIC Takeuchi information criterion
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GKQ Gaus-Kronrod Quadrature EV Extreme Value
GEV Generalized Extreme Value GP Generalized Pareto
KDE Kernel Density Estimation CDF Cumulative Distribution Function
PDF Probability Density Function
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