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Abstract: In multi-label data, a sample is associated with multiple labels at the same time, and
the computational complexity is manifested in the high-dimensional feature space as well as the
interdependence and unbalanced distribution of labels, which leads to challenges regarding feature
selection. As a result, a multi-label feature selection method based on feature-label subgraph associa-
tion with graph representation learning (SAGRL) is proposed to represent the complex correlations
of features and labels, especially the relationships between features and labels. Specifically, features
and labels are mapped to nodes in the graph structure, and the connections between nodes are
established to form feature and label sets, respectively, which increase intra-class correlation and
decrease inter-class correlation. Further, feature-label subgraphs are constructed by feature and
label sets to provide abundant feature combinations. The relationship between each subgraph is
adjusted by graph representation learning, the crucial features in different label sets are selected, and
the optimal feature subset is obtained by ranking. Experimental studies on 11 datasets show the
superior performance of the proposed method with six evaluation metrics over some state-of-the-art
multi-label feature selection methods.

Keywords: multi-label data; feature selection; feature-label subgraph association; graph representation
learning; optimal feature subset

1. Introduction

When faced with complicated information presentation, single-label data are incom-
patible with real-world applications for multi-level and multi-view data processing. Multi-
label data [1] are intended to express a sample belonging to one or more categories si-
multaneously and are generally applied in the fields of text [2,3], audio [4,5], image [6,7],
biology [8,9], and so on. In general, multi-label data involve high-dimensional feature space
and many irrelevant and redundant features, which affects the classification accuracy and
increases the computational complexity [10]. As a result, data dimensionality reduction has
become a research hotspot with significant attention, which simplifies the feature space and
highlights the correlation of features, helping to reveal the relationship between features
and labels.

As one of the important approaches of data dimensionality reduction, feature se-
lection [11] purports to select crucial features from the original data, which reduces the
influence of irrelevant features and maintains the interpretability of feature subsets. The
challenges of multi-label feature selection are the correlation of labels, the redundancy
between features and the excessive dimensions of data. There are three categories based on
the search strategy: wrapper, embedded and filter [12]. Among them, wrapper methods
involve information interaction with an off-the-shelf classifier, in which the performance is
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used as a metric for evaluating the quality of feature subsets [13,14]. Embedded methods di-
rectly incorporate the process of selecting features as part of a classifier’s training, designing
objective functions and adding constraint terms to emphasize the geometric structure [15].
For example, Jian et al. [16] proposed mapping label information to a low-dimensional
space to capture label correlations and guide feature selection, minimizing the impact of
imperfect label data (MIFS). Huang et al. [17] used manifold learning to transform the logi-
cal label space into a Euclidean space, constraining sample similarity with numerical labels
(MCLS). Zhang et al. [18] used I; norm and I, ; norm regularization to identify label-specific
and group-specific features, incorporating instance and label-group correlations to execute
feature selection (GLFS). Zhang et al. [19] applied a low-dimensional embedding to capture
local label correlations and co-occurrence relationships, ensuring convergence through I, ;
norm regularization (MDFS). However, both wrapper and embedded methods require large
space complexity as well as many hyperparameters and are dependent on classifiers, which
may lead to overfitting [20]. Filter methods evaluate the feature importance by considering
the distribution of features, which is independent of the classifier and requires relatively
less running time [21,22]. It is categorized into two cases: one transforms multi-label data
into single-label data, and another improves or directly proposes a new criterion. However,
filter methods ignore the influence of the classifier, and the feature importance does not
fully consider the correlation of labels.

Traditional multi-label feature selection methods are incompatible with analyzing the
correlation of features, making it difficult to extract the global information in multi-label
data. To compensate for this issue, information theory [23] was introduced to calculate
the correlation through the ideas such as statistical analysis, entropy and mutual informa-
tion [24-26]. Moreover, the relationship between features and labels is quantified to some
extent [27], and features with strong label dependency are selected based on evaluation
metrics and ranking. However, the relationship between features and labels is usually
based on a single evaluation metric, which makes it difficult to consider the correlation of
labels and fails to grasp the purpose of multi-label classification tasks.

From the perspective of the label, the key issue of feature selection lies in a complete
and accurate understanding of the relationship between features and labels. As a heuristic
search strategy, evolutionary computation [28] uses an inductive algorithm as a “black
box” without any prior knowledge to discover possible crucial features [29], and the co-
occurrence pattern of labels is comprehensively described by an objective. Considering
that the multi-label data involve multiple objectives, multi-objective optimization [30-32]
is used to balance these objectives, such as improving classification accuracy and reducing
the number of selected features, and the feature subsets are obtained that are outstanding
in a variety of aspects. However, the Pareto front [33,34] in multi-objective optimization
still exhibits obvious feature redundancy for specific labels, making the effectiveness of
data dimensionality reduction incomplete.

To obtain the optimal feature subset, it is necessary to explore the relationship between
features and labels. Among them, graph theory [35,36] is commonly used to show the
connection between objects, where the nodes usually represent the entities in multi-label
data (e.g., feature or label), while edges represent the associations between nodes (e.g., re-
lationship or correlation), and they are reflected by the connection of nodes and edges.
Furthermore, the relationship between features and labels is intensively analyzed to reduce
the data dimensionality more effectively. However, each label acts as an independent objec-
tive, and the connection of nodes grows exponentially with the increase in label dimensions,
which affects the efficiency of feature selection.

This paper proposes a multi-label feature selection method based on feature-label
subgraph association with graph representation learning (SAGRL). Among them, features
and labels are mapped as nodes in the graph structure, and highly relevant nodes are
aggregated into the same class to form feature and label sets. They are combined to
construct feature-label subgraphs, which provide sufficient solution space for feature
selection. Furthermore, features in each subgraph are ranked among multiple objectives
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from the perspective of labels to replace the previous feature set. For the feature and label
nodes in each new subgraph, feature combinations are extracted by graph representation
learning. The selected features are ranked to determine their importance and obtain the
optimal feature subset, making them more representative. The main contributions of the
paper are as follows:

*  AnSAGRL is proposed for multi-label feature selection, which considers features and
labels as nodes to construct feature-label subgraphs, and the relationship is adjusted
in each subgraph.

*  Features and labels are mapped into the graph structure, which are aggregated to mine
the intrinsic structural information of multi-label data and highlight the correlation of
features or labels.

¢ The subgraph association is updated based on multi-objective optimization to choose
the Pareto front feature set, remove redundant features from the original data, and
reconstruct new subgraphs.

*  The subgraphs are combined with augmentation paths to match feature and label sets,
and the optimal feature subset is obtained by analyzing and ranking the importance
of nodes.

The remainder of this paper is structured as follows. In Section 2, the related work
is briefly reviewed. In Section 3, the proposed method involves concepts that are briefly
introduced. In Section 4, the proposed method is described in detail. Experimental results
are presented and discussed in different aspects in Section 5. Finally, conclusions and future
work are presented in Section 6.

2. Related Work

In multi-label feature selection, information theory is mainly used to measure the
correlation of entities (features or labels). Evolutionary computation is mainly used as a
way to solve combinatorial optimization problems. The graph structure is mainly used to
construct the relationship between entities. In this section, a brief review of related work is
presented in the following subsection.

2.1. Multi-Label Feature Selection Method Based on Information Theory

Information theory evaluates the feature importance by quantifying the relationship
between features and labels. Doquire et al. [37] employed PPT to transform the problem
and a greedy Ml-based search algorithm to capture dependencies between labels and
features (PPT-MI). Read et al. [38] explained that PPT focuses on capturing relationships
between labels while pruning and reducing overfitting (PPT-CHI). Zhang et al. [39] made
two assumptions about the probability distribution of labels to consider the theoretical
basis, the joint mutual information was utilized to approximate the higher-order mutual
information, and the interaction weights were designed to distinguish the correlation of
labels. Lee et al. [40] considered label interactions when evaluating feature dependency and
selected an effective feature subset by maximizing the dependency between the selected
features and labels (PMU). Li et al. [41] trained classifiers for the information granulation of
each label, which selected features with the most relevant granularity to labels and the least
redundancy in the feature subset. Hu et al. [42] proposed a relevance term on weight for
focusing on the ratio of change in the amount of undetermined and determined information,
which was fused with the evaluation of feature relevance. Lee et al. [43] calculated 2-degree
interactions and a part of 3-degree interactions among features and labels to evaluate the
dependency of input features in multivariate situations (D2F). Gonzalez-Lopez et al. [44]
proposed two distributed methods for vectorized forms between feature and label sets, and
the feature subset was obtained by maximizing the number of the /; norm and geometric
mean of mutual information measures. However, information theory is based on the
static probability distribution and lacks the ability to dynamically adjust the feature subset,
which is insufficient to support different types of data, and it also fails to consider label
co-occurrence well.
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2.2. Multi-Label Feature Selection Method Based on Evolutionary Computation

Evolutionary computation gradually finds the optimal feature subsets by iteratively
changing the feature combinations and assessing its contribution by the evaluation metrics.
Hancer et al. [45] proposed an efficient pre-elimination process, an enhanced initialization
scheme, and an exploration phase inspired by genetic operators, and a selection strategy
based on standard statistical measures and special congestion distances was designed to
consider the properties of feature combinations. Karagoz et al. [28] extracted a subset of non-
dominated features by means of multi-label classification tasks, binary relevance, classifier
chains, and randomized k-label sets; the crucial features were selected to improve the
classification accuracy. Bidgoli et al. [46] used NSGA-III and a binary operator to enhance
the exploration of the search process; two objectives (number of features, classification
error rate) were optimized simultaneously to maximize the correlation of features or
labels. Song et al. [47] proposed a label correlation and group initialization strategy to
accelerate the convergence, and two local search operators were guided to enhance the
exploitation phase based on the feature redundancy. Kashef et al. [48] mapped the features
to a high-dimensional space, and the crucial features were selected by multi-objective
optimization with the help of Pareto dominance. Hashemi et al. [49] regarded multi-label
feature selection as a bi-objective optimization problem investigating the relevance and
redundancy of features and then used Pareto domination to deal with it, differentiating the
validity of features as the increase in label dimensions. Paniri et al. [29] proposed a feature
selection method based on ant colony optimization that iteratively identifies features
to maximize relevance and minimize redundancy using unsupervised and supervised
heuristics (MLACO). However, with the increasing number of objectives, it is difficult to
capture the non-linear relationship between features and labels with the objective definition
based on features. In addition, the evolutionary process easily falls into the local optima,
leading to the feature subset still showing redundancy.

2.3. Multi-Label Feature Selection Method Based on Graph Structure

The graph structure reveals the underlying relationship by mapping features and labels
to nodes and using edges to show the interaction between them. Sun et al. [50] proposed a
dual-graph regularization to project features into low-dimensional embeddings, exploring
the geometric structure of data, and a sparser weight matrix was computed to preferably
accord with the redundant features. Zhang et al. [51] produced pseudo-label matrices by
linear regression and label manifolds, and they used dynamic graph Laplacian matrices
and feature manifolds to jointly constrain the learning of the feature weight matrix. Fan
et al. [52] presented a manifold framework with a regression model to find uncorrelated yet
discriminative features, and a low-dimensional representation based on the feature space
was utilized to fit the distribution of labels. Hashemi et al. [53] used the correlation distance
between features and labels as a matrix, and the PageRank algorithm was applied to rank
the importance of each node (or feature) and obtain the optimal feature subset (MGFS). Ma
et al. [54] proposed a graph embedding learning framework equipped with adaptive graph
diffusion to discover a potential subspace, which preserved the higher-order structural
information between samples among four tuples to position crucial features. Hashemi
et al. [55] constructed a feature-label graph, where features and labels were used as left
and right vertices of a bipartite graph, respectively, and the selected features were ranked
according to the weighted correlation distance (BMFS). However, the above methods
emphasize the geometric structure while significantly affecting the distribution of features
and labels. In addition, the relationship between features and labels is complex in the graph
structure, and it makes it difficult to reduce the computational complexity.

3. Preliminaries

In this section, the main concepts involved in the proposed method are briefly introduced.
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3.1. Multi-Label Learning

In multi-label data, each sample contains a feature vector X; = (x;1, Xj, ...X;y) and a
label vector Y; = (yi1, Vi, - Yic), where D is the number of features and L denotes the label
dimension. The purpose of multi-label learning is to develop a model of N training samples
of a dataset, and the labels for new samples are predicted by the model. Multi-label data
are depicted in Table 1, where 1 indicates that the sample includes the label and 0 indicates
that the sample excludes the label for each row in Y.

Table 1. Multi-label data.

X Y
X, X, . X, Y Y, . Y,
x11 x12 o X1d 0 1 e 0
X21 x22 e Xo4 1 0 e 0
Xn1 Xn2 e Xnd 0 1 e 1

3.2. Mutual Information

In information theory, entropy is a fundamental concept that represents the uncertainty
of a random variable. For a discrete random variable X, its entropy H(X) [56] is defined as
Equation (1).

H(X) = =}, P(x;)log P(x;) ©)

where x; is the possible values of X and P(x;) is the probability of x;. Entropy is considered
an uncertainty measure, a higher value of entropy indicating more significant uncertainty.

Under the preset of another random variable, the uncertainty of the current variable is
defined as the conditional entropy.

P(xi, yi)
H(X|Y) =— P(x;, y;)l 2

where P(x;,y;) is the probability of x; on the condition of Y = y.

Mutual information [57] is calculated based on the difference between the infor-
mation entropy and the conditional entropy to measure the correlation of two random
variables; a higher value indicates a stronger dependency between them, which is defined
as Equation (3).

1Y) = H(X) - H(X|Y) ®)

3.3. Spectral Clustering

Spectral clustering [58] is an unsupervised learning method based on graph theory,
which utilizes the similarity between samples to represent the categorical information. For
a given dataset, the similarity matrix W between samples is defined as Equation (4) [59].

2
Wiy = exp(—%) x; € KNN(x;) or xj € KNN(x;) (4)
0 otherwise
W+ WwT
Wn><n = f (5)

where n denotes the number of samples and KNN(x;) represents the neighbor of the i-
th sample. exp, o, and T denote the exponential function, Gaussian scale function, and
transpose operation, respectively. The Laplace matrix [60] is calculated as Equation (6) with
W and its degree matrix.
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L=D-W (6)

The eigenvalue decomposition is conducted for L, and the eigenvectors corresponding
to the first k smallest eigenvalues are selected to generate a new matrix for clustering it.

3.4. Non-Dominated Sorting

As for multi-objective optimization, a Pareto front is acted as the solution sets in
the space of decision variables, in which it is difficult to further improve one objective
function without compromising others. Suppose that there are M objective functions,
f1(x), f2(x), ..., fm(x), aiming to find a group of decision variables, X, such that it forms a
Pareto front [61] in the solution space, which is defined as Equation (7).

ParetoFront = {x € X|#% € X, Vi, f; (%) < fi(x), 3j, fi(%) < fi(x)} )

To determine the solution that constitutes the Pareto front, a non-dominated sort-
ing [62] is used to identify the dominance relationship between multiple objectives. The
solution set is hierarchically ranked to reveal the priority between solutions, thus mining
the equilibrium between multiple objectives.

3.5. Bipartite Graph Maximum Matching

In a bipartite graph [63,64], the nodes are divided into two vertex-disjoint sets from
left to right, which are notated as U and V. Each edge in the graph connects a vertex from U
and another from V, which is expressed as G = (U, V, E), and E is the edge set connecting
the nodes on either sides.

A bipartite graph provides a concise and efficient way to establish the association
between two independent entities. In Figure 1, e1-¢8 are the matching edges between U
and V [65,66]. To simplify the connectivity relationship between entities, a breadth-first
search is used to determine the largest set of nodes in U that are paired with a vertexin V,
and do not overlap with others, making each vertex is matched only once.

Figure 1. Bipartite graph.

4. The Proposed Method

In this section, the proposed multi-label feature selection method is presented in the
following. The step-by-step procedure of the proposed method is listed in Algorithm 1.
First, the shortcomings of previous methods are briefly summarized, and feasible ways
are given in the motivation. Further, the key techniques of SAGRL are specificly listed,
through the construction of feature-label subgraphs, updating subgraph associations,
the integration and deduplication of matched subgraphs, respectively, and obtaining the
optimal feature subset.
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Algorithm 1: SAGRL for multi-label feature selection

Require: The feature matrix X contains N samples and d features. The label matrix Y
contains N samples and c labels. The clustering numbers k1 and k2 are used for the
features and labels.

Ensure: The optimal feature subset F.

1: FF is calculated by Equation (8) to quantify the correlation of features;

: LL is the frequency of co-occurrence between labels calculated by Equation (9);

ck=k1xk2;

: F1is the result by spectral clustering of FF (k1 is the number of clusters);

: L1 is the result by spectral clustering of LL (k2 is the number of clusters);

: Ris the feature-label similarity matrix calculated by Equation (12);

ar ... Adip

7. Extract submatrix r(i) = Do ;

N Ul W N

L B STOTTAT0)
8: fori =1tokdo
9: Pf(i) is the non-dominant feature in each subgraph found by Equation (7);

10: end for
an ... Iy
11: Updating subgraphs 7/ (i) = Do ;
A1 wor Amn ) pp(i)=L1(i)
12: fori =1tokdo
13: F'(i) is the index of the feature combination obtained by one-to-one matching;

14: end for
15: F” is obtained by the integration and deduplication of F/;
16: F is obtained via ranking by Equation (15);

4.1. Motivation

Multi-label data involve feature—feature, label-label, feature-label dependencies, and
traditional methods mainly focused on feature redundancy, which fail to fully consider
the co-occurrence patterns of labels. In multi-objective optimization, when the number of
objectives exceeds a threshold, it may cause most of the features become non-dominated,
making the feature subset still redundant. In addition, it is difficult to reflect potential
node connections by regarding multi-label data as the graph structure, which affects the
relationship between features and their corresponding labels.

For the above problems, SAGRL is utilized for multi-label feature selection to efficiently
analyze the features corresponding to each label set. Among them, graph representation
learning expresses the complex correlations of features or labels by mapping multi-label
data into the graph structure, and the feature and label sets are combined to construct
feature-label subgraphs. To better associate the subgraphs, the connection relationship be-
tween them is adjusted based on multi-objective optimization, and non-dominated sorting
is employed to remove highly relevant features. Features and labels in each subgraph are
matched one to one, and all feature combinations are integrated and deduplicated to obtain
the optimal feature subset.

4.2. Feature—Label Subgraph Construction

Multi-label data are viewed as the graph structure, and edges connecting nodes
indicate correlation. Spectral clustering is performed from the perspectives of features
and labels, the graph is cut to form feature and label sets and then construct feature—label
subgraphs. The process of feature-label subgraph construction is shown in Figure 2:
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Mapping node Connecting node Clustering node Subgraph construction

Figure 2. Feature-label subgraph construction.

To quantify the correlation of features, mutual information is used as a criterion to
capture its linear relationship and also to more effectively measure non-linear feature
dependency; the similarity matrix is defined as Equation (8).

ffu ffo - fha
ffar ffo - ffu

FCixa = (8)

fn ffo - ffu

where d denotes the number of features, and F;; indicates the correlation of the i-th and j-th
feature that is calculated by Equation (3). The co-occurrence frequency is used to reveal the
correlation of labels which visually reflects the probability of the simultaneous occurrence
of labels in the dataset. The co-occurrence frequency matrix is defined as Equation (9).

Iy lyp -

Yi1 (ki == 1&&yp; == 1) Iy by - e
Lccxc = n = . . . .

. . . . (9)
llcl lch e e

As the connection is established between nodes, two weighted graphs are output
and notated as Graphl(F,E1) and Graph2(L, E2). The above graphs are partitioned into
k1 and k; subgraphs to reduce the space complexity. Taking Graphl as an example, the
minimization of edge weights in the subgraph and the maximization of edge weights be-
tween different subgraphs are pursued after partition; for k subgraph nodes A;, Ay, - - -, Ay,
AiNA;j =0, A1UAU---UA =V, the objective function is defined as Equation (10) [67]:

min Cut(V) = min ) wjj (10)

?}iGAk’UjGAk,Ei]'GE

where w;; denotes the edge weights between the i-th and j-th node (feature), min is the
minimum, and cut represents cut graph operation. Due to the fuzzy constraints, it is
necessary to qualitatively introduce indicator vectors to refine the objective function, and the
Lagrange multiplier [68] is used to transform the constrained problem into an unconstrained
problem, which is shown in Equation (11).

min Tr(H'LH) < min A (11)

where H and L denote the indicator and Laplace matrices, and A is the eigenvalue of L. The
corresponding eigenvectors of A splice a matrix as an approximate solution of H, and the
clustering results are achieved by discretization. Feature and label sets are constructed into
a subgraph that provides the entity information for considering the relationship between
features and labels.

4.3. Feature-Label Subgraph Association Updating

The feature-label similarity matrix is calculated to represent the objective value of
features on the corresponding labels, and it further extracts the submatrix for each subgraph.
Labels are acted as independent objectives, non-dominated sorting is applied to select the
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Feature-label subgraph

Feature-label
similarity matrix

features on the Pareto front in each subgraph when multiple objectives are considered at
the same time, and the process of feature-label subgraph association adjusting is shown in
Figure 3 (Using the subgraph circled with red lines in Figure 2 as examples).

U

MEHEE]

Extract submatrix ’ Updating subgraphs

Non-dominated sorting

Figure 3. Feature-label subgraph association updating.

The association degree of features and labels is comprehensively considered by calcu-
lating the feature-label similarity matrix, which is defined as Equation (12).

Wi Wi - Wy
cov(x, 21 W 21
Rixe =1— boy) _f T T T (12)
var(x) - var(y) : : L
Wi War - Wy

where x and y denote features and labels, respectively, cov(x, y) is the covariance of x and
y, and var(+) indicates the variance.

In multi-objective optimization, the subgraph uses non-dominated sorting to yield its
Pareto front, which makes the selected features more fitting to different distributions of
labels in each subgraph. The 3rd subgraph in Figure 4 shows 6 features indexed 1, 2, 3, 6, 8,9
and 3 objectives with labels indexed 1, 3, 5: M1, M2, and M3, and the submatrix is r. As for
the non-dominated sorting, the red circles 1, 3, 6, and 9 denote the non-dominated features,
which are the members of a Pareto optimal set and surround the dominated features (green
circles), while the orange circles indicate objectives. Among them, the red circle has a larger
W value in more than one dimension compared to the others. The feature indexed {1,3,6,9}
on the Pareto front is known from the figure, so the feature-label submatrix is updated as

T

Wi Wy Wi Wer Wg Wog Wi Wz We Wy

ror=| Wiz Wa Wi We Wgs Wog = Wiz Wiz Wez W
Wis Was Wis Wes Wgs Wos Wis Wss Wes Wos

4.4. Feature—Label Subgraph Matching

Since each subgraph includes multiple objectives, there are still some redundant
features. As a result, a bipartite graph is applied to match features and labels by one to one
for new subgraphs and acquires a series of feature combinations. In particular, the same
features may exist in different subgraphs, avoiding the phenomenon of different labels with
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Feature-label subgraph

same feature combination. The optimal feature subset is obtained by integrating feature
combinations after ranking, and the process of feature-label subgraph matching is shown
in Figure 4.

)

The optimal
feature subset

Integration and
deduplication

Maximum matching
of bipartite graphs

Extract submatrix

Figure 4. Feature-label subgraph matching.

Since feature-label subgraph matching requires the number of two sets (left and right
vertices) to be equal, a squareization operation is essential on the submatrix. As for the 3rd
subgraph in Figure 6 with 4 features (indexed 1, 3, 6, 9) and 3 labels (indexed 1, 3, 5), the
submatrix is 7. The cost matrix is calculated by the all-1 matrix subtracting r’ and matching
the feature-label subgraph to find B; the best match scheme is underlined. The feature
indexes F’ are extracted by each label from B. As shown in the matrix, 1 — 1,3 — 5,9 — 3.
The blue and yellow circles (features) in the figure are selected repeatedly by different
labels, so it is necessary to conduct integration and deduplication for feature combinations.
Additionally, the PageRank [69] algorithm is utilized to assign weights for features, thus
ranking the features and obtaining the optimal feature subset, and the weighting of features
is defined as shown in Equation (13).

PR(V})

PR(V;) = (1—d) +d x ) e (V) (13)

where PR(V;) is the PageRank value of V;. d is the damping factor, which is usually set to
0.85. In(V;) is the nodes directed to V;. L(V;) is the out-degree of V.

Wi, Wis Wis 089 0.05 0.15 089 0.05 0.15 0
| W W Wi | [ 001 005 098 001 0.05 098 0
W Wz Wes 075 0.75 0.95 075 075 095 0
Wo; Woz Wos 0.05 0.80 0.60 005 0.80 0.60 0
0 075 080 O 0.89 0.05 0.15 0
g | 091 078 0 003 |, _ [ 00l 005 098 0
014 005 0 O 075 075 095 0
084 0 035 0 005 0.80 0.60 0

5. Experimental Studies

In this section, we verify the performance of the proposed method through comprehen-
sive experiments, utilizing datasets in different domains, evaluation metrics, experimental
settings, comparisons with other state-of-art multi-label feature selection methods, and the
analysis of parameter sensitivity.
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5.1. Datasets

The datasets used for the experiments are derived from both the Mulan (http://mulan.
sourceforge.net/datasets.html, Accessed: 5 August 2024) and Meka (http:/ /waikato.github.
io/meka/datasets/, Accessed: 5 August 2024) databases, covering text, image, audio, and
bioinformatics domains. Table 2 summarizes the specifications of these datasets, including
dataset name (Datasets), number of samples (Samples), number of features (Features),
number of labels (Labels), and feature type (Type). In addition, label cardinality (LC) [48] is
the cardinality normalized by |L| defined by Equation (14), label density (LD) [48] is the
average number of labels associated with each sample as defined by Equation (15), and the
domain of the dataset (Domain) is also included.

1 N
LC(D) = - Y |V (14)
N3
1 &Yl
LD(D) = — i) 15
i=1
Table 2. Description of datasets.
Dataset Samples Features Label Type LC LD Domain
Arts 5000 462 26 Numeric 1.6360 0.0629 Text
Bibtex 7395 1836 159 Nominal 2.402 0.015 Text
Corel5k 5000 499 374 Nominal 3.5220 0.0094 Image
Education 5000 550 33 Numeric 1.4606 0.0443 Text
Emotions 593 72 6 Numeric 1.869 0.311 Audio
Enron 1702 1001 53 Nominal 3.3784 0.0637 Text
Image 2000 294 5 Numeric 1.236 0.247 Image
Medical 978 1449 45 Nominal 1.2454 0.0277 Text
Scene 2407 294 6 Numeric 1.0740 0.1790 Image
Social 5000 1047 39 Numeric 1.2834 0.0329 Text
Yeast 2417 130 14 Numeric 4.237 0.303 Biology

5.2. Evaluation Metrics

Among them, Hamming Loss, Ranking Loss, Coverage, Average_Precision, macrofl1,
and microf1 are used as the evaluation metrics [70] to measure the performance of SAGRL.
Let U = {(x;,Y;)|1 <i <t} bea testsetand f(x;) be the predicted label set for unknown
instance x;.

Hamming Loss: This metric evaluates the average error rate over all the binary labels,
and @ is the symmetric difference between two sets, where |-|; denotes the /; norm.

11
HL(f,u) =) §|f(xi) @ Yil; (16)
i=1

Ranking Loss: This metric evaluates the fraction of reversely ordered label pairs, f;(x;)
indicates the j-th term of f(x;), and Y; is the complementary set of Y; in L.

L I fi(xi) < fielxi), (L, 1) € Yy x Vi }|
il [Yi]

RL(f,u) = 12 [ (17)


http://mulan.sourceforge.net/datasets.html
http://mulan.sourceforge.net/datasets.html
http://waikato.github.io/meka/datasets/
http://waikato.github.io/meka/datasets/
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Coverage: This metric evaluates how many steps are needed, on average, to go down
the label ranking list so as to cover all the ground-truth labels, and rank(x;, I;) returns the
rank of [} in L when all labels are sorted based on f in descending order.

CV(f,u) = ! Zt:maxmnk(xi, ) —1 (18)

iz lkey;

Average_Precision: This metric evaluates the average fraction of relevant labels ranked
higher than a particular label Iy € ;.

Zt: 1 y L = {lj|rank(x;, 1;) < rank(x;, I) }|
= |Yil ey, rank(x;, l)

AP(f,u) = (19)

Macrof1: This metric evaluates the classification accuracy of a label set, which consid-
ers F-measure averaging on each label.

1 200 viifi(x)
MaF(f,u) = =
o) q ]; Yioq Yij + Xi fi(xi)

(20)

Microf1: This metric evaluates the classification accuracy of a label set, which considers
F-measure averaging on the prediction matrix.

2y |f(xi) N Y],
i 1Yl + Xl 1 f (xi) g

For Hamming Loss, Ranking Loss, and Coverage, lower values indicate better performance,
while for Average_Precision, macrofl, and microfl, higher values indicate better performance.

MiF(f,u) = 1)

5.3. Experimental Setting

In this section, the proposed method is evaluated on 11 public datasets. To justify the
performance, it is compared with several multi-label feature selection methods: PPT-CHI
(Pruned Problem Transformation—-CHI-square) [38], PPT-MI [37], PMU (Pairwise Multi-
Label Utility) [40], D2F [43], MIFS [16], MCLS [17], MDEFS [19], MGFS [53], MLACO [29],
BMEFS [55], and GLFS [18]. All parameters of the comparison methods are set according
to the recommendations in the corresponding paper. Among them, 60% of the samples
are chosen randomly as the training data and the remaining 40% are used as the test data,
and the experimental results are averaged over 20 independent runs. All experiments are
performed on a Microsoft Windows 10 operating system Intel(R) Core(TM) i7-10700 CPU
using Matlab_R2021b.

MLKNN [71] is a commonly used classifier for multi-label classification tasks that ex-
tends the traditional K nearest neighbor classifier. By considering the neighbor distribution
of each label, the Bayes rule is applied to predict the applicability of labels.

For the low dimension of features or labels, fewer features are matched to the corre-
sponding labels. For the datasets with less than 300 features, only the evaluation metrics
with {1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} features are applied for plotting, and for those
with more than 300 features, {1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} are applied for plotting.
In the figure, the horizontal coordinate represents the number of features, and the vertical
coordinate represents the evaluation metrics.

5.4. Results and Discussion
5.4.1. Results for Different Datasets
The curves of comparison methods on 11 datasets in terms of six evaluation metrics

are shown in Figures 5-15. The experimental results show that the proposed method
outperforms most of the comparison methods in six evaluation metrics, which emphasizes
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the effectiveness of accurately identifying and predicting labels. On the Corel5k dataset,
the values of all methods on Hamming Loss are around 0.00945, and the convergence
trend is unobvious, which may be related to the inherent characteristics of the dataset
as the label dimension is 374 and the LD is only 0.0094. When the number of features is
between 50 and 70, the additional features have a certain effect for the ranking on the Social
dataset, and the fluctuations in ranking loss, coverage, and average precision are 0.007, 0.27,
and 0.06, respectively. On the Bibtex and Education datasets, SAGRL exhibits the same
convergence trend as MDFS and the values are better, which performs more prominently
when the number of selected features is small and shows the potential to cope with the
“curse of dimensionality”. From a domain perspective, the “text” domain demonstrates a
clear advantage, particularly on the Bibtex dataset dataset, where performance is superior
to other comparative methods when the number of features is kept between 0 and 20. On
the Corel5k dataset, while the convergence trend of the Hamming Loss exhibits potential
for improvement, other metrics performed well. In contrast, the limited numbers in the
“Audio” and “Biology” domains prohibit a more in-depth analysis in these areas.

DataSet:Arts

DataSet:Arts DataSet:Arts 63

8

B

Hamming Loss
°
a

Renking Loss

T R S
0 10 20 30 4 50 0 4 50 60 40 50 60
Number of features Number of features Number of features
DataSet:Arts DataSet:Arts DataSet:Arts

s.
70 8 9 100 0 10 20 3 70 8 9 100

a—
sl
sl
g
°

Average Precison

reoirs —e—sacal

Z ®
0 10 20 30 4 5 6 70 8 9 100 0O 10 20 30 4 5 60 70 8 9 100 0 10 2 30 4 5 60 70 8 9 100
Number of features Number of features Number of features
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5.4.2. Comparison of Running Time

Table 3 records the running time (in seconds) of SAGRL with all the comparison
methods on 11 datasets, and the experimental results show that the running time of the
proposed method is less than 1 s for all datasets. Even on the Bibtex dataset, it takes only
0.641 s, MGFS takes 1.197 s, and the other methods are over 10 s or more. The running
time of SAGRL is slower than MGFS and PPT-MI by 0.227 s and 0.094 s on the Corel5k and
Medical datasets, respectively, but it outperforms them in terms of classification accuracy,
and the running time is obviously excellent on the other datasets. For example, on the
Arts, Education, Enron, and Social datasets, SAGRL takes only 0.03 s, 0.042s, 0.116 s,
and 0.115 s, while the others also take 0.14 s, 0.129 s, 0.243 s, and 0.307 s especially for
MGEFS. SAGRL divides the feature and label sets into smaller, more manageable subgraphs
through spectral clustering, minimizing inter-subgraph correlations. Each subgraph is
processed individually, reducing computational load. Combined with selective ranking
and aggregation mechanisms, it ensures that the computation time stays under 1 s for
all datasets. The advantage of running time indicates that SAGRL is fast enough for
feature selection and exhibits exceptional consistency and reliability across datasets from
different domains.

Table 3. Running time comparison (in s). N/A denotes that time cost is over 1000 s.

Dataset SAGRL PPT-CHI PPT-MI PMU D2F MIFS MCLS MDFS MGFS MLACO BMFS GLFS
Arts 0.03 1.0112 0.3939 274.337 N/A 0.6356 4.196 3.146 0.14 1.749 0.5045 2.762
Bibtex 0.641 24.48 23.819 N/A N/A 16.366 57.092 59.852 1.197 37.508 14.842 137.417
Corel5k 0.496 3.395 3.33 N/A N/A 15.289 30.2265 34.204 0.269 2.042 1.377 10.244
Education 0.042 1.198 0.388 405.691 N/A 0.804 9.425 3.293 0.129 3.069 0.776 2.573
Emotions 0.008 0.1052 0.008 1.537 15.666 0.038 0.3 0.067 0.033 0.188 0.063 0.411
Enron 0.116 0.785 0.645 N/A N/A 0.789 1.731 17 0.243 9.694 2.204 6.798
Image 0.009 5.125 0.01 24.733 545.616 0.164 2.186 1.527 0.038 0.899 0.359 1.634
Medical 0.182 0.341 0.088 585.991 N/A 0.494 0.791 0.417 0.271 13.364 4.59 1.623
Scene 0.01 3.486 0.059 29.156 720.362 0.147 2.799 1.798 0.068 0.945 0.466 2.772
Social 0.115 1.849 0.536 931.107 N/A 1.714 13.538 4.019 0.307 10.901 3.45 4.981
Yeast 0.01 2.5701 0.0199 17.512 287.1788 0.114 10.512 1.01 0.021 0.242 0.031 1.199

5.4.3. Statistical Analysis of Evaluation Metrics

To compare the performance of SAGRL with other comparison methods statistically,
the Friedman N*N test is used to calculate the ranks on 11 datasets, and the overall
wins/ties/losses of SAGRL are summarized versus other methods. A lower sum of ranks
indicates better performance against others. In all, the numbers in parentheses are the
rankings of methods in different evaluation metrics. The last row denotes the ranking sum.
From the rankings shown in Tables 4-14, the proposed method is ranked in the top 3 on
the Bibtex, Emotions, and Medical datasets, and it is ranked further on all other datasets
are 1st overall. On the Enron, Image, and Scene datasets, it ranks 1st for all evaluation
metrics. Table 15 shows the sum of wins/ties/losses for SAGRL versus the others on all
datasets. According to the last row, among 66 cases (11 datasets* 6 evaluation metrics),
SAGRL significantly wins over PPT-CHI, PPT-MI, PMU, D2F, MIFS, MCLS, MDEFS, MGFS,
MLACO, BMFS, and GLFS 61, 62, 66, 65, 66, 64, 59, 53, 66, 50, and 54 times, respectively.

Table 4. Average ranking of comparison methods for 6 evaluation metrics by performing the Friedman
test on the Arts dataset.

Method

Evaluation Metrics —g ) e~ ppr.cHir ~ PPEMI PMU D2F MIFS MCLS MDFS  MGFS  MLACO  BMFS GLFS
Hamming Loss 364[4] 1041[10] 695[6] 8.09[9] 7.68[8] 10.82[11] 11.09[12] 5.8[5] 205[2] 7.14[7] 145[1]  3.50[3]
Ranking Loss 2.09 [1] 8.23 [8] 509[6] 1041[11] 10.05[10] 10.86[12] 9.50[9]  245[2]  441[4] 723[7] 327[3]  441[5]
Coverage 1.73 [1] 8.14 [8] 464[5] 1041[11] 995[10] 10.82[12] 9.73[9]  2.36[2]  495[6] 7.23[7] 3.73[3]  4.32[4]
Average_Precision 2[1] 959[10]  527[6]  9.14[9] 98] 1064[12] 1027[11] 336[2] 377[4] 727071 336[2] 432[5]
MacroF1 1.64 [1] 9.41[9] 6.09[6]  886[8] 9.68[10] 11[12]  1064[11] 336[3]  3.5[5] 714[7]  327[21  341[4]
MicroF1 264[3]  986[10]  6.09[6] 859[8] 877[9]  11[11] 11.18[12] 3.64[4]  241[1] 75071  255[21  377[5]
Sum of ranks 13.74[1] 55.64[10] 34.13[6] 555[9] 5513[8] 65.14[12] 6241[11] 20.35[3] 21.09[4] 4351[7] 17.63[2] 23.73[5]




Entropy 2024, 26, 992 18 of 24

Table 5. Average ranking of comparison methods for 6 evaluation metrics by performing the Friedman
test on the Bibtex dataset.

Method
Evaluation Metrics —g 3 ey~ ppr.cir ~ PPEMI PMU D2F MIFS MCLS  MDFS  MGFS  MLACO  BMFS GLFS
Hamming Loss 1.86 [1] 114 5] 673171 1064[11] 855[9] 11.82[12] 1055[10] 4.05[4] 364[3] 827[8] 536[6] 241[2]
Ranking Loss 2.64[2] 4.8216] 6.82[7]  1055[10] 855[9]  11.27[12] 11.18[11] 4.18[5] 391[4] 827[8] 345[3]  236[1]
Coverage 2.642] 4.45[6] 673[7] 1055[10] 845[9] 10.82[11] 11.55[12] 436[4] 3.36[3] 836[8] 436[4] 236[1]
Average_Precision  3.45 [3] 49115] 636[7]  1055[10] 7.82[8]  1155[12] 1091[11] 491[5] 473[4] 836[9] 236[2]  2.09[1]
MacroF1 4.64 5] 3.23[3] 718[7]1 11.68[12] 841[8] 9.77[10] 11.14[11] 527[6] 3.05[2] 841[8]  4.23[4] 1[1]
MicroF1 4.09 [5] 3.64 3] 691[7] 105[10] 791[8] 10.86[11] 11.41[12] 5.09[6] 44] 868[9]  3.09[2]  1.82[1]
Sum of ranks 1932[2]  2519[5] 4073[7] 6447[10] 49.69[8] 66.09[11] 66.74[12] 27.86[6] 22.69[3] 50.35[9] 22.85[4] 12.04[1]
Table 6. Average ranking of comparison methods for 6 evaluation metrics by performing the Friedman
test on the Corel5k dataset.
. . Method
Evaluation Metrics —gy cor—ppr.cHI  PPEMI PMU D2F MIFS MCLS  MDFS  MGFS  MLACO  BMFS GLFS
Hamming Loss 6.36 [6] 9.73 [11] 664[7] 791[8] 355[2] 837[10] 555 1.5 1] 495[3] 8.18[9] 9.86[12] 5.09[4]
Ranking Loss 1[1] 91[9] 473[5]  10.09[10] 1091[11] 12[12] 723[8]  236[2] 4[4] 695[7]  6.731[6] 3[3]
Coverage 2,55 [2] 8.27[9] 536[5]  10.18[10] 10.64[11] 12[12] 627[6]  173[11  3.73[4]  8.09[8] 627[6]  291[3]
Average Precision  1.64 [1] 7.45[7] 473[5]  945[10] 11.82[12] 9.09[9] 1018[11] 291[2] 3.18[3]  8.09[8] 51[6] 445 [4]
MacroF1 2.14[2] 6.911[7] 818] 12[12]  10.09[10] 1091[11] 564[6] 545[5] 3.73[4] 9[9] 1[1] 3.14[3]
MicroF1 1.91[1] 4.8214] 6.09[6]  10.68[11] 11.32[12] 8.55[9] 718] 2.64 2] 515] 991[10] 691[7]  3.18[3]
Sum of ranks 15.6 [1] 46.18[8]  3555[5] 60.31[11] 58.33[10] 60.92[12] 41.82[7] 1659[2] 2459[4] 5022[9] 35.77[6] 21.77[3]
Table 7. Average ranking of comparison methods for 6 evaluation metrics by performing the Friedman
test on the Education dataset.
. X Method
Evaluation Metrics —g) cor—ppr.cHI  PPEMI  PMU D2F MIFS MCLS  MDFS  MGFS  MLACO  BMFS GLFS
Hamming Loss 2.55 [1] 9.09 [8] 541[6] 9.68[11] 955[9] 1045[12] 9.64[10] 3.09[2] 509[5] 70971  3.14[3] 323 [4]
Ranking Loss 1.73 [1] 8.18 [8] 536[6] 1045[11] 10.27[10] 11.18[12] 9.27[9] 236[2] 4.09[4] 7.18[7] 373[3] 4.18[5]
Coverage 2[1] 8.18 [8] 536[6] 1027[11] 10.18[10] 11.18[12] 9.55[9] 2.64[2]  3.82[4] 71(7] 364[3]  4.18[5]
Average_Precision  1.36 [1] 8.36 [8] 536[6] 1027[11] 9.73[9]  11.36[12] 10.09[10] 245[2] 4.09[5] 7.18[7] 391[4]  3.82[3]
MacroF1 2.82[2] 7.95 [8] 482[5] 932[9] 9.68[10] 10.68[11] 11.18[12] 3.18[3] 5.5 [6] 768[71  191[11  3.27[4]
MicroF1 1.91[1] 8.09 [8] 473[5] 991[10] 9.36[9] 1073[11] 10.82[12] 291[3] 559[6] 7.59[7] 391[4] 245[2]
Sum of ranks 1237011  49.85[8]  31.04[6] 59.9[10] 5877[9] 65.58[12] 6055[11] 16.63[2] 28.18[5] 43.72[7] 2024[3] 21.13[4]

Table 8. Average ranking of comparison methods for 6 evaluation metrics by performing the Friedman
test on the Emotions dataset.

Method
SAGRL PPT-CHI PPT-MI PMU D2F MIFS MCLS MDEFS MGFS MLACO BMFS GLFS
Hamming Loss 2[1] 8.95 [9] 616] 791[8] 9.86[10] 695[7] 10.09[12] 227[2]  4.86[5] 10[11] 445[3] 464[4]
Ranking Loss 6.18 [5] 10[11] 69171 655[6] 9.09[9] 727[8] 1045[12] 3.64[3] 236[1]  9.09[9]  255[2] [
Coverage 491[5] 10 [10] 7.68 [8] 5.82 [6] 10.55[11]  6.45[7] 10.55[11] 4.18 [3] 1.73 [1] 8.411[9] 3.09 [2] [
Average_Precision 6.45 [6] 10.18 [11] 5.45[5] 7.82 18] 9.36 [10] 6.73 [7] 10.45[12] 2.36[1] 3.73[3] 9.09 [9] 2.64 2] 3.73 [3]
1 ] [
] [

Evaluation Metrics

MacroF1 1.91[1] 9.09 [8] 518[5]  9.64[10] 10[11]  6.64[7] 1045[12] 291[2] 545[6]  9.09[8]  4.09[4
MicroF1 1.91 [1] 8.82[9] 5 [5] 9.18[10] 855[8]  6.82[7] 10.82[12] 327[2] 582[6] 9.73[11] 445[4
Sum of ranks 2336[3] 57.04[10] 3622[6] 46.92[8] 57.41[11] 40.86[7] 62.81[12] 18.63[1] 23.95[4] 5541[9] 2127[2] 24.11[5]

Table 9. Average ranking of comparison methods for 6 evaluation metrics by performing the Friedman
test on the Enron dataset.

Method
Evaluation Metrics —g 3 ey ppr.car ~ PPEMI PMU D2F MIFS MCLS MDFS  MGFS  MLACO  BMFS GLFS
Hamming Loss 1011 1155[12]  8.18[8]  827[9] 3.68[3] 11.09[11] 9.73[10] B391[4] 673[7]  6.366] 35[2] 475]

Ranking Loss 118[1]  1091[11] 9.09[9] 745[8] 564[6] 11.36[12] 991[10] 436[4]  7.36[7] 5[5] 209[2]  3.64[3]
Coverage 109111  1073[11] 945[10] 755[7]  5.09[5] 1127[12] 9.09[9] 527[6] 7.82[8] 455[4] 227[2] 3.82[3]
Average_Precision 1011 11.27[11] 8 19] 782[8]  655[7] 1127[11] 10[10]  4.91[4] 616 545[5]  245[2]  3.27[3]
MacroF1 118011  11.18[12] 891[9]  7.55[8]  455[5] 10.64[10] 11[11]  4.09[4] 7.09[7]  3.09[3] 291[2] 5.82[6]
MicroF1 1.09[1]  1155[12] 845[9]  7.36[8]  445[4] 11.18[11] 991[10] 5.18[5] 527[6] 6.64[7] 3121 3.91[3]
Sum of ranks 654[1]1  67.19[12] 52.08[9]  46[8]  29.96[5] 6681[11] 59.64[10] 27.72[4] 4027[7] 31.09[6] 16.22[2] 24.46[3]
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Table 10. Average ranking of comparison methods for 6 evaluation metrics by performing the
Friedman test on the Image dataset.

Method
Evaluation Metrics —g 3 ey~ ppr.cir ~ PPEMI PMU D2F MIFS MCLS  MDFS  MGFS  MLACO  BMFS GLFS
Hamming Loss 1.45 1] 9[10] 755091 682[6] 536[5]  11[11]  11.55[12] 6.82[6] 7181 145[4] 436[3] 264[2]
Ranking Loss 1.09 [1] 7.36 [8] 6.82[6] 791[10] 6.18[5] 11.64[12] 11.18[11] 7.18[7]  745[9]  445[4] 436[3] 2.36[2]
Coverage 109011  795[10]  664[6]  7.82[9]  645[5] 11.73[12] 11.18[11] 691[7]  7.14[8]  427[3] 445[4] 236[2]
Average_Precision 1[1] 7.64[9] 727171 727[7]  618[5]  1164[12] 11.18[11] 7.18[6] 7.73[10] 4.18[3]  436[4]  2.36[2]
MacroF1 145011  9.64[10]  745[9]  6.82[6] 5.05[5] 11.55[12] 11.36[11] 691[7] 691[7]  441[4]  4.09[3]  236[2]
MicroF1 145011  9.82[10]  7.64[9]  655[6] 391[3] 1145[12] 11.36[11] 7.18[8] 7.09[7] 5.18[5]  4.09[4] 227[2]
Sum of ranks 75311  5141[10] 4337[9] 43.19[7] 33.13[5] 69.01[12] 67.81[11] 42.18[6] 43.32[8] 2694[4] 2571[3] 14.35[2]
Table 11. Average ranking of comparison methods for 6 evaluation metrics by performing the
Friedman test on the Medical dataset.
. . Method
Evaluation Metrics —g ) e~ ppr.cHr ~ PPEMI PMU D2F MIFS MCLS  MDFS  MGFS  MLACO  BMFS GLFS
Hamming Loss 491 [6] 3.64 2] 436[5] 855[8] 9.73[11] 12[12] 927[10] 691[7]  3.91[3] 919] 145011 427 [4]
Ranking Loss 1.45[1] 6.09 [6] 636[71 927[101 10[11]  11.91[12] 7.27[8] 527[5] 4.09[3]  9.18[9] 255[2]  4.55[4]
Coverage 1.36 [1] 6.82 [7] 645[6]  9.18[9] 1036[11] 12[12] 682[7] 491[4] 345[3] 9.18[9] 255[2]  4.91[4]
Average_Precision 413] 455 [5] 3.64[2] 919] 10.09[11] 11.82[12] 873[8]  636[7]  4.45[4] 9[9] 164111  4.73[6]
MacroF1 527 [5] 2.09 [2] 9.18[9]  564[7]  11[11]  11.82[12]  4[3] 782[8]  455[4] 955[10] 1.55[1]1  5.55[6]
MicroF1 5.18 [6] 3.36 [2] 413] 864[8]  9.82[11] 1195[12] 9.36[10] 673[7] 445[5] 877[9] 145[1]  4.27[4]

Sum of ranks 22.17 2] 26.55 [4] 33.99[6] 50.28 [9] 61[11] 71.5[12]  45.45[8] 38[7] 249 [3] 54.68[10] 11.19[1] 28.28[5]

Table 12. Average ranking of comparison methods for 6 evaluation metrics by performing the
Friedman test on the Scene dataset.

Method

Evaluation Metrics —g 3 oy ppr.cHr ~ PPEMI PMU D2F MIFS MCLS MDFS  MGFS  MLACO  BMFS GLFS
Hamming Loss 13611  1L18[11] 1127[12] 782[8] 855[9] 645[6] 364[3] 1027[10] 7.05[7]1 464[5] 368[4]  2.09[2]
Ranking Loss 1011 11.68[12]  827[9] 973[11] 823[8]  7.36[6] 4.09[4] 864[10] 814[7] 505[5] 373[3]  2.09[2]
Coverage 1[1] 1168[12]  827[9] 973[11] 8.14[7] 7.36[6] 4.18[4] 873[10] 8.14[7] 5.05[5] 3.64[3] 2.09[2]
Average_Precision 1011 1123[12] 9.00[10] 10.09[11] 823[8] 7.27[8] 4.09[6] 873[4] 7.59[9] 5.05[7] 3.64[5] 2.09[3]
MacroF1 1011 10.86[12]  9.73[10 91[9] 832[8]  691[6] 436[4] 991[11] 7.32[7]  45[5]  391[3] 2.18[2]

[ [

]
)
MicroF1 109011  1132[12] 9.36[10] 9.18[9]  7.95[8] 716 445[4]  10[11]  714[7]  459[5]  3.82[3]  2.09[2]
Sum of ranks 711 67.86[12] 559[10] 55.28[9] 49.24[8] 419[6] 2527[4] 56.1[11] 4511[7] 2851[5] 22.69[3] 13.18[2]

Table 13. Average ranking of comparison methods for 6 evaluation metrics by performing the
Friedman test on the Social dataset.

Method

Evaluation Metrics —g ) ey~ ppr.cHr ~ PPEMI PMU D2F MIFS MCLS MDFS  MGFS  MLACO  BMFS GLFS

Hamming Loss 1411[1] 9.14 9] 455[5]  8.86[8] 9.36[10] 1155[12] 11.09[11] 241[2] 427[4] 673[71 545[6]  3.18[3]
Ranking Loss 2.95[3] 8.59 [9] 482[5] 1045[11] 11[12]  1023[10] 6.64[7]  441[4] 255[2] 832[8]  2.05[1] 61[6]
Coverage 2.681[2] 8.41 8] 518[5]  1032[11] 11[12] 9.73[10]  6.09[7] 451[4] 291[3] 882[9] 245[1]  591[6]
Average Precision  2.59 [1] 8.32[8] 455[6]  886[9] 1045[10] 11.73[12] 10.55[11] 3.95[4] 2.82[2] 673[71 3.09[3]  4.3615]
MacroF1 2.7712] 8.41[8] 4.911[6] 95[9]  1045[11] 11.73[12] 9.82[10] 391[5] 264[1]1  7.09[7] 291[3]  3.86[4]
MicroF1 2.05[1] 6.86 [8] 473[4]  895[9] 10.36[10] 11.73[12] 10.82[11] 2.77[2] 4[3] 6.09[7]  4.82[5]  4.82[5]
Sum of ranks 1445[1]  49.73[8]  2874[6] 56.94[10] 62.62[11] 66.7[12] 55.01[9] 21.95[4] 19.19[2] 43.78[7] 20.77[3] 28.13[5]
Table 14. Average ranking of comparison methods for 6 evaluation metrics by performing the
Friedman test on the Yeast dataset.
. . Method

Evaluation Metrics —g 3 ey ppr.car ~ PPEMI PMU D2F MIFS MCLS  MDFS  MGFS  MLACO  BMFS GLFS
Hamming Loss 17311  945[10] 9.64[11] 991[12] 7.82[8] 673[7]  6.64[6] 212] 345[3] 9.18[9] 555[4] 591[5]
Ranking Loss 145[1]  991[11] 1155[12] 4.82[5] 8.18[8]  7.73[7] 91[9] 2[2] 445 [4] 91[9] 673[6]  3.18[3]
Coverage 155011  9.09[11]  1145[12] 5.82[6] 751(7] 8.64 [8] 9[10] 218[2] 3.09[3] 864[8] 573[5]  5.32[4]
Average Precision  2.18 [2] 10 [11] 1155[12] 7.64[8]  773[9] 691[5]  7.32[6]  155[11  4.09[4] 873[10] 736[7]  2.95[3]
MacroF1 2.73[21  945[11]  1045[12] 7.55[7]  8.64[9] 9.09[10] 627[5]  1.82[1] 414] 645[6]  7.64[8]  3.91[3]
MicroF1 1.45[1] 819] 10.73[12] 9.27[11] 7.73[8] 891[10] 755[7] 218[2]  4.18[4]  6.91]5] 716 4.09 [3]
Sum of ranks 11.09[1]  559[11]  6537[12] 45.01[6] 47.6[8] 48.01[9] 4578[7] 11.73[2] 2326[3] 4891[10] 40.01[5] 25.36[4]
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Table 15. Results of win/tie/loss for SAGRL versus other methods on 6 evaluation metrics.

SAGRL

Evaluation Metrics ~ Against
PPT-CHI PPT-MI PMU D2F MIFS MCLS MDFS MGFS MLACO BMFS GLFS GLFS
Hamming Loss 10/0/1 10/0/1 11/0/0 10/0/1 11/0/0 10/0/1 10/0/1 8/0/3 11/0/0 9/0/2 8/0/3 5.91[5]
Ranking Loss 11/0/0 11/0/0 11/0/0 11/0/0 11/0/0 11/0/0 10/0/1 9/0/2 11/0/0 9/0/2 9/0/2 3.18 [3]
Coverage 11/0/0 11/0/0 11/0/0 11/0/0 11/0/0 11/0/0 9/0/2 10/0/1 11/0/0 9/0/2 9/0/2 5.32 [4]
Average_Precision 11/0/0 9/0/2 11/0/0 11/0/0 11/0/0 11/0/0 9/0/2 10/0/1 11/0/0 8/0/3 9/0/2 295 [3]
MacroF1 9/0/2 11/0/0 11/0/0 11/0/0 11/0/0 10/0/1 10/0/1 8/0/3 11/0/0 7/0/4 10/0/1 3.91[3]
MicroF1 9/0/2 10/0/1 11/0/0 11/0/0 11/0/0 11/0/0 11/0/0 8/0/3 11/0/0 8/0/3 9/0/2 4.09 [3]
In total 61/0/5 62/0/4 66/0/0 65/0/1 66/0/0 64/0/2 59/0/7 53/0/13 66/0/0 50/0/16  54/0/12  25.36 [4]

5.5. Parameter Sensitivity

The clustering numbers k1 and k2 for features and labels are essential to the classi-
fication accuracy. To investigate the influence of clustering number, further experiments
are carried out under different values of k1 and k2 combinations as shown in Figure 16.
For fewer than 1000 features, k1 is set to F/10, F/20, F/30, F /40, and F/50, respectively.
For more than 1000 features, k1 is set to F/30, F/40, F/50, F/60, and F/70. For k2, both
are setto L/3, L/6, and L/9 [72]. It is clear from the figure that when F < 1000, larger
k1 values (e.g., F/10, F/20) have a lower average Hamming Loss. When F > 1000 (e.g.,
Bibtex, Enron, Medical) a smaller k1 (e.g., F/50, F/70) works better. When there are few
label dimensions (e.g., Emotions, Image, Scene), larger k2 values (e.g., L/3, L/6) show a
more favorable performance. When the are many label dimensions (e.g., Bibtex, Enron),
smaller k2 values (e.g., L/6, L/9) tend be advantageous. These results validate that the
value of k1 is taken as F /10 for the datasets with fewer features and F /70 for the datasets
with high dimensionality. The value of k2 is taken as L/3 for the datasets with fewer labels
and L/9 for the datasets with more label dimensions.

Dataset: Arts Dataset: Bibtex Dataset: Corelk
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Figure 16. Average Hamming Loss with different pairs of k1 and k2.
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6. Conclusions

In the paper, a novel SAGRL is proposed for multi-label feature selection. To highlight
the correlation of features or labels, feature-label subgraphs are constructed based on
spectral clustering, which has not been adequately considered in previous studies based
on filter-based methods. For each subgraph combined with graph representation learning,
highly relevant features are removed using non-dominated sorting, and the relationship
between features and labels is adjusted with the connection of nodes in the subgraph.
Further, the augmentation path is located to conduct one-to-one matching based on the
bipartite graph. The effectiveness of the proposed method is confirmed by 11 multi-label
datasets covering the domains of text, image, audio and biology. Compared with some state-
of-art multi-label feature selection methods, our approach shows superior performance
both in terms of evaluation metrics and running time. With the uncertainty of category
boundaries in multi-label data, there are often more label dimensions than features, which
poses a certain challenge regarding accurately selecting the crucial features among them. In
the future, it would be useful to extend multi-label feature selection to the multi-modal field
by selecting a series of optimal feature subsets that satisfy specific constraints. Moreover,
the higher-order correlation of labels is fully considered to guide the model, learn the
co-occurrence pattern among various labels, and improve the classification accuracy.
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