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Abstract: We analyze the generalization properties of batch reinforcement learning (batch RL) with
value function approximation from an information-theoretic perspective. We derive generalization
bounds for batch RL using (conditional) mutual information. In addition, we demonstrate how
to establish a connection between certain structural assumptions on the value function space and
conditional mutual information. As a by-product, we derive a high-probability generalization bound
via conditional mutual information, which was left open and may be of independent interest.
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1. Introduction

Generalization is a fundamental concept in statistical machine learning. It measures
how well a learning system performs on unseen data after being trained on a finite dataset.
Effective generalization ensures that the learning approach captures the essential patterns
in the data. Generalization in supervised learning has been studied for several decades.
However, in reinforcement learning (RL), agnostic learning is generally infeasible and
realizability is not a sufficient condition for efficient learning. Consequently, the study of
generalization in RL poses more challenges.

In this work, we focus on batch reinforcement learning (batch RL), a branch of re-
inforcement learning where the agent learns a policy from a fixed dataset of previously
collected experiences. This setting is favorable when online interaction is expensive, dan-
gerous, or impractical. Batch RL, despite being a special case of supervised learning, still
presents distinct challenges due to the complex temporal structures inherent in the data.

Originating from the work of [1,2], an information-theoretic framework has been
developed to bound the generalization error of learning algorithms using the mutual infor-
mation between the input dataset and the output hypothesis. This methodology formalizes
the intuition that overfitted learning algorithms are less likely to generalize effectively.
Unlike traditional approaches such as VC-dimension and Rademacher complexity, this
information-theoretic framework offers the significant advantage of capturing all depen-
dencies on the data distribution, hypothesis space, and learning algorithm. Given that
reinforcement learning is a learning paradigm in which all the aforementioned aspects
differ significantly from those in supervised learning, we believe this novel approach will
provide us with more profound insights.

2. Preliminaries
2.1. Batch Reinforcement Learning with Function Approximation

An episodic Markov decision process (MDP) is defined by M(S ,A,P , r, H). We use
∆(X ) to denote the set of the probability distribution over the set X . M(S ,A,P , r, H)
is specified by a finite state space S , a finite action space A, transition functions Ph :
S ×A → ∆(S) at step h ∈ [H], reward function rh : S ×A → R at step h, and H is the
number of steps in each episode. We assume the reward is bounded, i.e., rh(s, a) ∈ [0, 1]
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(For rewards in [Rmin, Rmax] simply rescales these bounds.), ∀(s, a, h). See Figure 1 for a
graphical illustration.
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Figure 1. Directed graph representing the training process in Batch RL under episodic MDP.

Let π = {πh : S → ∆(A)}h∈[H], where πh(· | s) is the action distribution for policy π
at state s and step h. Given a policy π, the value function Vπ

h : S → R at step h is defined as

Vπ
h (s) := Eπ

[
H

∑
h′=h

rh′(sh′ , ah′)

∣∣∣∣∣sh = s

]
.

The action-value function Qπ
h : S ×A → R at step h is defined as

Qπ
h (s, a) := Eπ

[
H

∑
h′=h

rh′(sh′ , ah′)

∣∣∣∣∣sh = s, ah = a

]
.

The Bellman operators T π
h and T ∗

h project functions forward by one step through the
following dynamics:

(T π
h )(s, a) = rh(s, a) +Es′∼Ph(·|s,a)[Ea′∼π(·|s′)[Q(s′, a′)]],

(T ∗
h )(s, a) = rh(s, a) +Es′∼Ph(·|s,a)

[
max

a′
Q(s′, a′)

]
.

Now, we denote the dataset Z = {(s, a, r, s′, h)}, where (s, a) ∼ µh, r ∼ rh(s, a), and s′ ∼
Ph(·|s, a) for a fixed h. We also denote D = D1 × · · · × DH , where (s, a, r, s′, h) ∼ Dh.
We consider batch RL with value function approximation. The learner is given a func-
tion class F = F1 × · · · × FH to approximate the optimal Q-value function. Denote
f = ( f1, · · · , fH) ∈ F . As no reward is collected in the (H + 1)th step, we set fH+1 = 0.

For each f ∈ F , define π f = {π fh
}H

h=1, where π fh
(a|s) = 1

[
a = arg max

a′
fh(s, a′)

]
. Next,

we introduce the Bellman error and its empirical version.
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Definition 1 (Bellman error). Under data distribution µ, we define the Bellman error of function
f = ( f1, · · · , fH) as

E( f ) :=
1
H

H

∑
h=1

∥ fh − T ⋆
h fh+1∥2

µh
. (1)

Definition 2 (Mean squared empirical Bellman error (MSBE)). Given a dataset Z ∼ D, we
define the Mean squared empirical Bellman error (MSBE) of function f = ( f1, · · · , fH) as

L( f , Z) =
1
H

H

∑
h=1

1
n ∑

(s,a,r,s′ ,h)∈Zh

( fh(s, a)− r − Vfh+1
(s′))2

where Vfh+1
(s) := maxa∈A fh+1(s, a).

For convenience, we denote ℓ( fh, Zh) =
1
n ∑(s,a,r,s′ ,h)∈Zh

( fh(s, a)− r − Vfh+1
(s′))2.

Bellman error is used in RL as a surrogate loss function to minimize the difference be-
tween the estimated value function and the true value function under a policy. The Bellman
error serves as a proxy for the optimality gap, which is the difference between the current
value function and the optimal value function. Under the concentrability assumption,
minimizing the Bellman error is able to reduce the optimality gap.

Lemma 1 (Bellman error to value suboptimality [3]). If there exists a constant C, such that for
any policy π

sup
(s,a,h)∈S×A×[H]

dPπ
h

dµh
(s, a) ≤ C

then for any f ∈ F , we have

V∗
1 (s1)− V

π f
1 (s1) ≤ 2H

√
C · E( f ).

We note that L( f , Z) is a biased estimate of E( f ). A common solution is to use the
double sampling method, where for each state and action in the sample, at least two next
states are generated [3–5], and define the unbiased MSBE as:

LDS( f , Z̃) =
1

nH ∑
(s,a,r,s′ ,s̃′ ,h)∈Z̃

[(
fh(s, a)− r − Vfh+1

(s′)
)2

− 1
2

(
Vfh+1

(s′)− Vfh+1
(s̃′)
)2
]

.

Note that L( f , Z) ∈ [0, 4H2], LDS( f , Z̃) ∈ [−2H2, 4H2], and double sampling does not increase
the sample size, except that it requires an additional generated s̃′ ∼ Ph(·|s, a). Therefore,
the results presented in this paper can be easily extended to the double sampling setting.

2.2. Generalization Bounds

Definition 3 (Expected generalization bounds). Given a dataset Z ∼ D and an algorithm A,
let L(A(Z), Z) denote the training loss and let L(A(Z),D) denote the true loss. The expected
generalization error is defined as

|EZ∼D [L(A(Z), Z)− L(A(Z),D)]|.

Definition 4 (High-probability generalization bounds). Given a dataset Z ∼ D, and an
algorithm A, let L(A(Z), Z) denote the training loss and let L(A(Z),D) denote the true loss.
Given a failure probability δ and an error tolerance η, the high-probability generalization error is
defined as

P(|L(A(Z), Z)− L(A(Z),D)| ≥ η) ≤ δ.

2.3. Mutual Information

First, we define the KL-divergence of two distributions.
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Definition 5 (KL-Divergence [6]). Let P ,Q be two distributions over the space Ω and suppose
P is absolutely continuous with respect to Q. The Kullback–Leibler (KL) divergence from Q to P is

D(P∥Q) = EX∼PX

[
log

PX
QX

]
,

where PX and QX denote the probability mass/density functions of P and Q on X, respectively.

Based on KL-divergence, we can define mutual information and conditional mutual
information as follows.

Definition 6 ([6]). Let X, Y, and Z be arbitrary random variables, and let DKL denote the
Kullback–Leibler (KL) divergence. The mutual information between X and Y is defined as:

I(X; Y) := DKL(PX,Y∥PX ⊗PY).

The conditional mutual information is defined as:

I(X; Y|Z) := EZ[DKL(PX,Y|Z∥PX|Z ⊗PY|Z)].

Next, we introduce Rényi’s α-Divergence, which is a generalization of KL-divergence.
Rényi’s α-Divergence has found many applications, such as hypothesis testing, differential
privacy, several statistical inference, and coding problems [7–10].

Definition 7 (Rényi’s α-Divergence [11]). Let (Ω,F ,P), (Ω,F ,Q) be two probability spaces.
Let α > 0 be a positive real different from 1. Consider a measure µ, such that P ≪ µ and Q ≪ µ
(such a measure always exists, e.g., µ = (P +Q)/2) and denote with p, q the densities of P ,Q
with respect to µ. The α–divergence of P from Q is defined as follows:

Dα(P∥Q) =
1

α − 1
log

∫
pαq1−α dµ.

Note that the above definition is independent of the chosen measure µ. With the defini-
tion of Rényi’s α-divergence, we are ready to state the definitions of α-mutual information
and α-conditional mutual information.

Definition 8 (α-mutual information [7]). Let X, Y be two random variables jointly distributed
according to PXY. Let QY be any probability measure over Y . For α > 0, the α-mutual information
between X and Y is defined as follows:

Iα(X; Y) = min
QY

Dα(PXY∥PX ⊗QY).

Definition 9 (Conditional α-mutual information). Let X, Y, Z be three random variables jointly
distributed according to PXYZ. Let QY|Z be any probability measure over Y|Z . For α > 0,
a conditional α-mutual information of order α between X and Y given Z is defined as follows:

IY|Z
α (X; Y|Z) = min

QY|Z
Dα(PXYZ∥PX|Z ⊗QY|Z ⊗PZ).

3. Generalization Bounds via Mutual Information

Mutual information bounds provide a direct link between the generalization error and
the amount of information shared between the training data and the learned hypothesis.
This offers a clear information-theoretic understanding of how overfitting can be controlled
by reducing the dependency on the training data. Mutual information bounds are applica-
ble to a wide range of learning algorithms and settings, including those with unbounded
loss functions and complex hypothesis spaces. Moreover, the use of mutual information
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can simplify the analysis of generalization compared with traditional methods, particularly
in cases where those traditional measures are difficult to compute. See Appendix A for
related work.

Theorem 1 ([2]). Let D be a distribution on Z. Let A : Z → W be a randomized algorithm. Let
ℓ : W × Z → R be a loss function, which is σ-subgaussian with respect to Z. Let L : W × Z → R
be the empirical risk. Then

|EZ∼D [L(A(Z), Z)− L(A(Z),D)]| ≤
√

2σ2

n
I(A(Z); Z).

The above theorem provides a bound on the expected generalization error. High-
probability generalization bounds can be obtained using the α-mutual information. Note
that the α-mutual information shares many properties with standard mutual information.

Proposition 1 ([7]). For discrete random variables X and Y, the following holds:

(i) Data Processing Inequality: given α > 0, Iα(X, Z) ≤ min{Iα(X, Y), Iα(Y, Z)} if the Markov
chain X − Y − Z holds.

(ii) Iα(X; Y) is non-decreasing in α.
(iii) Iα(X, Y) ≤ min{log |X|, log |Y|}.
(iv) Iα(X, Y) ≥ 0 with equality iff X and Y are independent.

Theorem 2 ([11]). Let D be a distribution on Z. Let A : Z → W be a randomized algorithm. Let
ℓ : W × Z → R be a loss function which is σ-subgaussian with respect to Z. Let L : W × Z → R
be the empirical risk. Given η, δ ∈ (0, 1) and fix α ≥ 1, if the number of samples n satisfies

n ≥ 2σ2

η2

(
Iα(A(Z), Z) + log 2 +

α

α − 1
log
(

1
δ

))
.

then, we have
P(|L(A(Z), Z)− L(A(Z),D)| ≤ η) ≥ 1 − δ.

The mutual information bound can be infinite in some cases and thus be vacuous.
To address this, the conditional mutual information (CMI) approach was introduced. CMI
bounds normalize the information content for each data point, preventing the problem
of infinite information content, particularly in continuous data distributions. This makes
CMI a more robust and applicable method in scenarios where mutual information would
otherwise be unbounded.

Definition 10. Let Z ∼ D2n consist of 2n samples drawn independently from D. Let U ∈ {0, 1}n

be uniformly random and independent from Z and the randomness of A. Define ZU ∈ Z, such that
(ZU)i is the (2i − Ui)

th sample in Z—that is, ZU is the subset of Z indexed by U. The conditional
mutual information of A with respect to D is defined as I(A(ZU); U|Z).

Theorem 3 ([12]). Let D be a distribution on Z. Let A : Z → W be a randomized algorithm. Let
L : W × Z → R be a function, such that |L(w, z1)− L(w, z2)| ≤ ∆(z1, z2) for all z1, z2 ∈ Z and
w ∈ W given ∆ : Z2 → R. Let U ∈ {0, 1}n be uniformly random. Then

|EZ∼D [L(A(ZU), ZU)− L(A(ZU),D)]| ≤
√

2Ez1,z2 [∆(z1, z2)2]

n
I(A(ZU); U|Z).

Another advantage of the CMI bounds is that they can be derived from various
concepts such as VC-dimension, compression schemes, stability, and differential privacy,
offering a unified framework for generalization analysis. However, because CMI is defined
as an expectation, i.e., I(X; Y|Z) := EZ[DKL(PX,Y|Z∥PX|Z ⊗ PY|Z)], the above theorem
does not provide a high-probability bound. Modifying this framework to ensure high-
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probability guarantees was left as future work in [12]. In the following, we use conditional
α-mutual information to address this issue.

Theorem 4. Let U ∈ {0, 1}n be uniformly random. Given a dataset Z ∼ D2n consists of 2nH
samples. Let A : ZU → W be a randomized algorithm. Let ℓ : W × Z → R be a loss function
which is σ-subgaussian with respect to Z. Let L : W × ZU → R be the empirical risk. Given
η, δ ∈ (0, 1) and fix α ≥ 1, if the number of samples n satisfies

n ≥ 2σ2

η2

(
IA(ZU)|Z
α (A(ZU); U|Z) + log 2 +

α

α − 1
log
(

1
δ

))
then, we have

P(|L(A(ZU), ZU)− L(A(ZU),D)| ≤ η) ≥ 1 − δ.

Proof. Let (X × Y × Z ,F ,PXYZ) be a probability space, and let Q(X |Z) be the set of
conditional probability measures QX|Z, such that PXYZ ≪ PZQX|ZPY|Z. Given E ∈ F and
z ∈ Z , x ∈ X , let Ez,x = {y ∈ Y : (x, y, z) ∈ E}. We first prove that for a fixed α ≥ 1,

PXYZ(E) ≤ EZ

[
ess supQX|Z∈Q(X |Z) PY|Z(EZ,X)

] α−1
α exp

(
α − 1

α
IX|Z
α (X; Y|Z)

)
. (2)

Using the Radon–Nikodym derivative of PXYZ with respect to the product measure
PZQX|ZPY|Z, we have

PXYZ(E) = EPZQX|ZPY|Z

[
dPXYZ

dPZQX|ZPY|Z
IE

]

where IE is the indicator function of the event E. Next, we introduce three sets of exponents
α′′, α′, α, and γ′′, γ′, γ, such that

1
α′′

+
1

γ′′ =
1
α′

+
1
γ′ =

1
α
+

1
γ
= 1.

By applying Hölder’s inequality three times to separate the different components of the
expectation, we derive

EPZQX|ZPY|Z

[
dPXYZ

dPZQX|ZPY|Z
IE

]

≤ E
1

α′′
PZ

[
E

α′′
α′
QX|Z

[
E

α
α′
QY|Z

[(
dPXYZ

dPZQX|ZPY|Z

)α]]]
E

1
γ′′
PZ

[
E

γ′′
γ′
QX|Z

[
E

γ′
γ

PY|Z

[
Iγ

E
]]]

.

By setting α′′ = α and α′ = 1,

E
1

α′′
PZ

[
E

α′′
α′
QX|Z

[
E

α
α′
QY|Z

[(
dPXYZ

dPZQX|ZPY|Z

)α]]]
≤ exp

(
α − 1

α
IX|Z
α (X; Y|Z)

)
.

Since α′ = 1 and 1
α′ +

1
γ′ = 1, we have γ′ → ∞. As γ′ → ∞, E

γ′′
γ′
QX|Z

[
E

γ′
γ

PY|Z

[
Iγ

E
]]

tends to

the essential supremum

ess supQX|Z∈Q(X |Z) PY|Z(EZ,X).
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As 1
γ′′ =

α−1
α , we have

E
1

γ′′
PZ

[
E

γ′′
γ′
QX|Z

[
E

γ′
γ

PY|Z

[
Iγ

E
]]]

≤ EZ

[
ess supQX|Z∈Q(X |Z) PY|Z(EZ,X)

] α−1
α .

Thus, Equation (2) holds by combining all of the inequalities.
Now, let X = A(ZU) and Y = U. Consider the event

E = {(X, Y, Z) : |L(X, ZY)−EY[L(X,D)]| ≥ η},

where L(X, ZY) denotes the empirical risk defined as the average of n loss functions,
and each loss function is σ-subgaussian. We can express EZ,X , the fibers of E, with respect
to Z and X, as

EZ,X = {Y : |L(X, ZY)−EY[L(X,D)]| ≥ η}.

For any fixed Z and X, the random variable Y remains independent of Z and X under any
QX|Z ∈ Q(X |Z). Now, using Hoeffding’s inequality, for every X and Z,

PY(EZ,X) ≤ 2 exp
(
−nη2

2σ2

)
. (3)

Therefore, from Equations (2) and (3),

P(E) ≤ 2 exp
(

α − 1
α

· −nη2

2σ2

)
exp

(
α − 1

α
IA(ZU)|Z
α (A(ZU); U|Z)

)
= 2 exp

(
α − 1

α

(
IA(ZU)|Z
α (A(ZU); U|Z)− −nη2

2σ2

))
.

Lastly, by setting

n ≥ 2σ2

η2

(
IA(ZU)|Z
α (A(ZU); U|Z) + log 2 +

α

α − 1
log
(

1
δ

))
we obtain the desired conclusion.

4. Information-Theoretic Generalization Bounds for Batch RL

We now provide expected and high-probability generalization bounds for batch RL.
The generalization bounds are derived from mutual information between the training
data and the learned hypothesis. As mutual information bounds consider the data, algo-
rithm, and hypothesis space comprehensively, they support the design of efficient learning
algorithms and fine-grained theoretical analysis.

Theorem 5. Given that dataset Z ∼ Dn consists of nH samples, for any batch RL algorithm
A with output A(Z) = f = ( f1, · · · , fH) ∈ F , the expected generalization error for the mean
squared empirical Bellman error (MSBE) loss is upper bounded by

|EZ∼D [L(A(Z), Z)− L(A(Z),D)]| ≤

√
2H2 ∑H

h=1 I( fh; Zh)

n
.

Proof. We first recall the Donsker—Varadhan variational representation ([13]) of the
KL-divergence between any two probability measures π and ρ on a common measurable
space (Ω, F )

DKL(π∥ρ) = sup
F

{∫
Ω

F dπ − log
∫

Ω
eF dρ

}
where the supremum is over all measurable functions F : Ω → R, such that eF ∈ L1(ρ).
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Let be Z = Z1 ∪ · · · ∪ ZH be a dataset where Zh = {(s, a, r, s′, h)} ∼ Dh. Let A(Z) =
f = ( f1, · · · , fH) ∈ F be the output of some batch RL algorithm A. Let f̃h and Z̃h be the
independent copies of fh and Zh. Let

L( f , Z) =
1
H

H

∑
h=1

ℓ( fh, Zh)

=
1
H

H

∑
h=1

1
n ∑

(s,a,r,s′ ,h)∈Zh

( fh(s, a)− r − Vfh+1
(s′))2.

Now, we have

I( fh; Zh) = DKL(Pfh ,Zh
∥Pfh

⊗ PZh)

= sup
g

{
E fh ,Zh

[g( fh, Zh)]− logE f̃h ,Z̃h
[eg( f̃h ,Z̃h)]

}
(Donsker–Varadhan variational representation)

≥ λE fh ,Zh
[ℓ( fh, Zh)]− logE f̃h ,Z̃h

[eλℓ( f̃h ,Z̃h)]. (∀λ ∈ R)

As ℓ( fh, Zh) = 1
n ∑(s,a,r,s′,h)∈Zh

( fh(s, a)− r − Vfh+1
(s′))2 and ( fh(s, a)− r − Vfh+1

(s′))2 ∈
[0, 4H2] for any h, it follows that

logE f̃h ,Z̃h
[eλ(ℓ( f̃h ,Z̃h)−E f̃h ,Z̃h

[ℓ( f̃h ,Z̃h)])] ≤ 2λ2H4

n
.

Thus, we obtain

I( fh; Zh) ≥ λ
(
E fh ,Zh

[ℓ( fh, Zh)]−E f̃h ,Z̃h
[ℓ( f̃h, Z̃h)])]

)
− 2λ2H4

n

⇒ I( fh; Zh)

λ
+

2λ2H4

n
≥ E fh ,Zh

[ℓ( fh, Zh)]−E f̃h ,Z̃h
[ℓ( f̃h, Z̃h)])].

By optimizing the above inequality over λ > 0 and λ < 0, respectively, we derive

−H2

√
2I( fh; Zh)

n
≤ E fh ,Zh

[ℓ( fh, Zh)]−E f̃h ,Z̃h
[ℓ( f̃h, Z̃h)])] ≤ H2

√
2I( fh; Zh)

n
,

and thus,

∣∣∣E fh ,Zh
[ℓ( fh, Zh)]−E f̃h ,Z̃h

[ℓ( f̃h, Z̃h)])]
∣∣∣ ≤ H2

√
2I( fh; Zh)

n
. (4)

Finally, we observe that

|EZ∼D [L(A(Z), Z)− L(A(Z),D)]| =
∣∣∣∣∣EZ∼D

[
1
H

H

∑
h=1

ℓ( fh, Zh)−EZ∼D

[
1
H

H

∑
h=1

ℓ( fh, Zh)

]]∣∣∣∣∣
=

∣∣∣∣∣ 1
H

H

∑
h=1

EZh∼Dh

[
ℓ( fh, Zh)−EZh∼Dh [ℓ( fh, Zh)]

]∣∣∣∣∣
=

1
H

H

∑
h=1

∣∣∣E fh ,Zh
[ℓ( fh, Zh)]−E f̃h ,Z̃h

[ℓ( f̃h, Z̃h)])]
∣∣∣

≤ 1
H

H

∑
h=1

H2

√
2I( fh; Zh)

n
(By Equation (4))

=

√
2H2 ∑H

h=1 I( fh; Zh)

n
.
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The above result suggests that reducing the mutual information between the dataset
Zh and the learned function fh at each step h can improve the generalization performance.
Note that when the input domain is infinite, mutual information can become unbounded.
To address this limitation, an approach based on conditional mutual information was
introduced [12]. CMI bounds not only address the issue by normalizing the information
content of each data point, but also establish connections with various other generalization
concepts, as we will discuss in the next section. We now present a generalization bound
using conditional mutual information.

Theorem 6. Let U ∈ {0, 1}n be uniformly random. Given that dataset Z ∼ D2n consists of 2nH
samples, for any batch RL algorithm A with output A(ZU) = f = ( f1, · · · , fH) ∈ F , the expected
generalization error for the mean squared empirical Bellman error (MSBE) loss is upper bounded by

|EZ∼D [L(A(ZU), ZU)− L(A(ZU),D)]| ≤

√
2H2 ∑H

h=1 I( fh; U|Zh)

n
.

Proof. Let U ∈ {0, 1}n be uniformly random. Let Z = Z1 ∪ · · · ∪ ZH be a dataset where
each Zh = {(s, a, r, s′, h)} ∼ Dh consists of 2n samples. Define ZU = (Z1)U ∪ · · · ∪ (ZH)U .
Let A(ZU) = f = ( f1, · · · , fH) ∈ F be the output of some batch RL algorithm A. Let
f̄h = A(ZŪ)h, Z̃h = (Zh)U and Z̄h = (Zh)Ū . Note that Zh = Z̃h ∪ Z̄h. We define the
disintegrated mutual information

IZ(X; Y) := DKL(PX,Y|Z∥PXPY|Z).

Note that I(X; Y|Z) = EZ[IZ(X; Y)]. The rest of the proof is analogous to Theorem 5.
We have

IZh( fh; Z̃h|Zh) = DKL(Pfh ,Z̃h |Zh
∥Pfh |Zh

⊗ PZ̃h |Zh
)

= sup
g

{
E fh ,Z̃h |Zh

[g( fh, Z̃h)]− logE f̄h ,Z̄h |Zh
[eg( f̄h ,Z̄h)]

}
(Donsker–Varadhan variational representation)

≥ λE fh ,Z̃h |Zh
[ℓ( fh, Z̃h)]− logE f̄h ,Z̄h |Zh

[eλℓ( f̄h ,Z̄h)]. (∀λ ∈ R)

As ℓ( fh, Zh) = 1
n ∑(s,a,r,s′,h)∈Zh

( fh(s, a)− r − Vfh+1
(s′))2 and ( fh(s, a)− r − Vfh+1

(s′))2 ∈
[0, 4H2] for any h, it follows that

logE f̄h ,Z̄h |Zh
[eλ(ℓ( f̄h ,Z̄h)−E f̄h ,Z̄h |Zh

[ℓ( f̄h ,Z̄h)])] ≤ 2λ2H4

n
.

Thus, we obtain

IZh( fh; Z̃h|Zh) ≥ λ
(
E fh ,Z̃h |Zh

[ℓ( fh, Z̃h)]−E f̄h ,Z̄h |Zh
[ℓ( f̄h, Z̄h)])]

)
− 2λ2H4

n

⇒ IZh( fh; Z̃h|Zh)

λ
+

2λ2H4

n
≥ E fh ,Z̃h |Zh

[ℓ( fh, Z̃h)]−E f̄h ,Z̄h |Zh
[ℓ( f̄h, Z̄h)])].

By optimizing the above inequality over λ > 0 and λ < 0, respectively, we derive

−H2

√
2IZh( fh; Z̃h|Zh)

n
≤ E fh ,Z̃h |Zh

[ℓ( fh, Z̃h)]−E f̄h ,Z̄h |Zh
[ℓ( f̄h, Z̄h)])] ≤ H2

√
2IZh( fh; Z̃h|Zh)

n
,
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and thus,

∣∣∣E fh ,Z̃h |Zh
[ℓ( fh, Z̃h)]−E f̄h ,Z̄h |Zh

[ℓ( f̄h, Z̄h)])]
∣∣∣ ≤ H2

√
2IZh( fh; Z̃h|Zh)

n
. (5)

Finally, we conclude that

|EZ∼D [L(A(ZU), ZU)− L(A(ZU),D)]| =
∣∣∣∣∣EZ∼D

[
1
H

H

∑
h=1

ℓ( fh, Z̃h)−EZ∼D

[
1
H

H

∑
h=1

ℓ( fh, Z̃h)

]]∣∣∣∣∣
=

∣∣∣∣∣ 1
H

H

∑
h=1

EZh∼Dh

[
ℓ( fh, Z̃)−EZh∼Dh

[
ℓ( fh, Z̃)

]]∣∣∣∣∣
≤ 1

H

H

∑
h=1

∣∣∣EZh∼Dh

[
E f̄h ,Z̄h |Zh

[ℓ( f̄h, Z̄h)])]−E fh ,Z̃h |Zh
[ℓ( fh, Z̃h)])]

]∣∣∣
≤ 1

H

H

∑
h=1

H2EZh∼Dh

√2IZh( fh; Z̃h|Zh)

n

 (By Equation (5))

≤ 1
H

H

∑
h=1

H2

√
2EZh∼Dh [I

Zh( fh; Z̃h|Zh)]

n

=

√
2H2 ∑H

h=1 I( fh; Z̃h|Zh)

n

=

√
2H2 ∑H

h=1 I( fh; U|Zh)

n
.

Note that our setting is identical to that in [3], i.e., batch RL with value function approxi-

mation for episodic MDPs. They established a bound of the order Õ
(

H2
√

1
n + ∑H

h=1 R(Fh)

)
,

where R(Fh) represents the Rademacher complexity of the function space Fh. In contrast,

our result yields an error bound of the order O
(

H
√

∑H
h=1 I( fh ;Zh)

n

)
. As demonstrated in

the subsequent section, under structural assumptions like a finite pseudo-dimension or

effective dimension d, this bound can be refined to Õ
(

H2
√

d
n

)
.

Next, we proceed to derive the high-probability version of these generalization bounds
using α-mutual information.

Theorem 7. Given a dataset Z ∼ Dn consists of nH samples, for any batch RL algorithm A with
output A(Z) = f = ( f1, · · · , fH) ∈ F , if

n ≥ 2H4

ϵ2

(
Iα(A(Z); Z) + log 2 +

α

α − 1
log
(

1
δ

))
,

then, the generalization error for the mean squared empirical Bellman error (MSBE) loss is upper
bounded by

|L(A(Z), Z)− L(A(Z),D)| ≤ ϵ

with a probability of at least 1 − δ.
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Proof. Let Z = Z1 ∪ · · · ∪ ZH be a dataset where Zh = {(s, a, r, s′, h)} ∼ Dh. Let A(Z) =
f = ( f1, · · · , fH) ∈ F be the output of some batch RL algorithm A. Let

L( f , Z) =
1
H

H

∑
h=1

ℓ( fh, Zh)

=
1
H

H

∑
h=1

1
n ∑

(s,a,r,s′ ,h)∈Zh

( fh(s, a)− r − Vfh+1
(s′))2.

As ℓ( f , Z) ∈ [0, 4H2] for every f , it is 2H2-sub-Gaussian. By Theorem 2, we have

|ℓ( fh, Zh)−EZh∼Dh [ℓ( fh, Zh)]| ≤ ϵ

with probability at least 1 − δ′ for

n ≥ 8H4

ϵ2

(
Iα( fh; Zh) + log 2 +

α

α − 1
log
(

1
δ′

))
.

As we have n samples at each h ∈ [H], we require

n ≥ 8H4

ϵ2

(
max

h
Iα( fh; Zh) + log 2 +

α

α − 1
log
(

1
δ′

))
.

The claim is now followed by the union bound by setting δ′ = δ/H.

Recall that conditional mutual information is defined as an expectation over the KL
divergence. Thus, all prior works using the CMI framework have only provided bounds
on the expected generalization error. We wish to establish generalization bounds with
high-probability guarantees similar to Theorem 7.

Theorem 8. Let U ∈ {0, 1}n be uniformly random. Given that dataset Z ∼ D2n consists of 2nH
samples, for any batch RL algorithm A with output A(ZU) = f = ( f1, · · · , fH) ∈ F , if

n ≥ 8H4

ϵ2

(
max

h
I fh |Zh
α ( fh; U|Zh) + log 2 +

α

α − 1
log
(

H
δ

))
.

then, the generalization error for the mean squared empirical Bellman error (MSBE) loss is upper
bounded by

|L(A(ZU), ZU)− L(A(ZU),D)| ≤ ϵ

with probability at least 1 − δ.

Proof. By substituting Theorem 2 with Theorem 4 in the proof of Theorem 7, the proof is
thereby obtained.

5. Value Functions Under Structural Assumptions

Due to the challenges stemming from large state-action spaces, long horizons, and the
temporal nature of data, there is increasing interest in identifying structural assumptions for
RL with value function approximation. These works include, but are not limited to, Bellman
rank [14], Witness rank [15], and Eluder dimension [16]. These structural conditions aim
to develop a unified theory of generalization in RL. In this section, we demonstrate that if
a function class satisfies certain structural conditions reflecting a manageable complexity,
the mutual information can be effectively upper bounded.
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Definition 11 (Covering number). The covering number of a function class F = F1 × · · · ×FH
under metric ρ( f , g) = maxh ∥ fh − gh∥∞, denoted as N (F , ϵ), is the minimum integer n, such
that there exists a subset Fϵ ⊆ F with |Fϵ| = n, and for any f ∈ F , there exists g ∈ Fϵ, such
that ρ(x, y) ≤ ϵ.

Lemma 2. For discrete random variables X, Y, and Z, we have I(X; Y|Z) ≤ log |X|.

Proof. Denote H(X | Z) the conditional entropy of X given Z.

I(X; Y|Z) = H(X|Z)− H(X|Y, Z)

≤ H(X|Z) (H(X|Y, Z) ≥ 0)

= Ez[H(X|Z = z)]

≤ Ez[log |X|]
= log |X|.

Theorem 9. Suppose the function class F has a covering number of N (F , ϵ). Let U ∈ {0, 1}n

be uniformly random. Given that dataset Z consists of 2nH samples, for any batch RL algorithm
A with output A(ZU) = f = ( f1, · · · , fH) ∈ F , the expected generalization error for the mean
squared empirical Bellman error (MSBE) loss is upper bounded by

|EZ∼D [L(A(ZU), ZU)− L(A(ZU),D)]| ≤
√

2H3 log(|N (F , ϵ)|)
n

+ 8ϵH + 2ϵ2.

Proof. Let Z̃h = (Zh)U . We first define an oracle algorithm Ao capable of outputting a
function Ao(ZU) = f ∗ = ( f ∗1 , . . . , f ∗H), such that

ρ( f , f ∗) ≤ ϵ.

Note that Ao is only used for theoretical analysis. Observe that

L(A(ZU), ZU) =
1
H

H

∑
h=1

1
n ∑

(s,a,r,s′ ,h)∈Z̃h

( fh(s, a)− r − Vfh+1
(s′))2

=
1
H

H

∑
h=1

1
n ∑

(s,a,r,s′ ,h)∈Z̃h

( fh(s, a)− f ∗h (s, a) + f ∗h (s, a)− r − Vfh+1
(s′))2

= ϵ2 +
1
H

H

∑
h=1

1
n ∑

(s,a,r,s′ ,h)∈Z̃h

( f ∗h (s, a)− r − Vfh+1
(s′))2

+ 2ϵ
1
H

H

∑
h=1

1
n ∑

(s,a,r,s′ ,h)∈Z̃h

( f ∗h (s, a)− r − Vfh+1
(s′))

≤ ϵ2 + L(Ao(ZU), ZU) + 4ϵH.

Thus,

L(A(ZU), ZU)− L(Ao(ZU), ZU) ≤ 4ϵH + ϵ2.

Bounding |L(A(ZU),D)− L(Ao(ZU),D)| is similar. Now, we have

L(A(ZU), ZU)− L(A(ZU),D) = L(A(ZU), ZU)− L(Ao(ZU), ZU) + L(Ao(ZU), ZU)

− L(Ao(ZU),D) + L(Ao(ZU),D)− L(A(ZU),D).
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As |L(A(ZU), ZU)− L(Ao(ZU), ZU)| ≤ ϵ and |L(A(ZU),D)− L(Ao(ZU),D)| ≤ ϵ, we have

L(A(ZU), ZU)− L(A(ZU),D) ≤ L(Ao(ZU), ZU)− L(Ao(ZU),D) + 8ϵH + 2ϵ2.

By Theorem 6,

|EZ∼D [L(Ao(ZU), ZU)− L(Ao(ZU),D)]| ≤

√
2H2 ∑H

h=1 I( f ∗h ; U|Zh)

n

≤

√
2H2 ∑H

h=1 log(|Fϵ|)
n

(By Lemma 2)

=

√
2H3 log(|Fϵ|)

n

=

√
2H3 log(|N (F , ϵ)|)

n
.

Therefore,

|EZ∼D [L(A(ZU), ZU)− L(A(ZU),D)]| ≤
√

2H3 log(|N (F , ϵ)|)
n

+ 8ϵH + 2ϵ2.

Structural assumptions on the function space typically entail a finite covering number.
Next, we consider the simplest case: the pseudo-dimension. The pseudo-dimension is a
complexity measure of real-valued function classes, analogous to the VC dimension used
for binary classification. Although the value function space may be infinite, it remains
learnable if it has a finite pseudo-dimension.

Definition 12 (VC-Dimension [17]). Given hypothesis class H ⊆ X → {0, 1}, its VC-dimension
VCdim(H) is defined as the maximal cardinality of a set X = {x1, . . . , x|X|} ⊆ X that satis-
fies |HX | = 2|X| (or X is shattered by H), where HX is the restriction of H to X, namely
{(h(x1), . . . , h(x|X|)) : h ∈ H}.

Definition 13 (Pseudo dimension [18]). Suppose X is a feature space. Given hypothesis class
H ⊆ X → R, its pseudo dimension Pdim(H) is defined as Pdim(H) = VCdim(H+), where
H+ = {(x, ξ) 7→ 1[h(x) > ξ] : h ∈ H} ⊆ X ×R → {0, 1}}.

Lemma 3 (Bounding covering number by pseudo dimension [19]). Given hypothesis class
H ⊆ X → R with Pdim(H) ≤ d, we have

logN (H, ϵ) ≤ O(d log(1/ϵ)).

Corollary 1. Suppose the function class Fh ⊂ F has a finite pseudo dimension Pdim(Fh) = d.
For any batch RL algorithm with n training samples, the expected generalization error for the mean
squared empirical Bellman error (MSBE) loss is upper bounded by Õ(H2

√
d/n).

Proof. As Pdim(Fh) = d and F = F1 × · · · × FH, we have logN (F , ϵ) ≤ O(dH log(1/ϵ)).

The claim follows from Theorem 9 by setting ϵ = H
√

d
n .

A prior study on finite sample guarantees for minimizing the Bellman error, using
pseudo-dimension, demonstrated a sample complexity with a dependence of Õ(d2) [5].
In contrast, our sample complexity exhibits a dependence of Õ(d) on the pseudo-dimension.

Now, we introduce another complexity measure known as the effective dimension [20],
which has a similar covering number to the pseudo-dimension. The effective dimension
quantifies how the function class responds to data, indicating the minimum number of
samples required to learn effectively.
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Definition 14 (ϵ-effective dimension of a set [20]). The ϵ-effective dimension of a set X is the
minimum integer deff(X , ϵ) = n, such that

sup
x1,...,xn∈X

1
n

log det

(
I +

1
ϵ2

n

∑
i=1

xix⊤i

)
≤ e−1.

Definition 15 (ϵ-effective dimension of a function class [20]). Given a function class F defined
on X , its ϵ-effective dimension deff(F , ϵ) = n is the minimum integer n, such that there exists a
separable Hilbert space H and a mapping ϕ : X → H, so that

• for every f ∈ F , there exists θ f ∈ BH(1) satisfying f (x) = ⟨θ f , ϕ(x)⟩H for all x ∈ X ,
• deff(ϕ(X ), ϵ) = n, where ϕ(X ) = {ϕ(x) : x ∈ X}.

Definition 16 (Kernel MDPs [21]). In a kernel MDP of effective dimension d, for each step
h ∈ [H], there exist feature mappings ϕh : S × A → H and ψh : S → H, where H is a separable
Hilbert space, so that the transition measure can be represented as the inner product of features, i.e.,

Ph(s′ | s, a) = ⟨ϕh(s, a), ψh(s′)⟩H.

Besides, the reward function is linear in ϕ, i.e.,

rh(s, a) = ⟨ϕh(s, a), θr
h⟩H

for some θr
h ∈ H. Here, ϕ is known to the learner while ψ and θr

h are unknown. Moreover, a kernel
MDP satisfies the following regularization conditions: for all h

• ∥θr
h∥H ≤ 1 and ∥ϕh(s, a)∥H ≤ 1 for all s, a.

• ∥∑s∈S V(s)ψh(s)∥H ≤ 1 for any function V : S → [0, 1].
• dimeff(Xh, ϵ) ≤ d for all h, where Xh = {ϕh(s, a) : (s, a) ∈ S × A}.

Kernel MDPs are extensions of the traditional MDPs where the transition dynamics
and rewards are represented in a Reproducing Kernel Hilbert Space (RKHS). In this setup,
the value functions or Q-functions are approximated using kernel methods, allowing the
model to capture more complex dependencies in the data compared to linear models.
To learn kernel MDPs, it is necessary to construct a function class F .

Lemma 4 (Bounding covering number by effective dimension [21]). Let M be a kernel MDP
of effective dimension d, then

logN (F , ϵ) ≤ O(Hd log(1 + dH/ϵ)).

Corollary 2. Suppose the function class F has a finite effective dimension d. For any batch RL
algorithm with n training samples, the expected generalization error for the mean squared empirical
Bellman error (MSBE) loss is upper bounded by Õ(H2

√
d/n).

We showed that when a function class contains infinitely many elements, a finite cover-
ing number can be used to upper bound the generalization error. Just as the VC-dimension
imposes a finite cardinality, various concepts in real-valued function classes, such as pseudo-
dimension and effective dimension, result in a finite covering number, thereby ensuring
efficient learning.

6. Discussion

In this paper, we analyzed the generalization property of batch reinforcement learning
within the framework of information theory. We established generalization bounds using
both conditional and unconditional mutual information. Besides, we demonstrated how to
leverage the structure of the function space to guarantee generalization. Due to the merits of
the information-theoretic approach, there are several appealing future research directions.
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The first interesting avenue is to extend the results to the online setting. It is noteworthy
that in on-policy learning, the inputs (e.g., the reward and the next state), are influenced
by the output (e.g., the policy or the model), which highlights a significant disparity
compared to off-policy and supervised learning. In supervised learning, a small mutual
information between the input and the output indicates that the model is not overfitting.
In on-policy learning, analyzing the mutual information between the input and the output
can be more complicated and insightful. For example, in model-based reinforcement
learning, where the model is a part of the output, a small mutual information might indicate
that the learned model focuses more on the goal of maximizing the cumulative reward
rather than solely capturing the transition dynamics. How to learn an effective model
beyond merely fitting the transition is the central theme in decision-aware model-based
reinforcement learning [22–28].

As in the supervised learning setting, where various algorithms such as Stochastic
Gradient Descent (SGD) [29] and Stochastic Gradient Langevin Dynamics (SGLD) have
been studied [30], a promising future direction is to analyze information-theoretic gener-
alization bounds for specific reinforcement learning algorithms such as stochastic policy
gradient methods.

In addition, the information-theoretic approach has the potential to unify various
concepts related to generalization, such as differential privacy and stability [12,31]. It would
be interesting to explore how these notions in reinforcement learning can be leveraged to
guarantee generalization.

Analyzing generalization for reinforcement learning is inherently more challeng-
ing than in supervised learning [32–34]. Therefore, we hope that the information-
theoretic approach will provide more insights into understanding the generalization of
reinforcement learning.
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Appendix A. Related Work

Appendix A.1. Batch Reinforcement Learning

A body of literature focuses on finite sample guarantees for batch reinforcement
learning with function approximation [35–40]. Common assumptions in batch RL, such
as concentrability, realizability, and completeness, have also been examined in more re-
cent studies [41–43]. The most relevant work to ours [3] investigates the generalization
performance of batch RL under the same setting using Rademacher complexities.

Appendix A.2. Structural Conditions for Efficient RL

Analogous to complexity measures in supervised learning, several structural condi-
tions have been studied to enable efficient reinforcement learning, including Bellman
rank [14], Witness rank [15], Eluder dimension [16], Bellman Eluder dimension [21],
and more [20,37,44]. Identifying structural conditions and classifying RL problems clarifies
the limits of what can be learned and guides the design of efficient algorithms.

Appendix A.3. Information-Theoretic Study of Generalization

The information-theoretic approach was initially introduced by [1,2] and subsequently
refined to derive tighter bounds [45–47]. Besides, various other information-theoretic bounds
have been proposed, leveraging concepts such as conditional mutual information [12],
f -divergence [11], the Wasserstein distance [48,49], and more [50,51]. Some studies have
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focused on analyzing specific algorithms [29,30,52–55] while others have examined partic-
ular settings such as deep learning [56], iterative semi-supervised learning [57], transfer
learning [58], and meta-learning [59,60]. There are also works attempting to provide a
unified framework for generalization from an information-theoretic perspective [31,61,62].
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