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Abstract: In this paper, by using eleven entangled quantum states as a quantum channel, we propose
a cyclic and asymmetric novel protocol for four participants in which both Alice and Bob can transmit
two-qubit states, and Charlie can transmit three-qubit states with the assistance of the supervisor
David, who provides a guarantee for communication security. This protocol is based on GHZ state
measurement (GHZ), single-qubit measurement (SM), and unitary operations (UO) to implement the
communication task. The analysis demonstrates that the success probability of the proposed protocol
can reach 100%. Furthermore, considering that in actual production environments, it is difficult to
avoid the occurrence of noise in quantum channels, this paper also analyzes the changes in fidelity in
four types of noisy scenarios: bit-flip noise, phase-flip noise, bit-phase-flip noise, and depolarizing
noise. Showing that communication quality only depends on the amplitude parameters of the initial
state and decoherence rate. Additionally, we give a comparison with previous similar schemes in
terms of achieved method and intrinsic efficiency, which illustrates the superiority of our protocol.
Finally, in response to the vulnerability of quantum channels to external attacks, a security analysis
was conducted, and corresponding defensive measures were proposed.

Keywords: asymmetric; quantum teleportation; noisy environment; security

1. Introduction

One of the most peculiar applications of quantum information is quantum teleporta-
tion, which, in principle, allows the faithful transfer of an unknown quantum state from
one particle to another particle without physical transmission of the object itself. Since
the quantum teleportation protocol was proposed by Bennett et al. in 1993 [1], the related
research has received wide attention from theoretical and experimental researchers in recent
years for its important applications in quantum computation and quantum communication.
Subsequently, some kinds of schemes of quantum teleportation mainly based on point-
to-point unidirectional mode have been presented [2–8]. Alternatively, some researchers
have found that increasing security by adding a supervisor leads to more efficient transmis-
sion [9–14]. In 2013, Zha et al. innovatively proposed a bidirectional control protocol with a
five-qubit cluster state; transmission further develops from a point-to-point unidirectional
mode to a bidirectional mode [15]. In 2014, Duan et al. realized quantum teleportation
based on a six-qubit entangled state [16]. Further, several kinds of bidirectional controlled
joint remote state preparation [17,18] and bidirectional controlled hybrid communication
schemes [19,20] have been explored.

When considering more participants existed in quantum teleportation protocol, cyclic
teleportation was proposed by Chen et al. in 2017 [21], which can be considered as a
further extension of bidirectional teleportation. In Chen’s scheme, Alice, Bob, and Charlie
cyclically teleport three arbitrary single-qubit states amongst themselves, which are in their
respective possessions, using a six-qubit maximally entangled state as a quantum channel.
In 2018, Sang et al. [22] designed a cyclic teleportation scheme with a control party. Similar
to the above schemes, Wang et al. studied the four-participant cyclic controlled remote

Entropy 2024, 26, 1108. https://doi.org/10.3390/e26121108 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26121108
https://doi.org/10.3390/e26121108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e26121108
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26121108?type=check_update&version=2


Entropy 2024, 26, 1108 2 of 18

state preparation scheme of a single-qubit state [23]. In 2020, the double-direction cyclic
controlled communication of a single-qubit state via a thirteen-qubit entangled state was
put forward by Sun et al. [24].

Zhang and Duan proposed an asymmetric bidirectional quantum teleportation pro-
tocol in 2015 [25], which utilized a maximally seven-qubit entangled state as a quantum
channel. In 2017, another asymmetric teleportation protocol was created by Choudhury
et al. [26]. Moreover, cyclic-controlled protocols were proposed based on asymmetric
teleportation [27,28]. Such communication is under the control of a supervisor and has the
advantage of avoiding the attack of eavesdroppers [27].

To teleport more particles among three senders with high efficiency, we propose a
novel protocol on the basis of a combination of the traditional asymmetric model and the
cyclic model of teleportation, where the quantum channel is eleven-qubit entangled states.
With the help of controller David, the senders Alice, Bob, and Charlie can exchange their
desired quantum state at the same time; by following the protocol, the states are transferred
with unit probability. This is in contrast with the probabilistic teleportation schemes, in
which state transfers only have a certain probability of success. Additionally, unlike most
protocols that only transmit a small number of particles and communicate between two
parties, we innovatively propose a quantum channel constructed with very few entangled
quantum states, which can transmit more quantum states and achieve multi-party cyclic
transmission. Compared with symmetric communication, our asymmetric protocol can
reduce unnecessary quantum state reconstruction, thereby saving the consumption of
quantum resources and making the communication method more flexible. Moreover,
due to the existence of the controller in our protocol, it can choose whether to notify the
communicating party of the measurement results to achieve the desired control effect. From
a communication engineering perspective, for each of the three neighboring observers,
they can transmit different quantum states simultaneously, which is more suitable for
future quantum communication networks. Furthermore, in reality, noises are inevitably
introduced when teleporting a quantum state [29–33]. In order to implement the protocol
in practice, we also consider the effect of the noise environment on the teleportation.
Finally, we conducted a security analysis and proposed corresponding measures for the
vulnerability of quantum channels to external attacks.

The rest of this article is organized as follows: Section 2 details the establishment of
the quantum channel for the proposed protocol and the description of the protocol. In
Section 3, we calculate the fidelity of the proposed protocol under four noise channels and
then analyze and compare them through MATLAB 2021a simulations. In Section 4, we
first perform an efficiency analysis and make comparisons with other similar proposed
protocols, and then we discuss the security of the proposed scheme. Finally, Section 5
draws a conclusion.

2. The Scheme of ACCQT Protocol
2.1. Construction of the Quantum Channel

This quantum channel can not only be theoretically proposed but also constructed.
The feasibility of a proposed quantum channel is depicted in Figure 1.

In the ideal environment, the steps involved in creating a channel are described
as follows:

Step 1. Preparing eleven qubits in the state |0〉 as the initial state:

|Ψ0⟩B1B2B3C1C2C3 A1 A2 A3 A4D = |0⟩⊗11
B1B2B3C1C2C3 A1 A2 A3 A4D (1)

Step 2. Applying three Hadamard gate operations to the qubits B1, B3, and C3,
respectively, then the above input state |Ψ0〉 can be transformed as:

|Ψ1⟩B1B2B3C1C2C3 A1 A2 A3 A4D = |+⟩B1 ⊗ |0⟩B2 ⊗ |+⟩B3 ⊗ |0⟩C1 ⊗ |0⟩C2 ⊗ |+⟩C3 ⊗ |0⟩⊗5
A1 A2 A3 A4D (2)
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Step 3. This step implements CNOT gate operations on qubits (B1, B2), (B1, A4), (B1,
D), and (B3, C1) and (B3, C2), respectively, subsequently applying the Pauli-X gate operation
twice on qubit B3. Then, the state will convert into |Ψ2〉, that is shown as follows:

|Ψ2⟩B1B2B3C1C2C3 A1 A2 A3 A4D = 1
2
√

2
(|00001000000⟩+ |00001100000⟩+ |00110000000⟩+ |00110100000⟩

+|11001000011⟩+ |11001100011⟩+ |111100000011⟩+ |11110100011⟩)B1B2B3C1C2C3 A1 A2 A3 A4D
(3)

where the CNOT gate is applied to two qubits, treat the first qubit as the control qubit and
the second qubit as the target qubit. The Pauli-X gate is a single-qubit gate operation that
performs a flip operation on a quantum bit, transforming the state from |0〉 to |1〉. They
can be represented as follows:

CNOT =


1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

, X =

[
0 1
1 0

]
(4)

Step 4. Then applying CNOT gate operations on A1, A2, and A3 as target qubits and
qubit C3 as a controlled qubit is performed. Finally, we can obtain the final constructed
quantum channel |Ψ〉 through the above operations, and it can be described as:

|ψ⟩B1B2B3C1C2C3 A1 A2 A3 A4D = 1
2
√

2
(|00001000000⟩+ |00001111100⟩+ |00110000000⟩+ |00110111100⟩

+|11001000011⟩+ |11001111111⟩+ |11110000011⟩+ |11110111111⟩)B1B2B3C1C2C3 A1 A2 A3 A4D
(5)
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Figure 1. Quantum circuit to prepare an entangled channel. The details of Step 1 to Step 4 in the 
figure can be found, respectively, in the main text. 

Step 3. This step implements CNOT gate operations on qubits (B1, B2), (B1, A4), (B1, 
D), and (B3, C1) and (B3, C2), respectively, subsequently applying the Pauli-X gate operation 
twice on qubit B3. Then, the state will convert into |Ψ2⟩, that is shown as follows: 

1 2 3 1 2 3 1 2 3 4

1 2 3 1 2 3 1 2 3 4

2
1| (| 00001000000 | 00001100000 | 00110000000 | 00110100000

2 2
|11001000011 |11001100011 |111100000011 |11110100011 )

B B B C C C A A A A D

B B B C C C A A A A D

Ψ  = + + + 

+ + + +   
(3)

where the CNOT gate is applied to two qubits, treat the first qubit as the control qubit 
and the second qubit as the target qubit. The Pauli-X gate is a single-qubit gate operation 
that performs a flip operation on a quantum bit, transforming the state from |0⟩ to |1⟩. 
They can be represented as follows: 

CNOT = ቎1 00 1 0 00 00 00 0 0 11 0቏,    X = ቂ0 11 0ቃ  (4)

Step 4. Then applying CNOT gate operations on A1, A2, and A3 as target qubits and 
qubit C3 as a controlled qubit is performed. Finally, we can obtain the final constructed 
quantum channel |Ψ⟩ through the above operations, and it can be described as: 

1 2 3 1 2 3 1 2 3 4

1 2 3 1 2 3 1 2 3 4

B B B

B B B

1 ( 00001000000 00001111100 00110000000 00110111100
2 2

11001000011 11001111111 11110000011 11110111111 )

C C C A A A A D

C C C A A A A D

ψ = + + +

+ + + +

 
(5)

2.2. Description of the Proposed Protocol 
Based on the quantum channel we prepared, in this section, we give a detailed de-

scription of the proposed scheme, as shown in Figure 2. 

Figure 1. Quantum circuit to prepare an entangled channel. The details of Step 1 to Step 4 in the
figure can be found, respectively, in the main text.

2.2. Description of the Proposed Protocol

Based on the quantum channel we prepared, in this section, we give a detailed de-
scription of the proposed scheme, as shown in Figure 2.
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Figure 2. The schematic diagram of asymmetric cyclic controlled quantum teleportation. (a) The 
solid circle represents the qubits on the quantum channel; (b) the hollow circle represents the qubits 
to be transmitted between Alice, Bob, and Charlie; (c) SM denotes single-qubit state measurement, 
and GHZ denotes GHZ-state measurement. Among them, Alice and Bob measured the three-qubit 
GHZ state, and Charlie measured the four-qubit GHZ state and sent it to David through the classical 
channel. David measured the single-qubit and broadcast the measurement results through the clas-
sical channel; (d) Alice, Bob, and Charlie performed the corresponding unitary operation. 
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Figure 2. The schematic diagram of asymmetric cyclic controlled quantum teleportation. (a) The
solid circle represents the qubits on the quantum channel; (b) the hollow circle represents the qubits
to be transmitted between Alice, Bob, and Charlie; (c) SM denotes single-qubit state measurement,
and GHZ denotes GHZ-state measurement. Among them, Alice and Bob measured the three-qubit
GHZ state, and Charlie measured the four-qubit GHZ state and sent it to David through the classical
channel. David measured the single-qubit and broadcast the measurement results through the
classical channel; (d) Alice, Bob, and Charlie performed the corresponding unitary operation.

The proposed protocol is described as follows: Suppose Alice holds an unknown
two-qubit state |ϕ⟩a1a2

, which is denoted by:

|ϕ⟩a1a2
= (α0|00⟩+α1|11⟩) (6)

α0,α1 are complex numbers with |α0|
2 + |α1|

2 = 1. The state |ϕ⟩a1a2
is to be teleported

to Bob. Simultaneously, Bob wants to teleport an unknown two-qubit state to Charlie, and
David wants to teleport an unknown three-qubit state to Alice, which can be expressed as:

|ϕ⟩b1b2
= (β0|01⟩+β1|10⟩) (7)

|ϕ⟩e1e2e3
= (γ0|000⟩+γ1|111⟩) (8)

where β0, β1, γ0, γ1 are complex numbers with |β0|
2 + |β1|2 = 1 and |γ0|

2 + |γ1|2 = 1. To
effectively implement the asymmetric cyclic controlled quantum teleportation protocol, we
need to perform the following six steps:

Step 1. Define the holding of qubit information

Supposing that Alice, Bob, Charlie, and supervisor David share the eleven-qubit
entangled state |Ψ〉, where Alice holds the qubits A1, A2, A3, and A4; Bob possesses the
qubits B1, B2, and B3; Charlie possesses the qubits C1, C2, and C3; and qubit D is being held
by David. Consequently, the overall system can be described as follows:

|Ψ⟩a1a2b1b2e1e2e3B1B2B3C1C2C3 A1 A2 A3 A4D = |ϕ⟩a1a2 ⊗ |ϕ⟩b1b2 ⊗ |ϕ⟩e1e2e3 ⊗ |Ψ⟩B1B2B3C1C2C3 A1 A2 A3 A4D (9)
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Step 2. The detailed measurement for Alice
Afterward, Alice conducts a three-qubit GHZ state measurement (GSM) on qubits

(a1, a2, A4) and communicates her measurement results to Bob, where she can choose
randomly one of eight GHZ states |δ+〉a1a2A4, |δ−〉a1a2A4, |η+〉a1a2A4, |η−〉a1a2A4,
|w−〉a1a2A4, |w+〉a1a2A4, |µ−〉a1a2A4, |µ+〉a1a2A4 as the measurement basis. The eight
distinct three-qubit GHZ states are defined as follows:

|δ+⟩a1a2A4 = 1√
2
(|000⟩+ |111⟩), |δ−⟩a1a2A4 = 1√

2
(|000⟩ − |111⟩)

|η+⟩a1a2A4 = 1√
2
(|001⟩+ |110⟩), |η−⟩a1a2A4 = 1√

2
(|001⟩ − |110⟩)

|ω+⟩a1a2A4 = 1√
2
(|010⟩+ |101⟩), |ω−⟩a1a2A4 = 1√

2
(|010⟩ − |101⟩)

|µ+⟩a1a2A4 = 1√
2
(|100⟩+ |011⟩), |µ−⟩a1a2A4 = 1√

2
(|100⟩ − |011⟩)

(10)

In order to realize the asymmetric cyclic control teleportation protocol, Alice must
perform a measurement on her three qubits, a1, a2, and A4, on the basis that is given in
Equation (10). With this basis, the quantum system can be expressed as:

|Ψ⟩b1b2e1e2e3a1a2A4B1B2B3C1C2C3 A1 A2 A3D = 1
2 |ϕ⟩b1b2 ⊗ |ϕ⟩e1e2e3 ⊗

{
|δ+⟩ a1a2A4

⊗[α0(|0000100000⟩+ |0000111110⟩+ |0011000000⟩+ |0011011110⟩)
+α1(|1100100001⟩+ |1100111111⟩+ |1111000001⟩+ |1111011111⟩)]
+|δ−⟩a1a2A4 ⊗ [α0(|0000100000⟩+ |0000111110⟩+ |0011000000⟩+ |0011011110⟩)
−α1(|1100100001⟩+ |1100111111⟩+ |1111000001⟩+ |1111011111⟩)]
+|η+⟩a1a2A4 ⊗ [α0(|1100100001⟩+ |1100111111⟩+ |1111000001⟩+ |1111011111⟩)
+α1(|0000100000⟩+ |0000111110⟩+ |0011000000⟩+ |0011011110⟩)]
+|η−⟩a1a2A4 ⊗ [α0(|1100100001⟩+ |1100111111⟩+ |1111000001⟩+ |1111011111⟩)
−α1(|0000100000⟩+ |0000111110⟩+ |0011000000⟩+ |0011011110⟩)]B1B2B3C1C2C3 A1 A2 A3D

}
(11)

Suppose Alice obtains |δ+〉a1a2A4 as a measurement outcome; in this case, she will
share it through the classical channel, and the state of the remaining particles (B1, B2, B3,
B1, C2, C3, A1, A2, A3, D) belonging to Alice, Bob, Charlie, and David will be in the state:

|Ψ⟩δ+

b1b2e1e2e3B1B2B3C1C2C3 A1 A2 A3D = 1
2 |ϕ⟩b1b2 ⊗ |ϕ⟩e1e2e3

⊗[α0(|0000100000⟩+ |0000111110⟩+ |0011000000⟩+ |0011011110⟩)B1B2B3C1C2C3 A1 A2 A3D
+α1(|1100100001⟩+ |1100111111⟩+ |1111000001⟩+ |1111011111⟩)B1B2B3C1C2C3 A1 A2 A3D]

(12)

Step 3. The detailed measurement for Bob
Then, Bob, instructed by Alice, performs a three-qubit GHZ state measurement (GSM)

on qubits (b1, b2, B3) and communicates his measurement outcomes to Charlie. Bob’s
measurement basis is composed of the following eight orthogonal states:

|δ+⟩b1b2B3 = 1√
2
(|000⟩+ |111⟩), |δ−⟩b1b2B3 = 1√

2
(|000⟩ − |111⟩)

|η+⟩b1b2B3 = 1√
2
(|001⟩+ |110⟩), |η−⟩b1b2B3 = 1√

2
(|001⟩ − |110⟩)

|ω+⟩b1b2B3 = 1√
2
(|010⟩+ |101⟩), |ω−⟩b1b2B3 = 1√

2
(|010⟩ − |101⟩)

|µ+⟩b1b2B3 = 1√
2
(|011⟩+ |100⟩), |µ−⟩b1b2B3 = 1√

2
(|011⟩ − |100⟩)

(13)

With this basis, after completing the measurement on his three-qubit state, Bob trans-
mits the measurement outcome to the controller, David. Suppose Bob’s measurement
outcome is |ω+〉b1b2B3. Then the state of the remaining particles (B1, B2, C1, C2, C3, A1, A2,
A3, D) owned by Alice, Bob, Charlie, and David will be collapsed as:

|Ψ⟩δ+ ,ω+

e1e2e3B1B2C1C2C3 A1 A2 A3D = 1√
2
⊗ |ϕ⟩e1e2e3

⊗[α0β0(|000100000⟩+ |000111110⟩) + α0β1(|001000000⟩+ |001011110⟩)B1B2C1C2C3 A1 A2 A3D
+α1β0(|110100001⟩+ |110111111⟩) + α1β1(|111000001⟩+ |111011111⟩)B1B2C1C2C3 A1 A2 A3D]

(14)

Step 4. The detailed measurement for Charlie
After that, under Bob’s instruction, Charlie proceeds to perform a four-qubit GHZ

state measurement on qubit (e1, e2, e3, C3) and shares the measurement outcomes with
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Alice through a classical channel. Charlie’s measurement basis comprises the following
orthogonal states:

|ε1
+⟩e1e2e3C3 = |0000⟩+|1111⟩√

2
, |ε1

−⟩e1e2e3C3 = |0000⟩−|1111⟩√
2

|ℓ1
+⟩e1e2e3C3 = |0001⟩+|1110⟩√

2
, |ℓ1

−⟩e1e2e3C3 = |0001⟩−|1110⟩√
2

|ε2
+⟩e1e2e3C3 = |0010⟩+|1101⟩√

2
, |ε2

−⟩e1e2e3C3 = |0010⟩−|1101⟩√
2

|ℓ2
+⟩e1e2e3C3 = |0100⟩+|1011⟩√

2
, |ℓ2

−⟩e1e2e3C3 = |0100⟩−|1011⟩√
2

|ε3
+⟩e1e2e3C3 = |1000⟩+|0111⟩√

2
, |ε3

−⟩e1e2e3C3 = |1000⟩−|0111⟩√
2

|ℓ3
+⟩e1e2e3C3 = |0011⟩+|1100⟩√

2
, |ℓ3

−⟩e1e2e3C3 = |0011⟩−|1100⟩√
2

|ε4
+⟩e1e2e3C3 = |0110⟩+|1001⟩√

2
, |ε4

−⟩e1e2e3C3 = |0110⟩−|1001⟩√
2

|ℓ4
+⟩e1e2e3C3 = |1100⟩+|0011⟩√

2
, |ℓ4

−⟩e1e2e3C3 = |1100⟩−|0011⟩√
2

(15)

With the above orthogonal state’s measurement basis, suppose Charlie’s measurement
outcome is |ε1

+〉e1e2e3C3. Then, the state of the recombining particles (B1, B2, C1, C2, A1,
A2, A3, D) owned by Alice, Bob, Charlie, and David will be collapsed into the following:

|Ψ⟩δ+ ,ω+ ,ε1
+

B1B2C1C2 A1 A2 A3D = (α0β0γ0|00010000⟩+ α0β0γ1|00011110⟩
+α0β1γ0|00100000⟩+ α0β1γ1|00101110⟩
+α1β0γ0|11010001⟩+ α1β0γ1|11011111⟩
+α1β1γ0|11100001⟩+ α1β1γ1|11101111⟩)B1B2C1C2 A1 A2 A3D

(16)

Step 5. The detailed processing for controller David
After performing two three-qubit GHZ state measurements and a four-qubit GHZ

state measurement, Alice, Bob, and Charlie communicate the outcomes of their results to
the controller, David. Lastly, in order to ensure the smooth implementation of our scheme,
David needs to perform a single-qubit von Neumann Z-base measurement on his qubit D:

|ℏ+⟩D =
1√
2
(|0⟩+ |1⟩) |ℏ−⟩D =

1√
2
(|0⟩ − |1⟩) (17)

If David’s outcome is |h̄+〉D, finally the state of the other particles (B1, B2, C1, C2, A1,
A2, A3) will be collapsed into:

(α0β0γ0|0001000⟩+ α0β0γ1|0001111⟩+ α0β1γ0|0010000⟩
+α0β1γ1|0010111⟩+ α1β0γ0|1101000⟩+ α1β0γ1|1101111⟩
+α1β1γ0|1110000⟩+ α1β1γ1|1110111⟩B1B2C1C2 A1 A2 A3)
= (α0|00⟩+ α1|11⟩)B1B2

⊗ (β0|01⟩+ β1|10⟩)C1C2
⊗ (γ0|000⟩+ γ1|111⟩)A1 A2 A3

(18)

Step 6. The corresponding scheme for recovering
Lastly, the corresponding unitary transformation is executed. According to the final col-

lapse state, if Alice, Bob, and Charlie undertake local unitary operations IB1⊗IB2⊗IC1⊗IC1⊗
IA1⊗IA2⊗IA3, the desired state can be reconstructed. The successful completion of the
ACCQT has been achieved.

There are a total of 128 possible cases with the same probability after all measurement
operations in this scheme. Thus, the total success probability of the proposed scheme
is 100%. In order to ensure the structure of the main text, all measurement states and
corresponding unitary operations are listed in Appendix A, Table A1.

3. Fidelity Calculation

The fidelity is a metric based on the distance between two quantum states, indicating
their level of closeness. As quantum states pass through environments with noise, some
information is lost. This loss can be indirectly evaluated by determining the fidelity. In this
particular section, we examine the impact of noise on the ACCQT process. We mathemati-
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cally describe four types of noisy environments, including bit-flip, phase-flip, bit-phase-flip,
and depolarizing environments that affect the quantum channel. We then analyze the
quality of the protocol proposed by calculating the fidelities of the teleported states.

Considering that the controller David is only responsible for particle distribution. As
a result, David’s particle does not have to transmit through the noisy channel, so it is not
influenced by noise. To describe different sorts of noisy channels, the quantum channel is
represented by a density operator using the Kraus operator [34].

ρ = ∑ Ei|φ⟩B1B2B3C1C2C3 A1 A2 A3 A4D⟨φ|E†
i (19)

The output state of the protocol is represented as:

ρout = U
{

TrB1B2C1C2 A1 A2 A3

[
(ξa1a2 A4 ⊗ ξb1b2B3 ⊗ ξe1e2e3C3 ⊗ λD)ρB1B2B3C1C2C3 A1 A2 A3 A4D ⊗ ρa1a2 ⊗ ρb1b2 ⊗ ρe1e2e3

]}
U† (20)

In the above formula, U denotes unitary operations that are performed on the col-
lapsed state after the measurements have been made. ξa1a2A4, ξb1b2B3, and ξe1e2e3C3
each represent a GHZ-state measurement for Alice, Bob, and Charlie. λD represents the
single-particle von Neumann measurement made by David.

Fidelity can be used to measure the accuracy and precision of quantum operations, as
well as to assess the impact of noise channels on quantum teleportation. The fidelity value
approaching one indicates minimal information loss, whereas a fidelity value closer to zero
signifies a higher susceptibility to noise and greater information loss during transmission.
The following is the formula for calculating fidelity:

f =
〈
Θ
∣∣ρout∣∣Θ⟩ (21)

Here, |Θ〉 represents the ideal quantum output state in a noiseless environment.

3.1. Bit-Flip Noisy Channel

The bit-flip noise channel is a category of noise that may arise during communication.
In the course of transmitting quantum qubits through a bit-flip noisy channel, the state
of the transmitted qubits might be altered by means of environmental interference or
noise, resulting in bit flips. Consequently, the sent quantum bits no longer conform
to the anticipated entangled state, thus negatively impacting the efficacy of quantum
teleportation. In the above-mentioned noise channel, there exists a probability p (0 ≤ p ≤ 1)
for quantum bits to incur bit-flip errors during transmission, while the probability of no
error is 1 − p. The bit-flip noise can be represented using the Kraus operator provided in
the following formula:

E0 =
√

1 − p
(

1 0
0 1

)
=

√
1 − pI, E1 =

√
p
(

0 1
1 0

)
=

√
pX (22)

After evolving in bit-flip noise, then we can determine the corresponding fidelity
expression as:

f = ⟨Θ
∣∣ρout∣∣Θ⟩ =

[
(1 − p)10 + p10

]
(23)

Based on the fidelity formula described above, we conclude that the fidelity of the
protocol in the bit-flip noise channel is only dependent on the noise intensity. Additionally,
by running the expression via MATLAB, as depicted in Figure 3, it can be visually observed
that as the level of bit-flip noise increases, the fidelity exhibits a parabolic trend, initially
decreasing and then increasing.
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3.2. Phase-Flip Noisy Channel

The phase-flip noise channel is a common noisy scenario in quantum communication
where the transmitted quantum qubits are prone to interference and errors. These errors
result in each quantum qubit being flipped with a probability of p, meaning that |0〉
becomes |1〉 and |1〉 becomes |0〉. For the phase-flip noise, the Kraus operators are
given by:

E0 =
√

1 − p
(

1 0
0 1

)
=

√
1 − pI, E1 =

√
p
(

1 0
0 −1

)
=

√
pZ (24)

After the evolution in phase-flip noise, our final output state is given by:

ρout = (1 − p)10[α0β0γ0|0001000⟩+ α0β0γ1|0001111⟩+ α0β1γ0|0010000⟩
+α0β1γ1|0010111⟩+ α1β0γ0|1101000⟩+ α1β0γ1|1101111⟩+ α1β1γ0|1110000⟩
+α1β1γ1|1110111⟩] [α0β0γ0⟨0001000|+ α0β0γ1⟨0001111|+ α0β1γ0⟨0010000|
+α0β1γ1⟨0010111|+ α1β0γ0⟨1101000|+ α1β0γ1⟨1101111|+ α1β1γ0⟨1110000|
+α1β1γ1

〈
1110111|] + p10[−α0β0γ0|0001000⟩ − α0β0γ1|0001111⟩+ α0β1γ0|0010000⟩

+α0β1γ1|0010111⟩+ α1β0γ0|1101000⟩+ α1β0γ1|1101111⟩ − α1β1γ0|1110000⟩
−α1β1γ1|1110111⟩][−α0β0γ0⟨0001000| − α0β0γ1⟨0001111|+ α0β1γ0⟨0010000|
+α0β1γ1⟨0010111|+ α1β0γ0⟨1101000|+ α1β0γ1⟨1101111| − α1β1γ0⟨1110000|
−α1β1γ1⟨1110111|]

(25)

Then, we can determine the corresponding fidelity expression as:

f =
〈

Θ
∣∣ρout∣∣Θ⟩ =

[
(1 − p)10 + p10(−α2

0β2
0 + α2

0β2
1 + α2

1β2
0 − α2

1β2
1)

2
]

(26)

Based on the above formula, we conclude that the fidelity of our protocol in phase-flip
depends on two aspects: the noise intensity and amplitude parameters of the initial state.
The fidelity of the protocol is shown in Figure 4. Here, p represents the noise intensity in
the phase-flip noise channel, while α0, α1, β0, and β1 represent the amplitude parameters of
the transmitted quantum state.

In Figure 4a, take β0 = 0, β1 = 1, and α0 = a; fidelity is only associated with the noise
intensity p and amplitude parameter a of the initial state. When the noise intensity p is in
the interval [0, 0.4], the fidelity decreases rapidly as the noise intensity increases, while the
change in parameter a has almost no effect on the fidelity. The fidelity reaches the worst case
when the noise intensity is around 0.6. When the noise intensity is in the interval [0.6, 1], the
fidelity of the protocol decreases with parameter an up to a = 0.5, then the fidelity increases
as an increase, reaching almost 1, indicating excellent communication transmission.
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Figure 4. Analysis plot of fidelity f in a phase-flip noisy channel. In this figure, p is the success
probability, and the parameters a and b represent the amplitude parameters of the transmitted
quantum state.

In Figure 4c, take the phase-flip noise intensity p = 1, α0, β0. At this time, the fidelity is
related to parameters a and b. As can be seen from the figure, the image of fidelity change
is a “concave” shape. As a and b increase, the fidelity will decrease first and then increase.
The fidelity reaches a minimum when a and b are all around 0.6. It is worth noting that
when one side of the parameters a and b tends to 1, and the other side tends to 0, a similar
high fidelity can be achieved and complete quantum communication.

3.3. Bit-Phase-Flip Noisy Channel

The bit-phase-flip noise channel is a type of noise scenario that includes both bit-flip
and phase-flip noises. In the bit-phase-flip noise channel, each qubit can undergo both
bit-flip and phase-flip operations. Compared to other noise channels, the bit-phase-flip
noise is more complex and can result in higher error rates. In the above-mentioned noise
channel, there exists a probability p (0 ≤ p ≤ 1) for quantum bits to incur bit-phase-flip
errors during transmission, while the probability of no error is 1 − p. The bit-phase-flip
noise can be represented using the Kraus operator provided in the following formula:

E0 =
√

1 − pI E1 =
√

pY =
√

p
[

0 −i
i 0

]
(27)

After the channel is affected by bit-phase-flip noise, subsequent measurement and
unitary operations will continue, and the final output state can be expressed as:

ρout = (1 − p)10[α0β0γ0|0001000⟩+ α0β0γ1|0001111⟩+ α0β1γ0|0010000⟩+ α0β1γ1|0010111⟩
+α1β0γ0|1101000⟩+ α1β0γ1|1101111⟩+ α1β1γ0|1110000⟩+ α1β1γ1|1110111⟩]
[α0β0γ0⟨0001000|+ α0β0γ1⟨0001111|+ α0β1γ0⟨0010000|+ α0β1γ1⟨0010111|
+α1β0γ0⟨1101000|+ α1β0γ1⟨1101111|+ α1β1γ0⟨1110000|+ α1β1γ1⟨1110111|]
+p10[α1β1γ1|1110111⟩+ α1β1γ0|1110000⟩ − α1β0γ1|1101111⟩ − α1β0γ0|1101000⟩
−α0β1γ1|0010111⟩ − α0β1γ0|0010000⟩+ α0β0γ1|0001111⟩+ α0β0γ0|0001000⟩]
[α1β1γ1⟨1110111|+ α1β1γ0⟨1110000| − α1β0γ1⟨1101111| − α1β0γ0⟨1101000|
−α0β1γ1⟨0010111| − α0β1γ0⟨0010000|+ α0β0γ1⟨0001111|+ α0β0γ0⟨0001000|]

(28)

Then, we can determine the corresponding fidelity expression as:

f =
〈

Θ
∣∣ρout∣∣Θ⟩ =

[
(1 − p)10 + p10(α2

0β2
0 − α2

0β2
1 − α2

1β2
0 + α2

1β2
1)

2
]

(29)
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In the bit-phase-flip noise channel, the fidelity of the protocol is correlated with the
noise intensity and the probability amplitude of the quantum state to be transmitted.
As shown in Figure 5, it can visually reflect the variation in fidelity in the bit-phase-flip
noise channel.
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Figure 5. Analysis plot of fidelity f in a bit-phase-flip noisy channel. In this figure, p means the
success probability, and the parameters a and b represent the amplitude parameters of the transmitted
quantum state.

In Figure 5a, take β0 = 1, β1 = 0, and α1 = a. At this time, the fidelity is only associated
with the noise intensity p and amplitude parameter a of the initial state. When the bit-
phase-flip noise intensity p is within the range [0, 0.4], the variation in a has almost no
effect on the fidelity, while the fidelity decreases rapidly with the increase in noise intensity.
When the noise intensity p is around 0.5, the fidelity reaches the worst case, and quantum
communication has long been out of reach.

In Figure 5b, the noise intensity of the bit-phase-flip noise is kept constant at 1, and
α0 = a and β0 = b. At this point, fidelity is only related to a and b. From the figure, it can be
seen that the fidelity change shows a “valley” shape, with high values around the edges
and low values in the middle. As parameters a and b increase, the fidelity will decrease first
and then increase. The fidelity performs well in all four “corners” of the figure, indicating
that the quantum information transmitted through communication can be well-preserved
in its original state, and the receiver can accurately read and decode this information.

In Figure 5c, when α0 = β0 = α1 = β1 and substituted into Equation (36), the fidelity of
the protocol is only related to the intensity of the bit-phase-flip noise. When the channel
noise intensity is in the interval [0, 0.2], the fidelity decreases sharply with the increase
in the channel noise intensity. When the channel noise intensity is in the interval [0.4, 1],
the fidelity tends to 0. Obviously, it can be found that the bit-phase-flip noise has a more
drastic impact on its quantum fidelity than other types of noise.

3.4. Depolarizing Noisy Channel

In a depolarizing noisy channel, the qubits are depolarized with probability p (0 ≤ p ≤ 1),
the system is left invariant with the probability 1 − p, while the operators X, Y, and Z act on
the system with the probability P

3 . The Kraus operators of depolarizing noise are as follows:

E0 =

√
1 − 3

4
pI, E1 =

√
p

2
X, E2 =

√
p

2
Y, E3 =

√
p

2
Z (30)
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According to the Kraus operator representation of the depolarizing noise, after the
channel is affected by depolarization noise, subsequent measurement, and unitary opera-
tions will continue; the expression for fidelity under the depolarizing noise channel can be
determined as:

f =

〈
Θ
∣∣ρout∣∣Θ⟩ = (1 − 3

4
p)

10
+

p10

220 + 2 × p10

220 (α
2
0β2

0 − α2
0β2

1 − α2
1β2

0 + α2
1β2

1)
2

(31)

Due to the negligible values of the last two items in Equation (31), the fidelity is
simplified as:

f = ⟨Θ
∣∣ρout∣∣Θ⟩ = (1 − 3

4
p)

10
(32)

In the depolarizing noise channel, qubits transmitted through it are prone to polar-
ization transformations, leading the qubits to be randomly rotated to a new polarization
direction. This new polarization direction may deviate from the original one, causing
the receiver to be unable to accurately read and decode the qubit, ultimately resulting in
transmission distortion or errors. Based on the fidelity measurements described above,
we utilized MATLAB 2021a software to generate Figure 6, conducting a detailed noise
analysis of our protocol in the depolarizing noise environment to ensure the stability of
communication.
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In Figure 6a, take β0 = 0, β1 = 1, and α0 = a. At this point, the fidelity is related to the
channel noise intensity p and a. The fidelity decreases significantly with the noise intensity
in the channel. It is worth noting that the parameter a has very little effect on the change
in fidelity.

In Figure 6b, take α0 = α1 = β0 = β1. The fidelity is solely related to the channel noise
intensity p. Analysis reveals that as the channel noise intensity p increases, the fidelity
begins to slowly decrease. When p is in the interval [0, 0.05], the value of fidelity is still in a
relatively ideal state. However, as p continues to increase, if the fidelity falls below 2/3,
quantum teleportation cannot be achieved, resulting in communication transmission failure.

3.5. Comparison

In quantum communication, maintaining the purity and coherence of qubits is crucial
for achieving secure long-distance communication and constructing efficient quantum
networks in the future. To this end, we will compare and analyze our protocol under four
different noise environments to determine the stable quantum information transmission of
the protocol. In order to compare the trend of the fidelity of the output state with the change
in the decoherence rate in four types of noisy environments. A complex two-dimensional
graph of different curve colors is drawn in Figure 7.
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Since the sensitivity of quantum systems to the environment, when particles are
allocated to remote communication parties, the allocation process of quantum channels
will inevitably be affected by noise, causing them to transition from pure states to mixed
states. As a result, the coherence of the quantum channel decreases, particle information
is lost, and fidelity is reduced. As the noise intensity p gradually increases, the quantum
channel will turn into different quantum channels according to different noise scenarios.
Here, we assume that noise intensity p is equal in four noise channels, and α0 = α1 = β0 =
β1 =

√
2

2 . The analysis reveals that in both phase-flip and bit-phase-flip noise environments,
the curves overlap precisely, and their fidelity shows a consistent trend with the variation
in noise intensity. In the case of the depolarization noise, the fidelity of the output state
decreases as the decoherence rate increases. The fidelity decreases extremely rapidly at a
noise intensity p greater than 0.1, at which point communication is interrupted. In addition,
in the bit-flip noise environment, the fidelity exhibits a bimodal trend with increasing noise
intensity (first decreasing and then increasing). When the noise intensity reaches 1, the
quantum channel under bit-flip noise regains its coherence, which is contrary to intuition.
Quantum coherence does not continue to decrease due to the increase in noise intensity.
Instead, it first decreases and then increases. The reason is due to the effect of flipping,
which is a difference compared to other noise environments. Moreover, according to the
figure drawn by MATLAB, we find that compared with other noise environments, less
information is lost when quantum communication is in the depolarizing noise environment.
Note that the above analysis can be applied to real physical scenarios, and a perfect ACCQT
can be achieved by assigning specific values of the initial state amplitude parameters.

4. Discussion and Analysis
4.1. Intrinsic Efficiency and Discussion

The intrinsic efficiency of our protocol is calculated as follows:

η =
qt

qc + bc
(33)
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where qt represents the total number of qubits that Alice, Bob, and Charlie want to teleport,
qc indicates the number of qubits of the quantum channel, and bc represents the number of
classical bits transmitted. η represents the intrinsic efficiency.

In Table 1, we compare the proposed scheme with the previous quantum teleportation
protocol from seven aspects that are protocol type, quantum number used by quantum
channel (QN), classical resource consumption (CRC), number of quantum bits transmitted
(QBT), intrinsic efficiency (η), noise analysis (NA), and security analysis (SA).

Table 1. Comparison of proposed protocol with previous schemes.

Scheme Type of
Protocol QN CRC QBT η SA NA

[35] CQT 3 3 1 16.6% No No
[36] BCQT 7 7 3 21.4% No No
[37] CCQT 7 9 3 18.6% No No
[38] ABCQT 11 9 6 30.0% No No
[39] ABCQT 12 12 6 25.0% No No
[40] QT&RSP 15 12 6 22.0% Yes No
Our ACCQT 11 10 7 33.3% Yes Yes

CQT indicates controlled quantum teleportation, BCQT represents bidirectional con-
trolled quantum teleportation, CCQT represents cyclic controlled quantum teleporta-
tion, and ABCQT represents asymmetric bidirectional controlled quantum teleportation.
QT&RSP indicates a hybrid scheme of quantum teleportation and remote state preparation,
and the ACCQT protocol proposed in this paper represents asymmetric cyclic controlled
quantum teleportation.

From the above table, we see that our proposed protocol is quite different from other
protocols. Firstly, our protocol can cyclically and asymmetrically transmit three completely
different multi-qubit states simultaneously; it greatly improves the information capacity
of communication and has better flexibility. Secondly, the present protocol is closer to the
possibility of real-world experiments and is analyzed in a noisy environment. Furthermore,
our proposed protocol has better intrinsic efficiency than other protocols. Finally, our
protocol conducted security verification against two types of external attacks that quantum
channels are susceptible to.

4.2. Security Analysis

In this section, we perform the security analysis of the provided protocol. Classical
channels are, by default, encrypted with this system. Additionally, the quantum state cannot
be transmitted across the quantum channel, making it impossible for Eve to eavesdrop on
the transmission of quantum information. Thus, the quantum channel attack only occurred
during entanglement distribution, where Alice holds four qubits (A1, A2, A3, A4), and
Bob and Charlie each hold three qubits (B1, B2, B3) and (C1, C2, C3) under the allocation
of the controller David. Regarding the two most frequent quantum channel attacks (the
eavesdropping attack and the intercept-resend attack), we discuss them, respectively,
as follows.

At first, we assume that the quantum channel suffers from eavesdropping attacks.
Eavesdropper entangles his three auxiliary particles, V1, V2, and V3, with David’s qubit D,
where the initial states of V1, V2, and V3 are |0⟩V1 , |0⟩V2 and |0⟩V3 . Then, the eavesdropper
applies measurements on his three auxiliary particles to acquire secret information. Under
the condition that Alice, Bob, Charlie, and David are all oblivious of the existence of the
eavesdropper, assume the measurement outcomes of Alice, Bob, and Charlie are |δ+〉a0a1A4,
|ϖ+〉b1b2B3, |ε+〉c1c2c3C3, respectively. Then, the entire quantum system will collapse into:
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〈
δ+|a1a2A4

〈
ω+|b1b2B3

〈
ε+|c1c2c3C3 Ψ⟩ B1B2B3C1C2C3 A1 A2 A3 A4DV1V2V3

= (α0β0γ0|00010000000⟩+ α0β0γ1|0001110000⟩+ α0β1γ0|0010000000⟩
+α0β1γ1|00101110000⟩+ α1β0γ0|11010001000⟩+ α1β0γ1|11011111000⟩
+α1β1γ0|11100001000⟩+ α1β1γ1|11101111000⟩B1B2C1C2 A1 A2 A3 A3DV1V2V3

) (34)

If David’s measurement result is |h̄+〉D, the total state will change into:〈
ℏ+|D

〈
δ+|a1a2A4

〈
ω+|b1b2B3

〈
ε+|c1c2c3C3 Ψ⟩ B1B2B3C1C2C3 A1 A2 A3 A4DV1V2V3

= (α0β0γ0|0001000000⟩+ α0β0γ1|000111000⟩+ α0β1γ0|001000000⟩
+α0β1γ1|0010111000⟩+ α1β0γ0|1101000000⟩+ α1β0γ1|1101111000⟩
+α1β1γ0|1110000000⟩+ α1β1γ1|1110111000⟩B1B2C1C2 A1 A2 A3 A3DV1V2V3

)
= (α0|00⟩+ α1|11⟩)B1B2

⊗ (β0|01⟩+ β1|10⟩)C1C2
⊗ (γ0|000⟩+ γ1|111⟩)A1 A2 A3

⊗|000⟩V1V2V3

(35)

while if David’s measurement result is |h̄−〉D, the total state will collapse into:〈
ℏ−|D

〈
δ+|a1a2A4

〈
ω+|b1b2B3

〈
ε+|c1c2c3C3 Ψ⟩ B1B2B3C1C2C3 A1 A2 A3 A4DV1V2V3

= (α0β0γ0|0001000000⟩+ α0β0γ1|000111000⟩+ α0β1γ0|001000000⟩
+α0β1γ1|0010111000⟩ − α1β0γ0|1101000000⟩ − α1β0γ1|1101111000⟩
−α1β1γ0|1110000000⟩ − α1β1γ1|1110111000⟩B1B2C1C2 A1 A2 A3 A3DV1V2V3

)
= (α0|00⟩ − α1|11⟩)B1B2

⊗ (β0|01⟩+ β1|10⟩)C1C2
⊗ (γ0|000⟩+ γ1|111⟩)A1 A2 A3

⊗|000⟩V1V2V3

(36)

According to the above two formulas, whatever David’s measurement outcome is, the
states of V1, V2, and V3 are not entangled with Alice, Bob, and Charlie. Thus, eavesdropping
cannot intercept any quantum information from three observers.

Then, we discuss intercept resend attacks. Before entanglement distribution, David
prepares some single-qubit decoy states, which are generated randomly from the basis
{ |0⟩,|1⟩, |+⟩,|−⟩}, where |+⟩ and |−⟩ are measured on the X-basis, and |0⟩ and |1⟩ are mea-
sured on the Z-basis. Assume Eve intercepts qubits (A1, A2, A3, A4) during entanglement
distribution. Next, he prepares another entangled state of eleven qubits and transmits the
qubits (A1, A2, A3, A4) to Alice. Afterward, David placed the single-qubit decoy states
into the qubit sequence in a specific order (A1, A2, A3, A4), which was unknown to the
eavesdropper. After Alice received the eavesdropped qubit sequence (A1, A2, A3, A4), she
notified David, and then David announced the specific location and measurement basis of
the decoy state to Alice through the classical channel. Alice then measures the bait status
on the correct basis and sends the measurements back to David. Based on the measurement
results, David can determine whether there is an eavesdropper stealing information and
use this to decide whether to interrupt the communication. So, our proposed scheme can
be guaranteed in terms of security.

5. Conclusions

In previous works, all of which only conducted research on symmetric information
exchange. In their schemes, the number of quantum states transmitted is the same. This
quantum communication model has some limitations when transmitting quantum states.
In response to this, a novel ACCQT protocol is proposed in this paper, which can cyclically
teleport three asymmetric unknown, different two two-qubit and one three-qubit states
at the same time. The information capacity of communication is greatly increased, and
each correspondent can send different numbers of quantum states, which can satisfy the
requirement of transporting diverse quantum information and provide a more flexible
transmission model in quantum network communication. To achieve this aim, an eleven-
qubit entangled state is employed as the quantum channel shared among four participants:
Alice, Bob, and Charlie, and a controller, David, in advance. Then, the proposed protocol is
analyzed in a typical verification environment, and by comparing various noisy environ-
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ments, it is found that, for a particular choice of transmitted state, the loss of information is
less in a depolarizing noisy channel; the fidelities of the ACCQT protocol only depend on
two factors: the amplitude parameter of the initial state and the decoherence rate.

In addition, based on the security check of BB84 quantum key distribution, we conduct
security analysis. Due to the existence of the controller David and the nonclonability of
quantum, the two mainstream quantum channel attacks, such as eavesdropping attacks
and intercept-resend attacks, can be prevented, and the secure transmission of information
can be realized. Furthermore, in terms of theory and intrinsic efficiency, comparing peer
papers, we illustrate the feasibility and advantage of the scheme. It is hoped that this
research can provide some help for further establishing efficient quantum communication
networks in the future.
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Appendix A

Table A1. The measurement results of users and the specific unitary transformation.

Alice’s Result Bob’s Result Charlie’s
Result

David’s
Result Unitary Operation

|δ+〉a1a2A4 |ω+〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D I⊗I⊗I⊗I⊗I⊗I⊗I
Z⊗I⊗I⊗I⊗I⊗I⊗I

|δ+〉a1a2A4 |ω+〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D I⊗I⊗I⊗I⊗Z⊗I⊗I
Z⊗I⊗I⊗I⊗Z⊗I⊗I

|δ+〉a1a2A4 |ω+〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D I⊗I⊗I⊗I⊗X⊗X⊗X
Z⊗I⊗I⊗I⊗X⊗X⊗X

|δ+〉a1a2A4 |ω+〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D I⊗I⊗I⊗I⊗-iY⊗X⊗X
Z⊗I⊗I⊗I⊗-iY⊗X⊗X

|δ+〉a1a2A4 |ω−〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D I⊗I⊗Z⊗I⊗I⊗I⊗I
Z⊗I⊗Z⊗I⊗I⊗I⊗I

|δ+〉a1a2A4 |ω−〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D I⊗I⊗Z⊗I⊗Z⊗I⊗I
Z⊗I⊗Z⊗I⊗Z⊗I⊗I

|δ+〉a1a2A4 |ω−〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D I⊗I⊗Z⊗I⊗X⊗X⊗X
Z⊗I⊗Z⊗I⊗X⊗X⊗X

|δ+〉a1a2A4 |ω−〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D I⊗I⊗Z⊗I⊗-iY⊗X⊗X
Z⊗I⊗Z⊗I⊗-iY⊗X⊗X

|δ+〉a1a2A4 |µ+〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D I⊗I⊗X⊗X⊗I⊗I⊗I
Z⊗I⊗X⊗X⊗I⊗I⊗I

|δ+〉a1a2A4 |µ+〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D I⊗I⊗X⊗X⊗Z⊗I⊗I
Z⊗I⊗X⊗X⊗Z⊗I⊗I

|δ+〉a1a2A4 |µ+〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D I⊗I⊗X⊗X⊗X⊗X⊗X
Z⊗I⊗X⊗X⊗X⊗X⊗X

|δ+〉a1a2A4 |µ+〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D I⊗I⊗X⊗X⊗-iY⊗X⊗X
Z⊗I⊗X⊗X⊗-iY⊗X⊗X

|δ+〉a1a2A4 |µ−〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D I⊗I⊗-iY⊗X⊗I⊗I⊗I
Z⊗I⊗-iY⊗X⊗I⊗I⊗I

|δ+〉a1a2A4 |µ−〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D I⊗I⊗-iY⊗X⊗Z⊗I⊗I
Z⊗I⊗-iY⊗X⊗Z⊗I⊗I

|δ+〉a1a2A4 |µ−〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D I⊗I⊗-iY⊗X⊗X⊗X⊗X
Z⊗I⊗-iY⊗X⊗X⊗X⊗X

|δ+〉a1a2A4 |µ−〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D I⊗I⊗-iY⊗X⊗-iY⊗X⊗X
Z⊗I⊗-iY⊗X⊗-iY⊗X⊗X

|δ−〉a1a2A4 |ω+〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D Z⊗I⊗I⊗I⊗I⊗I⊗I
I⊗I⊗I⊗I⊗I⊗I⊗I

|δ−〉a1a2A4 |ω+〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D Z⊗I⊗I⊗I⊗Z⊗I⊗I
I⊗I⊗I⊗I⊗Z⊗I⊗I
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Table A1. Cont.

Alice’s Result Bob’s Result Charlie’s
Result

David’s
Result Unitary Operation

|δ−〉a1a2A4 |ω+〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D Z⊗I⊗I⊗I⊗X⊗X⊗X
I⊗I⊗I⊗I⊗X⊗X⊗X

|δ−〉a1a2A4 |ω+〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D Z⊗I⊗I⊗I⊗-iY⊗X⊗X
I⊗I⊗I⊗I⊗-iY⊗X⊗X

|δ−〉a1a2A4 |ω−〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D Z⊗I⊗Z⊗I⊗I⊗I⊗I
I⊗I⊗Z⊗I⊗I⊗I⊗I

|δ−〉a1a2A4 |ω−〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D Z⊗I⊗Z⊗I⊗Z⊗I⊗I
I⊗I⊗Z⊗I⊗Z⊗I⊗I

|δ−〉a1a2A4 |ω−〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D Z⊗I⊗Z⊗I⊗X⊗X⊗X
I⊗I⊗Z⊗I⊗X⊗X⊗X

|δ−〉a1a2A4 |ω−〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D Z⊗I⊗Z⊗I⊗-iY⊗X⊗X
I⊗I⊗Z⊗I⊗-iY⊗X⊗X

|δ−〉a1a2A4 |µ+〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D Z⊗I⊗X⊗X⊗I⊗I⊗I
I⊗I⊗X⊗X⊗I⊗I⊗I

|δ−〉a1a2A4 |µ+〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D Z⊗I⊗X⊗X⊗Z⊗I⊗I
I⊗I⊗X⊗X⊗Z⊗I⊗I

|δ−〉a1a2A4 |µ+〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D Z⊗I⊗X⊗X⊗X⊗X⊗X
I⊗I⊗X⊗X⊗X⊗X⊗X

|δ−〉a1a2A4 |µ+〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D Z⊗I⊗X⊗X⊗-iY⊗X⊗X
I⊗I⊗X⊗X⊗-iY⊗X⊗X

|δ−〉a1a2A4 |µ−〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D Z⊗I⊗-iY⊗X⊗I⊗I⊗I
I⊗I⊗-iY⊗X⊗I⊗I⊗I

|δ−〉a1a2A4 |µ−〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D Z⊗I⊗-iY⊗X⊗Z⊗I⊗I
I⊗I⊗-iY⊗X⊗Z⊗I⊗I

|δ−〉a1a2A4 |µ−〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D Z⊗I⊗-iY⊗X⊗X⊗X⊗X
I⊗I⊗-iY⊗X⊗X⊗X⊗X

|δ−〉a1a2A4 |µ−〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D Z⊗I⊗-iY⊗X⊗-iY⊗X⊗X
I⊗I⊗-iY⊗X⊗-iY⊗X⊗X

|η+〉a1a2A4 |ω+〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D X⊗X⊗I⊗I⊗I⊗I⊗I
-iY⊗X⊗I⊗I⊗I⊗I⊗I

|η+〉a1a2A4 |ω+〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D X⊗X⊗I⊗I⊗Z⊗I⊗I
-iY⊗X⊗I⊗I⊗Z⊗I⊗I

|η+〉a1a2A4 |ω+〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D X⊗X⊗I⊗I⊗X⊗X⊗X
-iY⊗X⊗I⊗I⊗X⊗X⊗X

|η+〉a1a2A4 |ω+〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D X⊗X⊗I⊗I⊗-iY⊗X⊗X
-iY⊗X⊗I⊗I⊗-iY⊗X⊗X

|η+〉a1a2A4 |ω−〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D X⊗X⊗Z⊗I⊗I⊗I⊗I
-iY⊗X⊗Z⊗I⊗I⊗I⊗I

|η+〉a1a2A4 |ω−〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D X⊗X⊗Z⊗I⊗Z⊗I⊗I
-iY⊗X⊗Z⊗I⊗Z⊗I⊗I

|η+〉a1a2A4 |ω−〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D X⊗X⊗Z⊗I⊗X⊗X⊗X
-iY⊗X⊗Z⊗I⊗X⊗X⊗X

|η+〉a1a2A4 |ω−〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D X⊗X⊗Z⊗I⊗-iY⊗X⊗X
-iY⊗X⊗Z⊗I⊗-iY⊗X⊗X

|η+〉a1a2A4 |µ+〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D X⊗X⊗X⊗X⊗I⊗I⊗I
-iY⊗X⊗X⊗X⊗I⊗I⊗I

|η+〉a1a2A4 |µ+〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D X⊗X⊗X⊗X⊗Z⊗I⊗I
-iY⊗X⊗X⊗X⊗Z⊗I⊗I

|η+〉a1a2A4 |µ+〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D X⊗X⊗X⊗X⊗X⊗X⊗X
-iY⊗X⊗X⊗X⊗X⊗X⊗X

|η+〉a1a2A4 |µ+〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D X⊗X⊗X⊗X⊗-iY⊗X⊗X
-iY⊗X⊗X⊗X⊗-iY⊗X⊗X

|η+〉a1a2A4 |µ−〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D X⊗X⊗-iY⊗X⊗I⊗I⊗I
-iY⊗X⊗-iY⊗X⊗I⊗I⊗I

|η+〉a1a2A4 |µ−〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D X⊗X⊗-iY⊗X⊗Z⊗I⊗I
-iY⊗X⊗-iY⊗X⊗Z⊗I⊗I
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Table A1. Cont.

Alice’s Result Bob’s Result Charlie’s
Result

David’s
Result Unitary Operation

|η+〉a1a2A4 |µ−〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D X⊗X⊗-iY⊗X⊗X⊗X⊗X
-iY⊗X⊗-iY⊗X⊗X⊗X⊗X

|η+〉a1a2A4 |µ−〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D X⊗X⊗-iY⊗X⊗-iY⊗X⊗X
-iY⊗X⊗-iY⊗X⊗-iY⊗X⊗X

|η−〉a1a2A4 |ω+〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D -iY⊗X⊗I⊗I⊗I⊗I⊗I
X⊗X⊗I⊗I⊗I⊗I⊗I

|η−〉a1a2A4 |ω+〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D -iY⊗X⊗I⊗I⊗Z⊗I⊗I
X⊗X⊗I⊗I⊗Z⊗I⊗I

|η−〉a1a2A4 |ω+〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D -iY⊗X⊗I⊗I⊗X⊗X⊗X
X⊗X⊗I⊗I⊗X⊗X⊗X

|η−〉a1a2A4 |ω+〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D -iY⊗X⊗I⊗I⊗-iY⊗X⊗X
X⊗X⊗I⊗I⊗-iY⊗X⊗X

|η−〉a1a2A4 |ω−〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D -iY⊗X⊗Z⊗I⊗I⊗I⊗I
X⊗X⊗Z⊗I⊗I⊗I⊗I

|η−〉a1a2A4 |ω−〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D -iY⊗X⊗Z⊗I⊗Z⊗I⊗I
X⊗X⊗Z⊗I⊗Z⊗I⊗I

|η−〉a1a2A4 |ω−〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D -iY⊗X⊗Z⊗I⊗X⊗X⊗X
X⊗X⊗Z⊗I⊗X⊗X⊗X

|η−〉a1a2A4 |ω−〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D -iY⊗X⊗Z⊗I⊗-iY⊗X⊗X
X⊗X⊗Z⊗I⊗-iY⊗X⊗X

|η−〉a1a2A4 |µ+〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D -iY⊗X⊗X⊗X⊗I⊗I⊗I
X⊗X⊗X⊗X⊗I⊗I⊗I

|η−〉a1a2A4 |µ+〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D -iY⊗X⊗X⊗X⊗Z⊗I⊗I
X⊗X⊗X⊗X⊗Z⊗I⊗I

|η−〉a1a2A4 |µ+〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D -iY⊗X⊗X⊗X⊗X⊗X⊗X
X⊗X⊗X⊗X⊗X⊗X⊗X

|η−〉a1a2A4 |µ+〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D -iY⊗X⊗X⊗X⊗-iY⊗X⊗X
X⊗X⊗X⊗X⊗-iY⊗X⊗X

|η−〉a1a2A4 |µ−〉b1b2B3 |ε+〉c1c2c3C3 |h̄±〉D -iY⊗X⊗-iY⊗X⊗I⊗I⊗I
X⊗X⊗-iY⊗X⊗I⊗I⊗I

|η−〉a1a2A4 |µ−〉b1b2B3 |ε−〉c1c2c3C3 |h̄±〉D -iY⊗X⊗-iY⊗X⊗Z⊗I⊗I
X⊗X⊗-iY⊗X⊗Z⊗I⊗I

|η−〉a1a2A4 |µ−〉b1b2B3 |ℓ+〉c1c2c3C3 |h̄±〉D -iY⊗X⊗-iY⊗X⊗X⊗X⊗X
X⊗X⊗-iY⊗X⊗X⊗X⊗X

|η−〉a1a2A4 |µ−〉b1b2B3 |ℓ−〉c1c2c3C3 |h̄±〉D -iY⊗X⊗-iY⊗X⊗-iY⊗X⊗X
X⊗X⊗-iY⊗X⊗-iY⊗X⊗X
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