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Abstract: We study a node-wise monotone barrier coupling law, motivated by the synaptic coupling
of neural central pattern generators. It is illustrated that this coupling imitates the desirable properties
of neural central pattern generators. In particular, the coupling law (1) allows us to assign multiple
central patterns on the circle and (2) allows for rapid switching between different patterns via simple
‘kicks’. In the end, we achieve full control by partitioning the state space by utilizing a barrier effect
and assigning a unique steady-state behavior to each element of the resulting partition. We analyze
the global behavior and study the viability of the design.

Keywords: neural central pattern generators; formation control; nonlinear spaces; positivity; consensus

1. Introduction

The design of individual coupling laws to achieve asymptotic consensus on a common
point in a vector space is a well-studied problem [1–3]. The analysis relies on convexity. In
particular, for the real line, if each agent moves toward a strict inner point of the convex
hull of the values of its neighbors, then the minimal (maximal) value among all the agents
can only increase (decrease) until they become equal.

For nonlinear spaces, this argument, relying on convexity, cannot be used globally. In
particular, for multiple agents on the circle, there is no ‘minimal’ or ‘maximal’. The convex-
ity argument applies only when all agents are initially placed within a semi-circle [2,4]. In
this respect, a number of papers have considered the construction of local controllers to
achieve (almost) global convergence properties. In particular, modified Kuramoto coupling,
Gossip algorithms, and hybrid coupling have been proposed. Meanwhile, to the best of our
knowledge, these works either apply to particular interconnection topologies, such as trees
and all-to-all interconnection [5–7], use auxiliary variables in the embedding space [6–8],
use global information such as the number of agents N [9], can lead to unnecessarily slow
convergence rates [10], or are only analyzed for two agents [11].

Indeed, global convergence properties are hard to achieve in general for the problem
of consensus (or formation control) on the circle, unless the control is stochastic. In other
words, in general, there are multiple steady-state behaviors or even chaotic ones. From an
engineering viewpoint, this issue can be resolved, if we have our control on the multiple
central patterns and their associated domain of attraction. For this purpose, we introduce a
barrier effect in our coupling, motivated by the neural central pattern generators (CPGs), to
partition the state space into finite regions, where for each partition, there exists a unique
steady-state behavior.

Neural CPGs produce diverse rhythms in networks for the purpose of collectively
generating movements such as breathing, chewing, swallowing, walking, and heart beat-
ing [12] in animals. Understanding the mechanisms behind the control and regulation of
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CPGs may result in technological advances, leading to systems that can rapidly adapt to
sudden changes, similar to the way that CPGs adapt in fractions of a second to respond to
events, e.g., in choking prevention or predator escape [12]. Besides the ability to accom-
modate multiple central patterns in the network and rapidly switch between them, such
systems also exhibit robustness with respect to individual variability. Indeed, in the study
of a network of nonidentical neurons interconnected via excitatory synaptic coupling (a
particular type of CPGs), it was shown that the network is robust to heterogeneity and
has the emergent behavior (central pattern) of synchronous spiking, even with the weak
coupling strength and the impulsive nature of communication [13,14].

Ref. [14] argues that the key feature that provides these attractive properties of CPGs is
the fast threshold modulation: a mechanism behind rapid synchronization initially discovered
in [15], which can be illustrated by a barrier effect in phase models, as will be discussed in
Section 2. Thus, in this paper, we focus on the problem of formation control on the circle
and study a node-wise monotone barrier coupling law. In the end, we illustrate that by
only assuming the barrier effect, the network exhibits attractive properties of CPGs. In
particular:

1. It allows us to assign multiple central patterns in the steady-state behavior of the
network with possibly different formations and common angular frequencies;

2. It allows rapid switching between different central patterns via a simple ‘kick’ (e.g.,
an impulsive input) or sudden disturbance.

Moreover, it brings robustness with respect to individual variability. For the considered
node-wise coupling law, we then concentrate on the question of the viability of assigning
one or multiple central patterns in the network, from an engineering viewpoint.

This paper is organized as follows. In Section 2, we motivate the relevance between
coupling functions with a barrier effect in phase models and the synaptic coupling in CPGs.
Then, with a brief review of graph theory given in Section 3, we introduce the node-wise
monotone barrier coupling law in Section 4, which is the subject of study in this paper.
Given the main convergence result in Section 4, we then focus our study on central patterns,
where Sections 5 and 6 consider the analysis and design aspects, respectively. We conclude
in Section 7. The proof for the convergence result is given in Appendix B, which uses the
graph theoretical lemma introduced in Appendix A.

Notation: R, Z, N, and N0 denote the set of real numbers, integers, positive integers,
and nonnegative integers, respectively. For vectors or matrices a1, . . . , an, col(a1, . . . , an) :=
[aT

1 , . . . , aT
n ]

T . For a set Z , its cardinality is denoted by |Z|. The function sgn : R → R
denotes the signum function defined as sgn(s) = s/|s| for nonzero s, and sgn(s) = 0 for
s = 0. In this paper, the modulo operation with respect to 2π (mod 2π) results in a value in
[−π, π), and the modulo operation with respect to 1 (mod 1) results in a value in [0, 1), for
simplicity of notation.

2. Motivation of the Barrier Effect

Fast threshold modulation is a mechanism behind rapid and robust synchronization
of nonidentical neuronal spiking systems, e.g., the Fitzhugh–Nagumo model, Morris–Lecar
model, and Hodgkin–Huxley model, under weak synaptic coupling. In particular, it
provides attractive properties of:

• rapid convergence to a central pattern;
• robustness with respect to heterogeneity,

in the following way [14], at the singular limit, i.e., when there is a sufficient time scale
separation (illustrated for the central pattern of synchronous spiking):

1. At the singular limit, the individual system is an oscillator having jumps, which can
be described as a hybrid system, that has a jump set of a lower dimension (see (1) and
its description for an example).

2. At the singular limit, this provides a rapid convergence to the neighborhood of the
limit cycle given that the coupling is weak.
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3. Then, at the singular limit, the synaptic coupling alters the jump set of an individual
in a way that the network-wise jump set demonstrating a central pattern becomes an
open set (see (2) and its description for an example).

4. This open set with nonzero volume is what provides rapid convergence and robustness
with respect to heterogeneity.

5. In particular, by the creation of this open set, the phenomenon of synchronous spiking
happens in a hierarchical way: one neuron spikes and this yields a spike of neigh-
boring neurons, and so on to the entire network, at an instant in the singular limit.
The mechanism is called fast threshold modulation, as the threshold (jump set) is
altered rapidly.

For example, at the singular limit, the neuronal model in [14] can be illustrated by a
one-dimensional hybrid system:

ẋ = h(x) ∈ R, x > x,

x+ = x+ ∈ R, x = x,
(1)

where h(·) < 0 dictates the state-dependent velocity of the individual oscillator and x and
x+ are the position of the threshold (jump set) and the jumping point, respectively, such that
x < x+. It is intuitively clear that this is an oscillator repeating its trajectory from x+ to x.

What a fast threshold modulation does is that given another system x̂, it widens a
jump set for the synchronous jump from {x} × {x̂} to {x} × [x̂, x̂)∪ [x, x)× {x̂} with some
points x, x̂ such that x < x < x+. In particular, at the singular limit, the neuronal network
in [14] (with two neurons) can be illustrated by a hybrid system:

ẋ = h(x),
˙̂x = ĥ(x̂), if x > x, x̂ > x̂,

col(x+, x̂+) =


col(x+, x̂), if x = x, x̂ ≥ x̂,
col(x, x̂+), if x ≥ x, x̂ = x̂,
X+(x, x̂), if x = x, x̂ ∈ [x̂, x̂) or x ∈ [x, x), x̂ = x̂,

(2)

with an appropriate network-wise jump map X+. Note that by the creation of this open
set, even when the neighboring neuron x̂ is not at its jump set (threshold) x̂, but only
if sufficiently near to it, i.e., x̂ ∈ [x̂, x̂), then the spike of the neuron x modulates the
jump set and triggers a spike of the neighboring neuron x̂. This happens instantly in the
singular limit. Therefore, even if the frequencies of individual oscillators are different
(heterogeneity), we can obtain a synchronous spiking solution. We emphasize that this
creation of an open set can happen even under a weak coupling strength [14]. At the stable
positively invariant set inside this new jump set, the convergence rate is independent of
the weak coupling strength, and this is what provides rapid convergence. We refer to [14]
for a more exhaustive illustration.

Although it is difficult to define a phase for individual systems in such a network, as
the range of individual oscillation changes by the action of a neighborhood, if we were
to model it in a phase model, then the action of a fast threshold modulation can only be
realized by a barrier effect (whether it is discontinuous or continuous), as, in the singular
limit, the new open jump set introduces a region [x̂, x̂), where a phase pulling of infinite
power happens by the neuron x at the threshold x, and clearly demonstrates a boundary x̂
that discriminates the behavior of neuron x̂. For instance, if the phase that corresponds to
position x is θ = θ0, then as the phase difference θ̂ − θ approaches the new threshold θth,
the effect of coupling becomes infinitely strong, where the phase θth + θ0 corresponds to
position x̂.

In the rest of the paper, we will relax this characteristic to an arbitrary coupling law
with a barrier effect and consider a network of phase models. It will be shown that this is
sufficient to recover the attractive properties of CPGs: rapid convergence and robustness.
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Moreover, unlike the specific case illustrated in this section only for synchronization, it
will be illustrated that this phase network exhibits multiple central patterns, and we can
even design them. Before starting this investigation, we briefly review the necessary graph
theoretical tools in the next section.

3. Graph Theoretical Preliminaries

A (weighted directed) graph is a pair G = (N , E) consisting of a finite nonempty
set of nodes N = {1, 2, ..., N} and an edge set of ordered pairs of nodes E ⊆ N × N ,
where (i, i) /∈ E for all i ∈ N (i.e., the graph does not contain self-loops). The set Ni =
{j ∈ N | (j, i) ∈ E} denotes the neighbors of the node i. A tuple (i0, i1, ..., il) ∈ N l+1 is
called a path (of length l) from the node i0 to the node il , if ik ∈ Nik+1

for all k = 0, . . . , l − 1.
If i1, . . . , il are distinct, then the path is called elementary. A loop is an elementary path with
i0 = il . A strongly connected graph G is a graph for which any pair of distinct nodes j and i
are connected via a path in G from j to i.

G is called undirected, if (j, i) ∈ E implies (i, j) ∈ E . Given a graph G = (N , E), let
N ′ ⊆ N and:

E ′ ⊆ E|N ′ :=
{
(j, i) ∈ E

∣∣ i, j ∈ N ′}.

The pair G ′ = (N ′, E ′) is called a subgraph of G. If N ′ = N , then G ′ is a spanning
subgraph. If a graph G is connected, then there exists an agent i, called a root of the graph,
from which information can propagate to all other agents j along paths in G. A spanning
subgraph T of G obtained by removing all edges that do not belong to one of these paths is
called a spanning tree of G. Note that any node of the strongly connected graph is a root.
Note also that a strongly connected graph is connected, but not vice versa.

An independent strongly connected component (iSCC) of G is an induced subgraph G ′ =
(N ′, E|N ′), N ′ ⊆ N , such that it is maximal subject to being strongly connected and
satisfies (j, i) /∈ E for any j ∈ N \N ′ and i ∈ N ′. For any digraph G, there exists a uniquely
defined set of M ≥ 1 number of iSCCs. M = 1 if and only if the graph is connected.

The Laplacian matrix L = [lij] ∈ RN×N of a graph is defined as L := D −A, where
A = [αij] is the adjacency matrix of the graph and D is the diagonal matrix whose diagonal
entries are determined such that each row sum of L is zero. By its construction, it contains
at least one eigenvalue of zero, whose corresponding eigenvector is 1N := [1, . . . , 1]⊤ ∈ RN ,
and all the other eigenvalues have nonnegative real parts. For directed graphs (digraphs),
the zero eigenvalue is simple if and only if the corresponding graph is connected.

We like to stress that for any connected digraph G, the indices can be well assigned so
that the Laplacian matrix associated with the graph can be written as:

L =

[
Ls 0

−As f L f +D f

]
∈ RN×N ,

where Ls ∈ R|S|×|S| and L f ∈ R(N−|S|)×(N−|S|) are the Laplacian matrices of the unique
iSCC, S , and the subgraph induced by the rest of the agents, respectively. Since Ls is
the Laplacian matrix of a strongly connected graph, it is known that there exists a vector
ζ := col(ζ1, . . . , ζ|S|) ∈ R|S|, which satisfies ζTLs = 0 and ζi > 0 for all i = 1, . . . , |S|. In
particular, we have col(ζ, 0)TL = 0.

4. Node-Wise Monotone Barrier Coupling Law

Motivated by Section 2, we consider the node-wise monotone barrier coupling law for a
group of N agents evolving on the circle S1 as:

θ̇i = ωi + fi(νi + ϕi), νi = ∑
j∈Ni

αij(θj − θi), (3)

where θi ∈ S1 represents the phase of agent i, Ni is a subset of N whose elements are indices
of the agents that send information to agent i (hence, E ≡ {(j, i) : j ∈ Ni, i ∈ N}), ωi ∈ R
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is the ‘intrinsic’ frequency, and fi denotes a coupling function on the domain (−π, π)
extended to R 2π-periodically. αij > 0 is the interconnection weight and ϕi ∈ [−π, π) is
the phase bias.

Let θ = (θ1, . . . , θN) denote an element of the N-torus TN . Note that as the coupling
function fi will have a barrier effect, i.e., fi(s) → ±∞ as s → ±π, we want our trajectories
to reside inside the set TN

π = {θ ∈ TN : |νi + ϕi| ̸= π mod 2π, i ∈ N} ⊊ TN . Note also
that for the network to be well-defined for θ ∈ TN

π , we should have αij ∈ N; that is, the
network should be quantized, as any addition of 2π in the phase difference θj − θi should
not alter the coupling input fi(νi + ϕi).

We note here that in the rest of the paper, the N-torus TN will be realized by [−π, π)N ,
and in that regard, the partition of TN

π consisting of a finite number of sets:

Θ{ni}N := {θ ∈ [−π, π)N |νi + ϕi − 2niπ ∈ (−π, π), i ∈ N}, (4)

where each one associated with a sequence of integers {ni}N ∈ Z will take a critical role
(as, e.g., in the following theorem) with its associated extension to RN space:

ΘR
{ni}N := {θ ∈ RN |νi + ϕi − 2niπ ∈ (−π, π), i ∈ N}. (5)

Note that for Θ{ni}N to be nonempty, we should have ni ∈ [−di, di], where 0 ≤ di =

∑j∈Ni
αij ∈ Z, and thus, the number of sets is upper bounded by ∏i∈N (2di + 1).

Assumption 1. The communication graph G is connected; G contains a spanning tree. The
adjacency elements αij, (j, i) ∈ E are positive integers.

Assumption 2. The coupling functions fi : (−π, π) → R, i ∈ N are differentiable, strictly
monotonically increasing, and have a barrier effect so that fi(s) → ±∞ as s → ±π.

Theorem 1. Under Assumptions 1 and 2, for any given {ni}N , each solution trajectory of (3)
starting from the extended space ΘR

{ni}N
uniquely exists and resides inside ΘR

{ni}N
(hence, forward

complete) and converges to a central pattern (ω̄, {∆ij}E ) of phase-locking behavior determined by:

• A common frequency ω̄ ∈ R;
• A formation {∆ij}E ∈ [−π, π): a phase difference given for each edge.

In particular, there exists a steady-state solution of (3) corresponding to (ω̄, {∆ij}E ) that
resides inside ΘR

{ni}N
. Finally, for each trajectory, the control input fi(νi(t) + ϕi), i ∈ N is

bounded uniformly on [0, ∞).

Proof. We show in Appendix B.1 that the set ΘR
{ni}N

is positively invariant for the net-

work (3) extended to RN and also that the control input is uniformly bounded. Then, the
convergence to a central pattern and the existence of a corresponding steady-state solution
that resides inside ΘR

{ni}N
is shown in Appendix B.2.

In the following sections, we will further investigate the following:

• The shape of the central pattern (ω̄, {∆ij}E );
• The number of different central patterns NP ;
• What central patterns can be assigned;
• How to achieve these central patterns.

Remark 1. We neglect the analysis of the convergence rate, as it depends on the slope of our
coupling functions fi(·), which can be made arbitrarily large.

5. Analysis of Central Patterns

This subsection corresponds to the analysis part of the study of the considered node-
wise monotone barrier coupling law. In particular, for a given set of fixed intrinsic fre-
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quencies {ωi}N , a set of coupling functions { fi(·)}N , a set of interconnection weights
{αij}E ∈ N, and a set of phase biases {ϕi}N , we first specify the shape of the central pattern
(ω̄, {∆ij}E ).

Theorem 2. Under Assumptions 1 and 2, every trajectory of (3) starting from ΘR
{ni}N

converges
to the unique central pattern (ω̄, {∆ij}E ). Here, ω̄ is the unique solution of:

F(ω̄) := ∑
i∈S

ζi

(
f−1
i (ω̄ − ωi) + 2niπ − ϕi

)
= 0, (6)

where S denotes the unique iSCC, ζi > 0, i ∈ S are the components of the left eigenvector of L
associated with the zero eigenvalue, and the inverse f−1

i is defined as a mapping from R into (−π, π).
{∆ij}E is uniquely defined by the relation ∆ij = ∆j − ∆i mod 2π, where col(∆1, . . . , ∆N) ∈
ΘR

{ni}N
is the unique solution of:

−L

∆1
...

∆N

 =

 f−1
1 (ω̄ − ω1) + 2n1π − ϕ1

...
f−1
N (ω̄ − ωN) + 2nNπ − ϕN

 (7)

such that ∆1 = 0.

Proof. Note first that by Theorem 1, for the given sequence {ni}N , each trajectory starting
from ΘR

{ni}N
has a central pattern (ω̄, {∆ij}E ) of phase-locking behavior that the trajectory

converges to. Being the central pattern, (ω̄, {∆ij}E ) should satisfy:

ω̄ = ωi + fi

(
∑

j∈Ni

αij∆ij + ϕi

)
, i ∈ N . (8)

By Theorem 1, there exists col(∆1, . . . , ∆N) ∈ ΘR
{ni}N

such that ∆ij = ∆j − ∆i mod 2π.
Without loss of generality, we assume ∆1 = 0. This implies:

∑
j∈Ni

αij(∆j − ∆i) + ϕi = f−1
i (ω̄ − ωi) + 2niπ, i ∈ N . (9)

Hence, by the following identity:

∑
i∈S

ζi ∑
j∈Ni

αij(∆j − ∆i) = 0,

we get F(ω̄) = 0, where F is defined in (6).
Since the function F : R → R is continuous and strictly increasing with respect to ω̄,

and satisfies limω̄→±∞ F(ω̄) = ∑i∈S ζi(±π + 2niπ − ϕi), where:

− ∑
i∈S

ζiπ < ∑
i∈S

ζi(2niπ − ϕi) < ∑
i∈S

ζiπ, (10)

we have the existence and the uniqueness of the solution ω̄ of (6). Note that since Θ{ni}N ̸=
∅, there exists θ ∈ Θ{ni}N such that νi + ϕi − 2niπ =: ψi ∈ (−π, π), i ∈ N ; hence, we get
∑i∈S ζi(2niπ − ϕi) = ∑i∈S ζi(νi − ψi) = −∑i∈S ζiψi, which implies (10).

Equation (9) further implies (7), and this uniquely defines col(∆1, . . . , ∆N) such that
∆1 = 0 because the Laplacian matrix L has rank N − 1.
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Remark 2. Here, we can see the resiliency of the generated patterns with respect to individual
variability. In particular, f−1

i (·) is a sigmoidal function, and thus, Equation (6) rejects outliers ωi,
as done by the median in statistics, which is the solution of the similar equation:

N

∑
i=1

sgn(ω̄ − ωi) = 0.

In general, ω̄ becomes more tolerant to variation in ωi that is far from ω̄. This is also true for the
formation, as can be seen in (7). The effect of variation in ωi that is far from ω̄ (| f−1

i (ω̄ −ωi)| ≈ π)
becomes negligible through f−1

i (·) due to the barrier effect.

From this characterization of the shape of the central pattern, we have the following
conclusion.

Theorem 3. Under Assumptions 1 and 2, a network of agents on the circle communicating
according to (3) introduces a partition of TN

π consisting of NP < ∞ number of sets Pj ⊂ TN
π ,

j = 1, . . . , NP . Every trajectory starting from Pj resides inside Pj and converges to a unique
central pattern (ω̄, {∆ij}E ) of phase-locking behavior. Each set Pj has the following structure:

Pj =

mj⋃
k=1

Θ{nk
i }N

.

Proof. Given that any initial point of a trajectory in TN
π is contained in one of the sets

Θ{ni}N ⊂ ΘR
{ni}N

, associated with some {ni}N , the convergence to a unique central pattern

for any trajectory starting from each set ΘR
{ni}N

is given by Theorem 2.

Note that for each set ΘR
{ni}N

, there exists a finite number of sequences {nk
i }N , k =

1, . . . , m such that any point in TN
π that corresponds to a set ΘR

{ni}N
is contained in one of

the sets Θ{nk
i }N

, k = 1, . . . , m in the partition of TN
π . For each unique central pattern, let

us collect all the corresponding sets Θ{nk
i }N

, k = 1, . . . , m for all positively invariant sets

ΘR
{ni}N

resulting in that particular central pattern, to construct a set Pj ⊂ TN
π . Then, each

set Pj can be represented as a union of a collection of sets Θ{nk
i }N

, k = 1, . . . , mj. This is

because, otherwise, there exist a sequence {ni}N and θ1, θ2 ∈ Θ{ni}N such that θ1 ∈ Pj1

and θ2 ∈ Pj2 with some j1 ̸= j2. This yields a contradiction, as trajectories that start from θ1

and θ2 reside inside ΘR
{ni}N

and converge to the same central pattern.

Now, we specify a collection of sequences {nk
i }N , k = 1, . . . , mj that defines the set Pj.

For this purpose, we define an equivalence relation for two sequences {n1
i }N and {n2

i }N if
they have the same central pattern or equivalently that Θ{n1

i }N
and Θ{n2

i }N
are contained

in the same set P j, and denote it as {n1
i }N ∼ {n2

i }N . We also denote the equivalence class
as [{n1

i }N ].

Theorem 4. Two sequences {n1
i }N and {n2

i }N are equivalent, i.e., {n1
i }N ∼ {n2

i }N , if and only if:

• ∑i∈S ζin1
i = ∑i∈S ζin2

i ;
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• The following equation has a unique integer solution δ̃2, . . . , δ̃N , or equivalently, that the vector
on the right-hand side is spanned by the columns of the Laplacian matrix with integer-valued
weights:

−L


0
δ̃2
...

δ̃N

 =


n1

1 − n2
1

n1
2 − n2

2
...

n1
N − n2

N

 (11)

The second condition is equivalent to ∆1
i = ∆2

i mod 2π for all i ∈ N , where {∆1
i }N and

{∆2
i }N are the corresponding solutions of (7) for {n1

i }N and {n2
i }N , respectively.

Proof. The first condition is a necessary and sufficient one for the unique solution of (6) to
be equivalent for two sequences {n1

i }N and {n2
i }N . This is because, for different ∑i∈S ζini,

we have different ω̄, since ∑i∈S ζi f−1
i (ω̄ − ωi) in (6) is strictly increasing. The second

condition is straightforward from (7). In particular, ∆1
i − ∆2

i = 2δ̃iπ for i = 2, . . . , N.

Remark 3. According to Theorem 4, a strongly connected graph that has the following form of
Laplacian matrix ensures that two sequences {n1

i }N and {n2
i }N are equivalent if and only if

∑i∈N ζin1
i = ∑i∈N ζin2

i :

L =


1 −1
∗ ∗ −1
...

...
...

. . .
∗ ∗ ∗ · · · −1
∗ ∗ ∗ ∗ ∗


This includes the cases of directed ring graphs and undirected line graphs, which have 1N as

the left eigenvector associated with the zero eigenvalue, resulting in N or N − 1 different central
patterns (Remark 4).

The number of different central patterns (ω̄, {∆ij}E ) of the network (3), NP , can
be fully characterized by a graph theoretical interpretation as the number of different
equivalence classes [{ni}N ] such that there exists {ni}N ∈ [{ni}N ], satisfying Θ{ni}N ̸= ∅.
The following remark and corollary may aid in the analytical investigation to determine NP

or at least its upper bound (as in Remark 3). Meanwhile, such a number can be obtained by
numerical computation.

Remark 4. Unlike the number of different central patterns, NP , which is complicated to find, the
number of different ∑i∈S ζini =: nS is straightforward. In particular, the left eigenvector of L
associated with the zero eigenvalue can always be taken as an integer vector where the common
denominator of the components is 1. This is because, L− 0I is integer-valued, and thus, Gaussian
elimination will produce rational eigenvectors. Then, the number of different nS is simply upper
bounded by ∑i∈S ζi =: ζS or ζS − 1. This is because, we have from νi + ϕi − 2niπ ∈ (−π, π)
that:

∑
i∈S

ζiϕi − 2nSπ ∈ (−ζSπ, ζSπ),

and hence, for each ϕS = ∑i∈S ζiϕi, we get:

nS ∈
(
− ζS

2
+

ϕS
2π

,
ζS
2

+
ϕS
2π

)
.

Corollary 1. {n1
i }N ∼ {n2

i }N if and only if:

• {n1
i }S ∼ {n2

i }S for the graph (S , E|S ), which is strongly connected;
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• There exist integers δ̃i, i ∈ N \ S such that:

∑
j∈Ni

αij(δ̃j − δ̃i) = n1
i − n2

i , ∀i ∈ N \ S .

In other words, if {n1
i }S ∼ {n2

i }S , then for any set of integers {δ̃i}N\S , we have:

{n1
i }N ∈ [{n2

i }N ],

where n1
i = n2

i + ∑j∈Ni
αij(δ̃j − δ̃i), i ∈ N \ S . In particular, if all the followers (i ∈ N \ S)

have only one neighbor, |Ni| = 1, and αij = 1, j ∈ Ni, then {n1
i }N ∼ {n2

i }N if and only if
{n1

i }S ∼ {n2
i }S .

Proof. The first claim directly follows from Theorem 4. The second claim follows because
under this additional assumption, for any {n1

i }N\S and {n2
i }N\S , there exist integers δ̃i,

i ∈ N \ S such that:

δ̃j − δ̃i = n1
i − n2

i , ∀i ∈ N \ S , j ∈ Ni.

This is because there is no loop in graph (N \ S , E|N\S ). Or one can simply consider
S as a single node, which makes the entire graph a spanning tree.

Before concluding this section, we note that, ultimately, by only assuming the barrier
effect in our coupling functions, we observe the desirable properties of neural CPGs in the
network on the circle:

• The network exhibits NP number of different central patterns.
• A simple ‘kick’ (e.g., an impulsive input that instantly shifts the state of the network)

that pushes the steady-state solution of Pj outside the boundary of Pj rapidly switches
the central pattern (Remark 1).

• The number of different central patterns and the steady-state solution are robust to
model uncertainties, noises, and disturbances, given that the barrier effect is consistent
(Remark 2).

This provides numerous advantages in the problem of formation control on the circle:

• When considering a single formation in the network on the circle, global convergence is
hard to achieve in general (unless the control is stochastic). This is because the required
convexity is not retained globally in nonlinear spaces. From an engineering viewpoint,
this issue can be resolved, if we have control over the multiple central patterns and
their associated domains of attraction. Barrier coupling laws partition the state space
into finite regions, where for each partition there exists a unique steady-state behavior.

• For instance, in a situation where a fleet of drones move in a balanced formation until
they encounter obstacles, e.g., a scenario in which they have to pass between two
buildings, and this impulsive event is detected by some of the drones in the formation.
Then, this event can be made to trigger a ‘kick,’ which could alternate the formation of
the network, for example, to a line, so that they can be safely guided through a narrow
passage.

To best utilize these advantages, in the next section, we seek the viability of assigning
multiple patterns from a practical viewpoint.

Remark 5. If we cut the barrier function at a finite region, that is, f̃i : (−π, π) → (M−
i , M+

i )

with some M−
i < M+

i but f̃i is still strictly increasing and satisfies lims→±π f̃i(s) = M±
i , then

since the monotonicity is preserved, the behavior of the network will be either converging to some
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central pattern and achieving phase-locking behavior or moving to the discontinuous boundary. In
particular, if we let (δ > 0):

f̃i(s)


∈ (M−

i , M−
i + δ), if s ∈ (−π, s−i ),

= fi(s), if s ∈ [s−i , s+i ],
∈ (M+

i − δ, M+
i ), if s ∈ (s+i , π),

where s−i , s+i ∈ (−π, π) are such that fi(s−i ) = M−
i + δ and fi(s+i ) = M+

i − δ so that the
resulting function is still strictly increasing, then there are no new central patterns generated
when δ is sufficiently small. Therefore, for the partition, where the central pattern (ω̄, {∆ij}E )
corresponding to the coupling functions fi, i ∈ N is outside the saturated region, i.e., which has
i ∈ N such that ω̄ − ωi /∈ (M−

i , M+
i ), the trajectory starting from that partition moves to the

boundary. This becomes clear if we observe the dynamics of xi := νi + ϕi. Then, depending on the
vector field on the opposite side, it either moves to another region associated with another sequence
{ni}N in a finite time or stays on the boundary. In other words, if we set M−

i and M+
i for each

i ∈ N such that ω̄ − ωi ∈ (M−
i , M+

i ) for all central patterns (ω̄, {∆ij}E ), then the original
behavior will be mostly maintained, while some might converge to the boundary and stay there.

6. Design of Central Patterns

This subsection corresponds to the synthesis part of the study of the considered node-
wise monotone barrier coupling law. In particular, for a given fixed connected digraph
G = (N , E), a set of intrinsic frequencies {ωi}N , and a central pattern (ω̄, {∆ij}E ), we
seek the viability of assigning the given central pattern to the network (3) under several
scenarios that are governed by the choice of freedom we have for the design parameters:

• A set of interconnection weights {αij}E ∈ N0 (we allow αij = 0 for design purposes);
• A set of phase biases {ϕi}N ;
• A set of coupling functions { fi(·)}N .

Moreover, among the viable solutions that we can get, we further consider the problem
of providing some of the additional desired characteristics, such as:

• Utilizing a minimal number of edges;
• Minimizing the number of alternative central patterns;
• Assigning other given central patterns.

In so doing, we illustrate our findings with examples. We begin with the following
theorem on the viability of assigning one central pattern.

Theorem 5. 1. It is almost impossible to assign the given central pattern (ω̄, {∆ij}E ) if we
only have the freedom to choose the set of interconnection weights {αij}E .

2. If we have freedom of choice for either the set of coupling functions { fi}N or the set of phase
biases {ϕi}N , then we could always assign the given central pattern (ω̄, {∆ij}E ).

3. If our coupling functions are the scaled version of a single fixed function f̄ , i.e., fi(·) = gi f̄ (·)
with positive coefficients gi to ensure monotonicity, then we can assign the given central
pattern (ω̄, {∆ij}E ) if and only if:

sgn
(

f̄
(
∑j∈Ni

αij∆ij + ϕi
))

= sgn(ω̄ − ωi), i ∈ N . (12)

Proof. The first claim follows from the fact that the following : f1
(
∑j∈N1

α1j∆1j + ϕ1
)

...
fN
(
∑j∈NN

αNj∆Nj + ϕN
)
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forms only a measure zero set in RN , as it is parametrized by a set of integers {αij}E and
hence, is countable.

The second claim follows from the fact that there always exists { fi}N or {ϕi}N
such that:

fi

(
∑

j∈Ni

αij∆ij + ϕi

)
= ω̄ − ωi, i ∈ N ,

as fi, i ∈ N , are barrier functions. In particular, if we have freedom of choice for the set of
coupling functions { fi}N , then we choose any fi such that it satisfies Assumption 2 and
fi(θ

∗
i ) = ω̄ − ωi, where θ∗i = ∑j∈Ni

αij∆ij + ϕi. Otherwise, if we have freedom of choice for
the set of phase biases {ϕi}N , then we choose ϕi ∈ [−π, π) as:

ϕi = f−1
i (ω̄ − ωi)− ∑

j∈Ni

αij∆ij mod 2π.

The final claim also follows from the fact that fi, i ∈ N , are barrier functions. In
particular, we choose gi as:

gi =
ω̄ − ωi

f̄ (∑j∈Ni αij∆ij + ϕi)
.

Coupling functions that have a prototypical shape, i.e., fi(·) = gi f̄ (·), are reminiscent
of the physiology of CPGs, where the central patterns are designed by the maximal con-
ductances gi of the synaptic coupling gi f̄ (·) [12]. From a practical viewpoint, it reduces the
problem of choosing the coupling functions to an algebraic problem.

Proposition 1. The necessary and sufficient condition (12) for viability can always be satisfied

• If we have freedom of choice for the phase biases.
• If we only have freedom of choice for the interconnection weights, then (12) can be satisfied

when:

– ω̄ ̸= ωi;
– There exists j ∈ Ni such that ∆ij/(2π) is an irrational number.

• If, in addition, our interconnection weights are to take a prototypical ratio, i.e., αij = βiᾱij
with positive integers βi, then (12) can be satisfied when:

– ω̄ ̸= ωi;
– ∆̄i/(2π) is an irrational number, where ∆̄i := ∑j∈Ni

ᾱij∆ij.

Proof. The first point is trivial, as, for any given ∑j∈Ni
αij∆ij, we can always choose ϕi ∈

[−π, π) so that f̄
(
∑j∈Ni

αij∆ij + ϕi
)

becomes positive (or negative).
For the second and the third points, we first prove the following claim.

Claim: Let δ ∈ (0, 1) be an irrational number. Then, for any ϵ > 0, there exists nϵ ∈ N such
that nϵδ < ϵ mod 1.

Proof of claim: The proof is by contradiction. Suppose that

ϵ∗ := inf
n∈N

nδ mod 1 > 0. (13)

Then, there exists n∗ ∈ N such that:

ϵ∗ ∈
[

1
n∗ + 1

,
1

n∗

)
.

By the definition of ϵ∗, for:

ϵ̃ :=
1 − n∗ϵ∗

n∗ + 1
> 0,
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there exists ñϵ ∈ N such that:

ϵ∗ ≤ ñϵδ < ϵ∗ + ϵ̃ mod 1.

If we let:
δ̃ϵ := ñϵδ mod 1.

then this implies that ϵ∗ ≤ δ̃ϵ < ϵ∗ + ϵ̃, and hence:

n∗ δ̃ϵ < n∗(ϵ∗ + ϵ̃) = 1 − ϵ̃ < 1 (14)

and
(n∗ + 1)δ̃ϵ ≥ (n∗ + 1)ϵ∗ ≥ 1.

Since δ is an irrational number, we have (n∗ + 1)δ̃ϵ > 1, and (14) further implies:

0 < (n∗ + 1)δ̃ϵ − 1 < δ̃ϵ − ϵ̃ < ϵ∗.

In other words, we have
(n∗ + 1)ñϵδ < ϵ∗ mod 1,

which is a contradiction. This completes the proof of the claim. □

For the second point, under this sufficient condition on the existence of j ∈ Ni, we can
simply let αik = 0, j ̸= k ∈ Ni and seek for a nonnegative integer αij such that:

sgn
(

f̄
(
αij∆ij + ϕi

))
= sgn(ω̄ − ωi).

Such an integer αij always exists, because ∆ij/(2π) is an irrational number. In par-
ticular, without loss of generality, assume that ω̄ − ωi is positive and let θ̄0 ∈ (−π, π) be
such that f̄ (θ̄0) = 0. Then, for ϵ := (π − θ̄0)/(4π) and δ := ∆ij/(2π), our claim ensures
the existence of nϵ ∈ N such that nϵ∆ij/(2π) < (π − θ̄0)/(4π) mod 1. Therefore, if there
exists αij ∈ N0 such that:

αij∆ij + ϕi ∈ (−π, θ̄0) mod 2π,

then this implies that there exists n ∈ N such that:

(αij + nnϵ)∆ij + ϕi ∈ (θ̄0, π) mod 2π,

and hence, f̄ ((αij + nnϵ)∆ij + ϕi) also becomes positive.
The third point follows similarly, except that we consider ∆̄i instead of ∆ij:

sgn
(

f̄
(

βi∆̄i + ϕi
))

= sgn(ω̄ − ωi).

Note that given a formation {∆ij}E , we can perform an arbitrarily small perturbation
so that the above irrational number condition is satisfied, and hence, we can achieve our
design goal with arbitrary precision. In particular, in the former case, we can even select an
arbitrary edge to ensure that ∆ij/(2π) is an irrational number. This is because any formation
{∆ij}E can be generated by a sequence of phases {∆i}N as ∆ij = ∆j − ∆i mod 2π, and
thus, with any irrational number δ, if we perturb {∆i}N as ∆̃i = ∆i + (ϵ · i · δ)2π, i ∈ N ,
then for almost all sufficiently small rational numbers ϵ, ∆ij/(2π) becomes irrational.

Based on this viability analysis, in the following subsections, we further provide
guidelines for achieving the additional desired characteristics, illustrated and further
discussed with examples.
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6.1. Design Guideline for Utilizing a Minimal Number of Edges

Among all of the possible choices we could take for assigning a central pattern, we
provide a design guideline that maximizes the number of interconnection weights that we
can set to zero, given a digraph G = (N , E).

If we have freedom of choice for either the set of coupling functions or the set of phase
biases, then according to Theorem 5, we can simply choose our interconnection weights so
that the reduced subgraph (governed by positive weights) still contains a spanning tree
(Assumption 1) and maximizes the number of interconnection weights that are zero. In
particular, N − 1 edges are sufficient. For the design, one could pick any node from the
unique iSCC of the original graph, and then take any spanning tree that connects to it.

On the other hand, if we consider the scaled version of coupling functions as in
Theorem 5 and only have freedom of choice for the interconnection weights, then (to assign
the given central pattern) we must include at least one edge (j, i) for each i ∈ N , such that
∆ij/(2π) is an irrational number (Proposition 1). Thus, for each i ∈ N , we need at least one
positive interconnection weight αij. If we denote such a set of at most N edges by E ′ ⊂ E ,
then an associated least communication subgraph, which contains E ′ (hence satisfying (12))
and satisfies Assumption 1, can be found as follows.

1. Consider the reduced graph G ′
S = (S , E ′|S ). Add a minimum number of edges so

that the new reduced graph (S , ES ) contains a spanning tree. This can be completed
as follows.

(a) The reduced graph G ′
S consists of its iSCCs and followers. Consider each

iSCC and its followers as a single node (a follower can be included in multiple
nodes), and define an edge from one node to another if there is an edge in the
original edge set E from any agent inside one node to any agent in the iSCC of
another node.

(b) This new graph is strongly connected. Thus, take any spanning tree of it and
add one corresponding edge from the original edge set E .

2. Then, include all other edges in E ′, and add a minimum number of edges so that the
new subgraph (N , EN ) contains a spanning tree. This can be completed as follows.

(a) The graph obtained by including all other edges in E ′ consists of its iSCCs and
followers. By construction, there exists unique iSCC included in S .

(b) Now consider the iSCC included in S and its followers as a single node and
consider all other iSCCs each as a single node, and define a graph according to
the edge set E .

(c) Then, this new graph contains a spanning tree which has its root node as the
node that corresponds to the iSCC included in S . Take this spanning tree and
add one corresponding edge from the original edge set E .

Example 1. Let us take an example for the above procedure. For this purpose, let us consider a
graph (N , E) with N = {1, . . . , 8} and E with (j, i) ∈ E represented by j → i in Figure 1. If the
formation {∆ij}E is governed by ∆ij = ∆j − ∆i mod 2π from {∆i}N given as:

∆1 = 0, ∆2 = −1/50, ∆3 = π/4, ∆4 = π/2,

∆5 = 3π/4, ∆6 = π + 1/100, ∆7 = 5π/4 + 1/100,

∆8 = 3π/2, ∆9 = 7π/4,

then the set E ′ and the set of edges (j, i) ∈ E such that ∆ij/(2π) is an irrational number are
obtained as in Figure 1. The procedure described above is illustrated in Figure 1.
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Figure 1. Illustration of the graphs (N , E) and (N , E ′), and the process (1) and (2) in obtaining the
least communication subgraph in Example 1.

Meanwhile, note that as discussed after Proposition 1, we can introduce an infinitesi-
mally small perturbation in the formation to select E ′ as whatever we want. In this sense,
we can make the number of positive interconnection weights N − 1 or N, by choosing E ′

such that (N , E ′) contains a spanning tree. In particular, we can simply make (N , E ′) to be
a spanning tree, if there exists i ∈ S such that:

sgn( f̄ (ϕi)) = sgn(ω̄ − ωi),

or if not, then make (N , E ′) to be a spanning tree with an additional edge (j, i) for the
root node i. Such an attempt for the situation illustrated in Example 1 can be found in
Section 6.3.

6.2. Design Guideline for Minimizing the Number of Alternative Central Patterns

Note that according to Corollary 1, when we choose our nonnegative interconnection
weights to be such that the reduced subgraph governed by positive weights is a spanning
tree and those positive weights are unity, then our central pattern becomes unique and
we have almost global convergence. This is because all of the followers have only one
neighbor and αij = 1, j ∈ Ni, hence {n1

i }N ∼ {n2
i }N if and only if {n1

i }S ∼ {n2
i }S . Note

that S is a singleton {i}, and hence, {n1
i }S ∼ {n2

i }S if and only if n1
i = n2

i . Since νi ≡ 0,
any admissible {ni}N (Θ{ni}N ̸= ∅) gives ni = 0; the number of different central patterns
is one.

In this manner, if we have freedom to choose either the set of coupling functions or the
set of phase biases, then as in Section 6.1, we can simply choose our interconnection weights
so that the reduced subgraph is a spanning tree. Then, no alternative central pattern exists.

On the other hand, if our coupling functions have a prototypical shape as in Theorem 5
and only have freedom of choice for the interconnection weights, then in principle, αij
becomes a large integer, and thus, the number of alternative central patterns becomes large.
Meanwhile, if we have a large number of neighbors for each agent, and the formation is
uniformly distributed, then we have a better chance of decreasing the number, as there
will likely be an edge (j, i) such that sgn( f̄ (∆ij + ϕi)) = sgn(ω̄ − ωi). However, in general,
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finding a set of interconnection weights that gives a minimal number of alternative central
patterns under the restriction of our coupling functions is a hard problem. The best we
could do is to reduce the number of neighbors and reduce the interconnection weights,
as, in general, the equivalence relation specified in Theorem 4 is complicated, and the fact
that αij is an integer gives an additional restriction via the equality (11) and it is most likely
that different {ni}N are not equivalent. This is to reduce the number of admissible {ni}N
(Θ{ni}N ̸= ∅), in particular, its upper bound ∏i∈N (2di + 1).

Remark 6. According to Remark 5, if we have chosen our interconnection weights, coupling
functions, and phase biases, then we can simply cut our coupling functions at a finite region
(M−

i , M+
i ), to satisfy ω̄ − ωi ∈ (M−

i , M+
i ), i ∈ N only for the desired central pattern. This

increases the chance of yielding almost global convergence, even under the restriction fi = gi f̄ .
The trajectory might converge to the boundary and stay, but we can always give a kick to make it
converge to the desired central pattern.

6.3. Further Discussions on Example 1

In this subsection, we follow Example 1. However, instead we consider an infinitesimal
perturbation on the given formation, so that we can choose the set E ′ of edges (j, i) ∈ E
such that ∆ij/(2π) is an irrational number, which yields the graph represented in Figure 2,
a spanning tree with one additional edge (as discussed at the end of Section 6.1). This
is achieved for the formation {∆̃ij}E governed by ∆̃ij = ∆̃j − ∆̃i mod 2π from {∆̃i}N
given as:

∆̃1 = 0, ∆̃2 = −1/50, ∆̃3 = π/4, ∆̃4 = π/2,

∆̃5 = 3π/4, ∆̃6 = π + 1/50, ∆̃7 = 5π/4 + 1/100,

∆̃8 = 3π/2 + 1/50, ∆̃9 = 7π/4 + 1/100.

Note that the only difference is ∆̃6, ∆̃8, and ∆̃9, and the difference is smaller than 1/50.

Figure 2. Illustration of the graphs (N , E) and (N , E ′) in Section 6.3.

Now consider the situation where our objective central pattern is determined by the
above given phases {∆̃i}N and a common frequency ω̄ = 1, while given that the intrinsic
frequencies are ω1 = 0 and ωi = 2 for i ̸= 1. Moreover, say our coupling functions are
scaled versions of a single function f̄ (s) = tan(s/2) as in Theorem 5. If additionally, the
phase biases {ϕi}N are fixed as:

ϕ1 = π − 3/100, ϕ2 = π − 3/100, ϕ3 = 0,

ϕ4 = −π + 1/100, ϕ5 = 0, ϕ6 = −π + 1/100,

ϕ7 = −π/2, ϕ8 = 0, ϕ9 = 0,

(15)

then to satisfy (12), we should first choose αij ∈ N for each (j, i) ∈ E ′, so that:

sgn( f̄ (αij∆̃ij + ϕi)) = sgn(ω̄ − ωi), i ∈ N .
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This can be achieved simply by setting α12 = 1, α21 = 2, and αij = 1 for all other edges.
Then, we choose gi > 0 for each i ∈ N so that:

gi f̄ (αij∆̃ij + ϕi) = ω̄ − ωi.

The corresponding simulation result with different initial conditions is given in
Figure 3. Note that we obtain three different central patterns. This is because only (n1, n2) =
(−1, 2), (0, 0), (0, 1), (0, 2), (1,−2), (1,−1), (1, 0) are possible (Remark 4), and they result
in three different equivalence classes [{−1, 2}] = [{0, 0}] = [{1,−2}], [{0, 1}] = [{1,−1}],
and [{0, 2}] = [{1, 0}] according to Theorem 4 (their differences are integer span of the
column of the Laplacian matrix, (−1, 2)) and Corollary 1. This is smaller than the number
of different central patterns for the network obtained in Example 1, because the smallest
possible α78 is 1 and α87 is 4 in Example 1, and the number of different central patterns even
with αij = 1 for all other edges (which makes the inverse of L|N\{7,8} again the integer
matrix) is 5.

Figure 3. Simulation results for initial conditions (1) θ1(0) = π (2) θ1(0) = 0 (3) θ1(0) = −π/2,
where θi(0) = 0, i ̸= 1 for all cases. These correspond to the equivalence classes (1) [{0, 1}] (2) [{0, 0}]
(3) [{1, 0}]. The equivalence class [{0, 1}] corresponds to the objective formation. The graph represents
the phase differences θi(t)− θ1(t), i ̸= 1.

On the other hand, if we have freedom of choice for the phase biases {ϕi}N in the
above situation, then we can also take α21 as unity, by taking ϕ1 = 1/25 and ϕ2 = −1/25,
and this gives almost global convergence. The simulation result with the initial condition
that resulted in different central patterns in Figure 3 is given in Figure 4a. We observe
that now we have convergence to the unique central pattern that we assigned. One can
check that the number of different central patterns is 1 in this case. In particular, only
(n1, n2) = (−1, 1), (0, 0), (1,−1) are possible (Remark 4), but they are all in the same
equivalence class according to Theorem 4 (their differences are integer spans of the column
of the Laplacian matrix, (−1, 1)) and Corollary 1.
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(a) (b)
Figure 4. Simulation results for initial conditions (1) θ1(0) = π (2) θ1(0) = 0 (3) θ1(0) = −π/2, where
θi(0) = 0, i ̸= 1 for all cases, when (a) we allow the freedom of choice on the phase biases and (b) we
saturate the prototypical barrier function. The graph represents the phase differences θi(t)− θ1(t),
i ̸= 1.

On the contrary, if we preserve the restriction that the phase biases {ϕi}N are fixed
as (15), but, as discussed in Remark 6, instead saturate the prototypical barrier function so
that now f̄ (s) : (−π, π) → (−200 − δ, 40 + δ)) with sufficiently small δ > 0, then we again
obtain almost global convergence. The saturation region is chosen so that f̄ (αij∆̃ij + ϕi) ∈
[−200, 40] for all i ∈ N . Note that, in this case, we must have g1 = 1/ tan(π/2− 1/40) and
g2 = 1/ tan(π/2 − 1/200). This is illustrated in Figure 4b with the same initial condition
that resulted in a different central pattern in Figure 3. This happens because, for the
alternative central patterns, ω̄ does not satisfy ω̄ − ωi ∈ (−gi(200 + δ), gi(40 + δ)), i ∈ N ,
as this is equivalent to ω̄ ∈ (1− η1, 1+ η2) with some small η1, η2 > 0, while they have their
common frequency bigger than 2 for [{0, 0}] and smaller than 0 for [{1, 0}]. Therefore, the
trajectory starting from that corresponding partition travels to the discontinuous boundary,
which in this case, results in a transition to the partition that corresponds to our desired
central pattern.

6.4. Assigning Multiple Central Patterns

The following theorem characterizes the viability of assigning multiple central patterns
(ω̄k, {∆k

ij}E ), k = 1, . . . , nP for a given fixed connected digraph G = (N , E) and a set of
intrinsic frequencies {ωi}N .

Theorem 6. For a set of interconnection weights {αij}E and a set of phase biases {ϕi}N , if we have
freedom of choice for the set of coupling functions { fi}N , then we could assign the given multiple
central patterns (ω̄k, {∆k

ij}E ), k = 1, . . . , nP (nP < NP ) if and only if:

• Θk
i := ∑j∈Ni

αij∆k
ij + ϕi mod 2π ∈ (−π, π) has the same order as ω̄k: if ks is the sorted

index such that:
ω̄1s ≤ ω̄2s ≤ · · · ≤ ω̄nP

s ,

then we have, with equality being preserved:

Θ1s
i ≤ Θ2s

i ≤ · · · ≤ ΘnP
s

i , i ∈ N .

Hence, if, in addition, we have freedom of choice for the set of phase biases {ϕi}N , then, it is
always possible when nP = 2.



Entropy 2024, 26, 134 18 of 25

Proof. We can simply choose any fi such that it satisfies Assumption 2 and fi(θ
k∗
i ) =

ω̄k − ωi for all k = 1, . . . , nP , where θk∗
i = ∑j∈Ni

αij∆k
ij + ϕi, k = 1, . . . , nP .

Given a digraph G = (N , E), a set of intrinsic frequencies {ωi}N , and multiple
desired central patterns (ω̄k, {∆k

ij}E ), k = 1, . . . , nP , it might be possible to select a set
of interconnection weights {αij}E so that the above necessary and sufficient condition is
fulfilled. However, in such cases, due to the choice of interconnection weights (which in
general satisfies αij > 1) the number of alternative central patterns increases (at least the
number of {ni}N such that Θ{ni}N ̸= ∅).

Theorem 6 and the corresponding advantages in formation control are illustrated in
the following examples.

Example 2. For graph G = ({1, 2}, {(1, 2), (2, 1)}), if α12 = 1 and α21 = 1, ϕ1 = π/2 and
ϕ2 = π/2, then we have two different central patterns. If ω1 = 0, ω2 = 2, ω̄ = 1, and ∆12 = π,
then we can set the alternative central pattern to be near the boundary, for instance, as ω̄′ = 2 and
∆′

12 = π/2 − ϵ, since Θ1 = −π/2, Θ′
1 = π − ϵ and Θ2 = −π/2, Θ′

2 = ϵ. A suitable set of
coupling functions is as follows:

f1(s) =
tan
( s

2
)
+ tan

(
π
4
)

tan
(

π−ϵ
2
)
+ tan

(
π
4
) + 1, f2(s) =

tan
( s

2
)
+ tan

(
π
4
)

tan
(

ϵ
2
)
+ tan

(
π
4
) − 1.

Then, since only the alternative central pattern is near the boundary, with a persistent small
kick (e.g., a train of impulsive inputs) on θ1 or θ2, we have almost global convergence to the desired
central pattern ω̄ = 1 and ∆12 = π. This is illustrated in Figure 5.
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Figure 5. Simulation results for initial conditions (1) θ1(0) = 0, θ2(0) = 0 and (2) θ1(0) = 3π/4,
θ2(0) = 0, when (a) there are no ‘kicks’ and (b) there is a small persistent excitation given to θ2, which
‘kicks’ the trajectory from the near-boundary central pattern (1) to the robust central pattern (2). These
correspond to the equivalence classes (1) [{0, 0}] and (2) [{0, 1}].

Example 3. Another example is given for the three agents that constitute a directed ring; E =
{(2, 1), (3, 2), (1, 3)}. From Remark 4, we notice that if ϕS = −π, then the number of different
nS is two, and by the structure of the Laplacian matrix, if αij = 1, for all (j, i) ∈ E , then all the
sequences associated with each nS are equivalent (Remark 3). Therefore, the number of different
central patterns becomes two. We assign for this network a uniformly distributed central pattern
with two different permutations by letting:

ω̄1 = −1, ∆1
1 = 0, ∆1

2 =
2π

3
, ∆2

3 =
4π

3
,

ω̄2 = 1, ∆2
1 = 0, ∆2

2 =
4π

3
, ∆2

3 =
2π

3
.

To satisfy the necessary and sufficient condition in Theorem 6 and to satisfy ϕS = ∑3
i=1 ϕi =

−π, we utilized:
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ϕ1 = −3π

4
, ϕ2 = −3π

4
, ϕ3 =

π

2
.

Then, for any intrinsic frequency ωi, we can assign both central patterns simultaneously. Here,
we take ω1 = −2, ω2 = 0, and ω3 = 2. A suitable set of coupling functions is:

f1(s) = 2
tan
( s

2
)
+ tan

(
π
24
)

tan
( 7π

24
)
+ tan

(
π
24
) + 1, f2(s) = 2

tan
( s

2
)
+ tan

(
π
24
)

tan
( 7π

24
)
+ tan

(
π
24
) − 1,

f3(s) = 2
tan
( s

2
)
+ tan

(
π
12
)

tan
( 5π

12
)
− tan

(
π
12
) − 1.

This is illustrated in Figure 6.
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Figure 6. Simulation results for initial conditions (1) θi(0) = 0, i ∈ N and (2) θ1(0) = 0, θ2(0) = 0,
θ3(0) = −π/3. These correspond to the equivalence classes (1) [{0, 0, 0}] and (2) [{0,−1, 0}].

Example 4. Our final example concerns an arbitrary odd number N > 1 with star-shaped graph
G = ({1, . . . , N}, {(1, 2), . . . , (1, N), (2, 1)}). If αij = 1 for all (j, i) ∈ E , ϕ1 = (N − 1)π/N
and ϕ2 = 0, then we have two different central patterns. In particular, if ωi = 0 for all i ∈ N ,
ϕi = 0, i = 2, . . . , (N + 1)/2 and ϕi = (N − 1)π/N, i = (N + 3)/2, . . . , N, then we can assign
two central patterns (with completely opposite behaviors), where one represents perfect balanced
formation, i.e., ω̄ = 0, ∆i = 2(i − 1)π/N for all i = 1, . . . , N, and the other represents perfect
synchronization, i.e., ω̄′ = 1, ∆′

i = 0 for all i = 1, . . . , N. This is because 0 = ω̄ < ω̄′ = 1
and −(N − 1)π/N = Θ1 < Θ′

1 = (N − 1)π/N, −2(i − 1)π/N = Θi < Θ′
i = 0, i =

2, . . . , (N + 1)/2, and −(2i − N − 1)π/N = Θi < Θ′
i = (N − 1)π/N, i = (N + 3)/2, . . . , N.

We can utilize coupling functions in the form of fi(s) = ai tan(s/2) + bi, where a1 and b1 form
the unique solution of the linear equation:tan

(
−N−1

2N π
)

1

tan
(

N−1
2N π

)
1

[a1
b1

]
=

[
0
1

]
.

For i = 2, . . . , (N + 1)/2, ai and bi form the unique solution of the linear equation:[
tan
(
− i−1

N π
)

1
tan(0) 1

][
ai
bi

]
=

[
0
1

]
.

For i = (N + 3)/2, . . . , N, ai and bi form the unique solution of the linear equation:tan
(
− 2i−N−1

2N π
)

1

tan
(

N−1
2N π

)
1

[ai
bi

]
=

[
0
1

]
.

This is illustrated in Figure 7 for the case when N = 9.
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Figure 7. Simulation results for initial conditions (1) θ2(0) = 0 and θi(0) = 2(i − 1)π/N, i ̸= 2 and
(2) θ2(0) = 2π/N and θi(0) = 0, i ̸= 2.

7. Conclusions

By introducing the node-wise monotone barrier coupling law, we proposed a tool to
simultaneously assign multiple central patterns on the circle, where a transition between
different patterns can happen via a simple ‘kick’. We characterized the shape of the
generated central patterns, identified the number of different central patterns, analyzed the
viability of assigning desired patterns, and provided design guidelines.

Compared with our initial work [16], where instead of the node-wise monotone barrier
coupling law, we had utilized the edge-wise version:

θ̇i = ωi + ∑
j∈Ni

fij(θj − θi), i ∈ N ,

we no longer have to confine ourselves to undirected graphs G = (N , E). The analysis of
the generated central pattern has become less straightforward, but instead, we obtained
a general understanding of the number of different central patterns. From a design per-
spective, for a similar number of restrictions, we now have fewer limitations and more
straightforward design guidelines.

Future consideration will be given to quantitive analysis of the robustness, extension
of the framework to other nonlinear spaces, and its use in practical design problems. An
example is to control a cluster of drones. Energy perspectives as considered in [16] are also
of interest, where a relevant problem for investigation is the minimization of energy to
maintain the given formation or the minimization of energy for transitions among multiple
desired patterns.
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Appendix A. Essential Graph Theoretical Lemma

The following lemma is essential in the proof of Theorem 1, which is given in Appendix B.

Lemma A1. Under Assumption 1, for any I ⊊ N such that S \ I ̸= ∅, where S denotes the
unique iSCC, there exists ζi > 0, i ∈ I such that for any vector χ = [χi] ∈ RN :

∑
i∈I

ζi ∑
j∈N

αij(χj − χi) = ∑
j∈N\I

β jχj − ∑
i∈I

γiχi (A1)

with some coefficients β j, γi ≥ 0. Moreover, there exists j∗ ∈ N \ I and i∗ ∈ I such that β j∗ > 0
and γi∗ > 0.

Proof. Consider a subgraph GI = (I , E|I ). Then, there exists iSCCs denoted as S p ⊂ I ,
p ∈ M := {1, . . . , M}, and the rest denoted as R ⊂ I . We will first assume that Lemma A1
holds for the index set R; that is, ζi > 0 is given for i ∈ R such that for any vector
χ = [χi] ∈ RN :

∑
i∈R

ζi ∑
j∈N

αij(χj − χi) = ∑
j∈N\I

β̄ jχj +
M

∑
p=1

∑
j∈S p

β̄ jχj − ∑
i∈R

γiχi,

then we will show that for each p ∈ M, we can find ζi > 0, i ∈ S p such that for any vector
χ = [χi] ∈ RN :

∑
i∈S p

ζi ∑
j∈N

αij(χj − χi) = ∑
j∈N\I

β̄
p
j χj − ∑

i∈S p
γ̄iχi and γ̄i > β̄i, ∀i ∈ S p. (A2)

This will complete the proof. By repeating this argument (i.e., by replacing the role
of I with R), we arrive after finitely many steps at the stage of assuming that Lemma A1
holds for the index set R, but R is empty; that is, the subgraph GI only consists of iSCCs,
so that the assumption holds trivially.

Let us carry out the steps of the proof described above. For this purpose, note that
by Assumption 1 and the fact that S \ I ̸= ∅, for each p ∈ M, there exist j ∈ N \ I and
i ∈ S p such that (j, i) ∈ E . This is because otherwise, S p becomes the unique iSCC S of the
entire graph, but this is not possible, since S \ I ̸= ∅. Now, let Lp denote the Laplacian
matrix of the subgraph G p = (S p, E|S p). Then, (A2) for only those corresponding to S p can
be represented as:

(ζ p)T(Lp +Dp) = (γ̄p)T > (β̄p)T

with some diagonal matrix Dp ≥ 0 such that Dp ̸= 0 by the existence of (j, i) ∈ E , j ∈ N \I ,
i ∈ S p. Thus, first let ξ

p
1 be the left eigenvector of Lp associated with the zero eigenvalue.

Then, we have ξ
p
1 > 0 and:

(ξ
p
1 )

T(Lp +Dp) = (ξ
p
1 )

TDp ⪈ 0.

Next, let N ′
1 ⊂ S p be the set of all indices i ∈ S p such that the element of (ξ p

1 )
TDp

corresponding to agent i is positive. Clearly, N ′
1 is not empty. Now, we can find sufficiently

small ε1 > 0 such that:
ξ

p
2 := ξ

p
1 − ε11N ′

1
> 0

satisfies:
(ξ

p
2 )

T(Lp +Dp) = −ε11T
N ′

1
(Lp +Dp) + (ξ

p
1 )

TDp ⪈ 0

and that N ′
1 ⊊ N ′

2, where 1I denotes the vector of appropriate size with 1 only in the
position that corresponds to the index set I and 0 elsewhere. In particular:

N ′
2 = N ′

1 ∪
⋃

i∈N ′
1

{j ∈ S p|(j, i) ∈ E}.
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Therefore, by repeating this argument, due to the fact that G p is strongly connected,
we arrive after finitely many steps at the situation where N ′

k = S p. This implies that:

(ξ
p
k )

T(Lp +Dp) > 0.

Therefore, we can find sufficiently large K > 0 such that ζ p := Kξ
p
k > 0 satisfies:

(ζ p)T(Lp +Dp) > (β̄p)T

and we conclude (A2) as desired.

Appendix B. Proof of Theorem 1

Appendix B.1. ΘR
{ni}N

Is Positively Invariant

The existence of a unique (local) solution starting from ΘR
{ni}N

is simply given by the

fact that the system dynamics is locally Lipschitz continuous inside ΘR
{ni}N

. Now, the rest
of the proof is by contradiction. Suppose that there is a particular solution of (3) such that
θ ∈ ΘR

{ni}N
holds only for a finite time interval [0, T) and is violated at t = T. This implies

that there is a time sequence {τk} such that τk is strictly increasing and limk→∞ τk = T, and:

I+({τk}) :=
{

i ∈ N : lim
k→∞

νi(τk) + ϕi = (2ni + 1)π
}

is nonempty,

or

I−({τk}) :=
{

i ∈ N : lim
k→∞

νi(τk) + ϕi = (2ni − 1)π
}

is nonempty,

where ni ∈ Z is such that νi(0) + ϕi ∈ ((2ni − 1)π, (2ni + 1)π). This implies νi(t) + ϕi ∈
((2ni − 1)π, (2ni + 1)π) for all t ∈ [0, T). Let us first assume that I+({τk}) is nonempty.
We will first show that a contradiction occurs if S ⊂ I+({τk}), where S denotes the unique
iSCC. If S \ I+({τk}) ̸= ∅, we will then show that it is possible to construct another time
sequence {τ̄k} (based on {τk}), such that:

|I+({τk})| < |I+({τ̄k})| (A3)

where the notation | · | denotes the cardinality of the set. By repeating this argument (i.e.,
by replacing the role of {τk} with {τ̄k}), we arrive after finitely many steps at the index set
I+({τk}) such that S ⊂ I+({τk}), which yields a contradiction. This means that there is
no such sequence {τk} that makes I+({τk}) nonempty. Similarly, it can be seen that there
is no sequence that makes I−({τk}) nonempty. Therefore, we conclude there is no such
finite time T, and thus, θ(t) ∈ ΘR

{ni}N
for all t ≥ 0.

Let us carry out the steps of the proof described above. For convenience, we write
I instead of I+({τk}) in the following. Note that, by the definition of I , for each η > 0,
there exists a sufficiently large k∗ ∈ N such that νi(τk) + ϕi > (2ni + 1)π − η for all k ≥ k∗.
Hence, if S ⊂ I , then for any given set of positive coefficients ζi, i ∈ S , there is k such that:

∑
i∈S

ζiνi(τk) = ∑
i∈S

ζi ∑
j∈N

αij · (θj(τk)− θi(τk)) ̸= 0.

This is because, if ∑i∈S ζi((2ni + 1)π − ϕi) = 0, then the sum converges to zero, but
is negative for all finite k, and otherwise if ∑i∈S ζi((2ni + 1)π − ϕi) ̸= 0, then there exists
sufficiently small η such that the sum is nonzero for all k ≥ k∗. However, this is violated
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if ζi, i ∈ S corresponds to the elements of the left eigenvector of the Laplacian matrix
associated with the zero eigenvalue, because then:

∑
i∈S

ζi ∑
j∈N

αij(θj(t)− θi(t)) ≡ 0, ∀t ∈ [0, T).

Hence, we have shown that S ⊂ I is not possible and we continue the proof for the
case that S \ I ̸= ∅. For this purpose, let:

W(t) := ∑
i∈I

ζiνi(t) = ∑
i∈I

ζi ∑
j∈N

αij · (θj(t)− θi(t)),

where ζi > 0, i ∈ I is given by Lemma A1 considering the index set I ⊊ N . Note that
W(t) is continuously differentiable, W(t) < ∑i∈I ζi((2ni + 1)π − ϕi) =: WI on [0, T), and
limk→∞ W(τk) = WI . Let us now consider a strictly decreasing sequence {εq} of positive
numbers such that limq→∞ εq = 0 and W(0) < WI − ε0. Choose a subsequence {τkq}q∈N
of {τk} such that:

W(τkq) ≥ WI −
εq

2
, ∀q ∈ N. (A4)

Based on this subsequence, we now construct a sequence {sq}q∈N such that (see
Figure A1):

sq :=max
{

s∈ [0, τkq ]
∣∣∣W(s)=WI − εq

}
. (A5)

0 tT

WI

W(t)

τ0 τ1 τ2 τ3 τ4

εq

εq
2

=

τkq
sq

Figure A1. Illustration of the choice of the sequence {sq}q∈N based on {τk}k∈N.

By (A4) and (A5), the sequence {sq} is strictly increasing and limq→∞ sq = T. More-
over, since limq→∞ W(sq) = WI :

lim
q→∞

νi(sq) + ϕi = (2ni + 1)π, ∀i ∈ I . (A6)

In addition, from (A4) and (A5), it follows that sq < τkq and:

Ẇ(sq) ≥ 0, ∀q ∈ N. (A7)

On the other hand, if we compute Ẇ, then we have:

Ẇ(t) = ∑
i∈I

ζi ∑
j∈N

αij(ωj − ωi) + ∑
i∈I

ζi ∑
j∈N

αij( f j(t)− fi(t)),

where fk(t) := fk(νk(t) + ϕk), k ∈ N , for simplicity. We denote the first sum by M0.
Invoking Lemma A1 for the index set I , we, therefore, have that (β j, γi ≥ 0):

Ẇ(t) ≤ M0 + ∑
j∈N\I

β j f j(t)− ∑
i∈I

γi fi(t). (A8)
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Let J := N\I (which is nonempty). Then, (A7) and (A8) yield:

∑
j∈J

β j f j(sq) ≥ ∑
i∈I

γi fi(sq)− M0 =: Mq.

Again, by Lemma A1, at least one β j (γi), where j ∈ J (i ∈ I), is positive. Thus, it
follows from (A6) that Mq → ∞ as q → ∞. Since:

∑
j∈J

β j f j(sq) ≤ β̄ ∑
j∈J

max
{

f j(sq), 0
}

where β̄ := maxj∈J β j > 0, we have:

∑
j∈J

max
{

f j(sq), 0
}
≥

Mq

β̄
. (A9)

Therefore, for each sufficiently large q, there is an index jq ∈ J such that f jq(sq) ≥
Mq/(|J |β̄). Since J is a finite set, there is a subsequence {τ̄k} = {sqk} such that j∗ = jqk ∈
J ; hence:

f j∗
(
νj∗(τ̄k) + ϕj∗

)
→ ∞

that is, νj∗(τ̄k) + ϕj∗ → (2nj∗ + 1)π. Consequently:

I+({τk})
(A6)
⊆ I+({sq}) ⊆ I+({τ̄k}).

By construction, j∗ ∈ I+({τ̄k}) \ I+({τk}) and we can conclude (A3) as desired. Noting
that the above proof holds even if we let T = ∞, so that there is no time sequence {τk}
such that τk is strictly increasing and limk→∞ τk = ∞ which makes I+({τk}) (I−({τk}))
nonempty, it follows that the control input fi(νi(t) + ϕi) is bounded uniformly on [0, T) =
[0, ∞).

Appendix B.2. Convergence to a Unique Central Pattern

Given the forward invariance in ΘR
{ni}N

, the convergence of the trajectory to an integral
curve corresponding to a central pattern of phase locking behavior can be shown simply by
monotonicity. In particular, the linearization of (3) can be found as:

δ̇θi = f ′i (νi + ϕi) ∑
j∈Ni

αij(δθj − δθi), i ∈ N

and is strictly monotonic with respect to the positive orthant inside the positively invariant
set ΘR

{ni}N
due to Assumptions 1 and 2. The Perron–Frobenius vector of the system on

ΘR
{ni}N

is 1N as this is the eigenvector of:

−diag( f ′1(ν1 + ϕ1), . . . , f ′N(νN + ϕN))L

associated with the eigenvalue having the largest real part, which is zero. This ensures that
for any trajectory starting from ΘR

{ni}N
, there exists a central pattern (ω̄, {∆ij}E ) such that

the trajectory converges to a trajectory of form col(ω̄t + ψ1, . . . , ω̄t + ψN), where:

ψj − ψi = ∆ij mod 2π.

Such a trajectory actually exists in ΘR
{ni}N

as the control input fi(νi(t) + ϕi) is bounded
uniformly on [0, ∞) (Appendix B). Further details may be found in [16–18].
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