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Abstract: Previous studies have revealed the extraordinarily large catalytic efficiency of some en-
zymes. High catalytic proficiency is an essential accomplishment of biological evolution. Natural
selection led to the increased turnover number, kcat, and enzyme efficiency, kcat/KM, of uni–uni
enzymes, which convert a single substrate into a single product. We added or multiplied random
noise with chosen rate constants to explore the correlation between dissipation and catalytic efficiency
for ten enzymes: beta-galactosidase, glucose isomerase, β-lactamases from three bacterial strains,
ketosteroid isomerase, triosephosphate isomerase, and carbonic anhydrase I, II, and T200H. Our
results highlight the role of biological evolution in accelerating thermodynamic evolution. The
catalytic performance of these enzymes is proportional to overall entropy production—the main
parameter from irreversible thermodynamics. That parameter is also proportional to the evolutionary
distance of β-lactamases PC1, RTEM, and Lac-1 when natural or artificial evolution produces the
optimal or maximal possible catalytic efficiency. De novo enzyme design and attempts to speed
up the rate-limiting catalytic steps may profit from the described connection between kinetics and
thermodynamics.

Keywords: enzyme efficiency; entropy production; noise; evolution; catalytic cycle

1. Introduction

There would be no evolution without dissipation. For isothermal conditions, dissi-
pation and entropy production are different names for the same fundamental physical
quantity for irreversible thermodynamics which measures the speed of irreversible, far-
from-equilibrium processes. In biological research, one can ask about the most basic level
at which we can still see a considerable increase in entropy production.

Enzymes are housekeeping cellular macromolecules performing all biosynthetic and
moving functions. Enzymes with a uni–uni catalytic mechanism convert a single substrate
into a single product (Michaelis–Menten kinetics [1,2]). The assumption is that they have
one catalytic site, which only interacts with a specific substrate and converts it into a single
specific product. Their enzyme efficiency is the ratio kcat/KM, where kcat is the catalytic
constant and KM is the Michaelis–Menten constant related to the enzyme’s affinity to the
substrate. The other name for kcat is the turnover number or cycle completion time. The
other name for kcat/KM is the specificity or catalytic constant.

Our previous publications (collected in [3,4]) examined how to model enzyme catalytic
efficiency increase when the partial entropy production value is maximized in the rate-
limiting catalytic steps. The value has the units M−1s−1 and can be huge for the most
efficient enzymes. Thus, it should not be confused with the dimensionless thermodynamic
efficiency from physics that is restricted to 0–1 numbers (0 to 100%). Also, kcat/KM is
not the thermodynamic enzyme efficiency of biological molecular motors and membrane
proton pumps, which perform free-energy transduction and are modeled with two or more
connected cycles [5,6]. Nevertheless, in the Introduction of [4], there is a section named
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“Catalytic efficiency increases together with entropy production”. It did not lead to rigorous
examination when it did and did not happen.

The metabolic heat production is due to enzymes. Using the microcalorimetry method,
Sica et al. found the proportionality between enzyme activity, kcat, and observed heat
flow [7]. Thermal power was directly proportional to the reaction rate for dihydrofolate
reductase (EC 1.5.1.3). Todd and Gomez [8] extended that observation to representative
enzymes from each EC classification (a total of 11 different enzymes), assuming the validity
of the Michaelis–Menten equation [1]. They found a reasonably good agreement between
kinetic parameters kcat, KM, and kcat/KM assayed colorimetrically and with other methods.
Riedel et al. [9] confirmed the agreement of the calorimetric and kinetic parameters kcat
and KM for catalase, urease, alkaline phosphatase, and triosephosphate isomerase.

There are indications that the first several hundred million years of the Archaean
age were enough to develop enzymes catalyzing the same reaction with many orders
of magnitude higher activity than the best inorganic catalysts [10–12]. Life accelerated
spontaneous inorganic evolution billions or quintillions of times [11,13–17]. To gain better
insights into how this has been achieved and whether further efficiency improvements
are theoretically possible, we explore the connection between the thermodynamic and
biological evolution of enzymes in this study. The work will focus on how an irreversible
increase in entropy can increase catalytic efficiency.

Surprisingly, inquiries about whether enzyme efficiency has anything to do with
total entropy production attracted scant attention in the published literature. Offered
answers ranged from generalizations based on the study of two or three points and only
one enzyme [18] to the lack of overall correlation between reaction thermodynamics and
performance parameters for many enzymes [19]. To some biologists and physicists, it
looked evident that biological evolution led to a decrease in entropy, while thermodynamic
evolution can lead only to an increase in entropy. Consequently, they could agree with
the expectation that biological evolution should strive to produce a minimal amount
of entropy. Published contrary conclusions about maximal entropy production during
biological evolution [20,21] did not prevail. A reader can find a rich array of literature
sources for both viewpoints in a recent book [4].

Michaelis–Menten kinetics [1,2] survived more than 100 years of enzyme catalysis
studies [22,23]. It is a good enough reason why a better connection with nonequilibrium
thermodynamic parameters should be desirable. The thermodynamic treatment requires
the generalization of Michaelis–Menten kinetics so that all catalytic steps are reversible [24].
That does not prevent the highly irreversible nature of some catalytic steps. Thus, we
explored the theoretical optimization of generalized Michaelis–Menten-type kinetics when
some or all microscopic rate constants exhibit noise arbitrarily far from thermodynamic
equilibrium. The variations we introduced are a stepway increase in chosen rate constants,
uniform, or Gaussian noise. Remarkably, when equilibrium constants are not altered in the
catalytic steps, almost perfect proportionality is revealed between enzyme efficiency and
total entropy production.

To avoid generalities, we examined the well-defined short-term evolution of chosen
enzymes, their substrates, and products in a system devoid of other biological molecules.
The known mechanism of action and all microscopic rate constants calculated or estimated
from the experimental data were our main criteria for selecting the enzymes. We set up
the initial nonequilibrium state by choosing the out-of-equilibrium substrate and product
concentrations. We constructed different software tools to reproduce the measured perfor-
mance parameters and study possible improvements in our simulations because we wanted
to employ deterministic and stochastic models, which complement each other. Former
models took less time to produce reproducible results. Stochastic models imitate biological
mechanisms that harness molecular noise to create variable beneficial outcomes [25].

Allowing for normal noise in microscopic rate constants has several advantages. Firstly,
it is a more realistic description of in vivo biochemical kinetics in a highly noisy cellular
microenvironment. Secondly, it considers that experimental data are signals extracted
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from noise. Thirdly, it allows a comprehensive exploration of rate constant combinations
associated with higher enzyme efficiency. The last, but not the least, essential advantages
of considering noise are the implications of coupled increases for entropy production and
enzyme efficiency during biological evolution.

The proportionality between the biochemical and physical descriptions of the enzyme’s
hallmarks (kcat/KM and entropy production) does not depend on noise distribution or the
programming language used to incorporate noise. However, homeostatic conditions must
be assumed to maintain proportionality. These are physiological conditions for in vivo
enzyme activity or quasi-steady-state constraints for batch reactor experiments, achieved by
continuously removing excess products and adding substrates (the chemiosmotic situation).

In cases when some analytical function is a good fit for efficiency-to-dissipation
dependence, its shape is highly dependent on imposed constraints and on the manner of
introducing noise in the system. Based on this study, dissipation and catalytic efficiency are
correlated through a common dependence on the rate constants in a stable environment.

This work deals with the total entropy production role of very different single-cycle
enzymes. The well-known triosephosphate isomerase kinetics was the testing ground
for different optimization methods and constraints on rate constant variations. Other
explored enzymes also have their own individuality and specific importance. Thus, we
first calculated their reference state parameters for the subsequent exploration of how
much we can improve their performance. We addressed the question of the influence of
model complexity (two, three, or four states) on performance parameters and efficiency–
dissipation proportionality. We also explored changes in the partial entropy production of
catalytic steps to find those that increased catalytic efficiency. The main text examined only
one of three evolutionary-related β-lactamases and a single carbonic anhydrase isoenzyme
to save space. We recommend reading the Supplementary Materials to better understand
those enzyme sets’ relationships.

2. Methods
2.1. Selected Enzymes for the Computational Modeling

We selected the following enzymes with rate constants measured or estimated: Es-
cherichia coli β-galactosidase (βG, EC 3.2.1.23) [26] and Streptomyces murinus glucose iso-
merase (GI, EC 5.3.1.5) [27,28] for two functional states (Figure 1a), β-lactamases (EC 3.5.2.6)
from three bacterial strains-Staphylococcus aureus, Escherichia coli, and Bacillus cereus en-
zymes (respectively labeled as PC1, RTEM, and Lac-1) [29,30] for three functional states
(Figure 1b), Commamonas testosteroni ketosteroid isomerase (KSI, 5.3.3.1) [31], rabbit muscle
triosephosphate isomerase (TPI, EC 5.3.1.1) [32], and human carbonic anhydrase I and
II (CA I and CA II, EC 4.2.1.1)) [33] for four functional states (Figure 1c). We used the
modification of the four-state reversible kinetic scheme for the three CA isoenzymes shown
in Figure 13 to include the buffer as the second substrate in the fourth catalytic step. That is
the only exception from the strictly uni–uni catalytic mechanism.
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2.2. Description of Enzyme Kinetics in Terms of Nonequilibrium Thermodynamics

To evaluate enzyme efficiency and its total entropy production in a quasi-steady
state and simulated dynamical changes in the concentration of substrates, products, free
enzymes, and enzyme complexes with ligands, we used T. Hill’s diagram method [5,6].
Namely, each enzyme can be found in different states, either as free or in complexes,
among which possible transitions are shown in Figure 1. The first-order rate constants, ki,
characterize transitions, where i is odd in the forward direction and even in the backward
direction. For the binding transitions with the substrate or product, we use ki = ki*[S] and kj
= kj*[P], where ki* and kj* are the second-rate constants and [S] and [P] are concentrations
of the substrate and product. The equilibrium constant Ki in the ith catalytic step is defined
as the forward-to-backward rate constant ratio Ki = k2i−1/k2i.

The entropy production density is the sum of force-flux products corresponding to
individual transitions (for review, see [34,35]). Total entropy production for an enzyme
reaction with a single cycle is given by [30,35,36]

σ =
JX
T

(1)

where J is the steady-state net reaction flux, X is the overall steady-state thermodynamic
force, and T is the absolute temperature assumed to be constant. J is the probability current
equal to the reaction rate per total enzyme concentration [30,37]. The flux depends on the
steady-state occupancy of functional states for an enzyme going through the catalytic cycle
and rate constants. The steady-state overall reaction flux corresponds to the flux of an
arbitrary enzyme transition i→i + 1, as all transition fluxes within a single cycle are equal
and read [5,6,35]

J = Ji = k2i−1 pi − k2i pi+1 (2)

where pi is the stationary probability of the ith state that can be expressed through the ratio
of the sum of the directional diagrams of the state i to the sum of the directional diagrams
of all states as

pi = ∑
i

/ ∑ (3)

Reaction flux J is a function of the forward and backward reaction rate constants. For
instance,

J =
k1k3 − k2k4

k1 + k2+k3 + k4
(4)

for the two-state model shown in Figure 1a,

J =
k1k3k5 − k2k4k6

k1(k3 + k4 + k5) + k2k4 + k2k5+k3k5 + k6(k2 + k3 + k4)
(5)

for the three-state model shown in Figure 1b and

J =
k1k3k5k7 − k2k4k6k8

Σ1 + Σ2 + Σ3 + Σ4
(6)

Σ1 = k2k4k6 + k2k4k7 + k2k5k7 + k3k5k7
Σ2 = k1k5k7 + k4k6k8 + k1k4k6 + k1k4k7
Σ3 = k1k3k7 + k2k6k8 + k3k6k8 + k1k3k6
Σ4 = k2k4k8 + k1k3k5 + k3k5k7 + k2k5k7

(7)

for the four-state model shown in Figure 1c.
The thermodynamic force in the cycle that drives the flux equals the sum of forces in

each transition
X = X1 + . . . + Xn (8)
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where n is the number of states and Xi is the thermodynamic force of the transition i→i + 1,
which is equal to the difference in chemical potentials

Xi = µi − µi+1 (9)

The chemical potential for the state i is given by [5,6]

µi = Gi + RTlnpi (10)

where Gi is the Gibbs free energy of an enzyme in the state i and R is the gas constant. Thus,
the thermodynamic force becomes

Xi = Gi − Gi+1 + RTln
(

pi
pi+1

)
(11)

For the transition i→i + 1, the relation between the difference in the Gibbs free energy
and the first-order rate constants is

Gi − Gi+1 = RTln
(

k2i−1

k2i

)
(12)

giving the thermodynamic force

Xi = RTln
k2i−1 pi
k2i pi+1

(13)

For the two-state model

X1 = RTln
k1(k2 + k3)

k2(k1 + k4)
(14)

X2 = RTln
k3(k1 + k4)

k4(k2 + k3)
. (15)

Thus,

X = RTln
k1k3

k2k4
= RTlnK (16)

where K = K1 · K2 is the equilibrium constant. For the three-state model

X1 = RTln
k1(k3k5 + k2k4 + k2k5)

k2(k1k4 + k1k5 + k4k6)
(17)

X2 = RTln
k2(k1k4 + k1k5 + k4k6)

k3(k1k3 + k2k6 + k3k6)
(18)

X3 = RTln
k3(k1k3 + k2k6 + k3k6)

k1(k3k5 + k2k4 + k2k5)
(19)

Then, the overall thermodynamic force is

X = RTln
k1k3k5

k2k4k6
= RTlnK (20)

where K = K1 · K2 · K3.
In the case of four states, where

Xi = RTln
k2i−1Σi
k2iΣi+1

(21)
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and Σ = Σ1 + Σ2 + Σ3 + Σ4 with Σi given by (7), the overall thermodynamic force becomes

X = RTln
k1k3k5k7

k2k4k6k8
= RTlnK (22)

where K = K1 · K2 · K3 · K4.
The dissipation is defined as the product of flux and force. At a constant temperature, the

absolute temperature T makes the only difference between the entropy production and the
dissipation function. Thus, for isothermal conditions, the dissipation function φ and the total
entropy production σ have the absolute temperature T as the proportionality factor: φ = T · σ.
Entropy production can be expressed in inverse seconds and labeled as P when divided by R: P
= σ/R. Similarly, the dissipation function divided by RT is labeled as φ/RT = σ/R = P. In most
figures, we use the dissipation term to plot the functional relationship between kcat/KM values
at the y-axis (in M−1s−1 units) and the dissipation/RT values at the x-axis (in s−1 units).

Hill’s equations above are valid only for the steady-state kinetics. However, these
steady states can be very far from equilibrium. That is the primary advantage over applica-
tions of classical irreversible thermodynamics to small departures from thermodynamic
equilibrium under which fluxes are linearly proportional to forces. All enzymes examined
in this paper exhibit a nonlinear relationship between fluxes and forces. Nonlinearity allows
for more efficient power channeling [38]. We also assumed that all studied systems can
jump among quasi-steady states in deterministic or stochastic ways. Random encounters
among molecules and accidental conformational changes happen in noisy and crowded
environments of any living cell. The analytical approach using the FORTRAN computer lan-
guage is suitable for modeling deterministic changes. FORTRAN source code produced the
same output when random numbers were called to simulate the stochastic noise. This does
not take into account random encounters among enzymes and small molecules (substrates,
products) when we codify Equations (1)–(22). Agent-based modeling better accounts for
the need to consider noisy dynamics, random encounters, and variable outcomes while
preserving mass conservation for all forms of ligands and different enzyme conformations.
It is, however, considerably slower in comparison to deterministic modeling. Therefore, we
constructed novel source codes using the FORTRAN and NetLogo languages to perform
our simulations. Although the results often agreed, some significant differences justified
the application of both modeling techniques.

Further, catalytic constants (kcat), Michaelis–Menten constants (KM), and the specificity
constant (kcat/KM) for all three schemes for the enzyme reactions shown in Figure 1 can be
defined (see Section 1 for their meaning). These kinetic parameters have been measured
for almost all enzymes, albeit after assuming the single-cycle enzyme turnover or some
irreversible catalytic steps. For the two-state reversible model (Figure 1a) [39]

kcat = k3 (23)

KM = [S]
k2 + k3

k1
(24)

kcat

KM
=

k1k3

[S](k2 + k3)
(25)

for the three-state model [37,40]

kcat =
k5

1 + k4
k3
+ k5

k3

(26)

KM = [S]
K2

k5
k1
+ 1

K1

(
k5
k4
+ 1

)
1 + K2 +

k5
k4

(27)
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kcat

KM
=

k1k3k5

[S](k2k4 + k2k5 + k3k5)
(28)

and for the four-state model [41,42]

kcat =
k3

1 + k3
k7
+ k3

k5

(
1 + 1

K2

)(
1 + 1

K3

k5
k7

) (29)

KM =
[S]
K1

1 + K1
k3
k1
+ 1

K2

k3
k5

(
1 + 1

K3

k5
k7

)
1 + k3

k7
+ k3

k5

(
1 + 1

K2

)(
1 + 1

K3

k5
k7

) (30)

kcat

KM
=

k1k3k5k7
[S](k2k4k6 + k2k4k7 + k2k5k7 + k3k5k7)

(31)

We refer the reader to the Supplementary Materials files “Linear Specificity-Dissipation
Relationships” and “Flux-Turnover Relationships” for the mathematical understanding of
(a) the quasi-proportionality between enzyme efficiency (specificity) and entropy produc-
tion within the small-change constraints in the equilibrium constants for catalytic steps,
and (b) the conditions of the linear-like relationship between the forward catalytic constant
(turnover rate) and the net S→P flux.

3. Software and Programs Used in This Paper

The same Equations (1)–(33) are employed in the construction of our source codes by
using various computer languages. The source codes differ in applied constraints, while
the presented figures use the selected parameters from one or more program outputs as
we describe in their legends. Using the Box–Muller transform [43], we introduced normal
noise into microscopic rate constants. That transform is

gi =
√
−2lns1cos (2πs2) + shi f t (32)

or
gi =

√
−2lns1sin (2πs2) + shi f t (33)

For instance, the rate constant ki = ki
expgi is noisy when s1 and s2 are random num-

bers chosen from the unit interval (0, 1) obtained by the standard FORTRAN generator
random_number, and ki

exp is its experimental value. We are the authors of the FORTRAN
source codes. Fifteen codes are available for download in the Supplementary Materials
(SMs). Each is associated with the main text or Supplementary Materials figures we con-
structed using relevant software output. For some of our FORTRAN programs, shift = +1
or shift = +2, are used instead of shift = 0 to avoid negative numbers for rate constants.

We also used agent-based modeling [44–47] to construct source codes for our simu-
lations. Modeling flexibility, inherent dynamics, the ability to model individual behavior,
spatial consideration, and the logical entrance of complexity and noise in the system are
some advantages of mimicking biological processes with agent-based modeling.

The dynamics can be simulated using the NetLogo language without solving differ-
ential equations. NetLogo (http://ccl.northwestern.edu/netlogo/, accessed on 26 Jan-
uary 2024) is a multiagent simulation environment that is simple to use and suitable for
modeling the stochastic dynamics of biological processes [48–51]. Agent-based mod-
els are stochastic by nature. For instance, scientists have constructed NetLogo mod-
els for the stochastic interaction of an enzyme with its substrates, products, and in-
hibitors [52,53]. We used the same parent NetLogo source code as the inspiration for
all our NetLogo programs. “Enzyme Kinetics” was created by Stieff and Wilensky in 2001:
https://ccl.northwestern.edu/netlogo/models/EnzymeKinetics, accessed on 26 January
2024. In our NetLogo source codes (see Supplementary Materials), noise is introduced into
selected microscopic rate constants either through random-float values (uniform noise)
added to them or by multiplicating them with Gaussian random number values (normal

http://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/models/EnzymeKinetics
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noise, see Equation (32)). Additional noise in the rate constants is due to chance encounters
among ligands and [E]free and for transitions between enzyme conformations, which is also
specified with several different random-float values.

Furthermore, random changes occur in all computational steps (“ticks”). Ticks can
be in chosen time units. Agent-based programming requires dimensionless numbers as
the input, but a suitable multiplication factor converts these numbers into micromoles
or moles. D.J. is the author of all NetLogo source codes mentioned in the main text
and the Supplementary Materials (17 codes). They are available for download in the
Supplementary Materials.

For the source codes we developed in the FORTRAN computer language, we verified
that, no matter how much noise was introduced, all results and all the data inserted in
corresponding figures are exactly reproducible when the same program is repeatedly run
for the same number of interstate jumps. When random numbers s1 and s2 were called
once, the corresponding Box–Muller transform was identical for all noisy rate constants.
Noise was then canceled in ratios of selected rate constants. For instance, the expressions
(kcat/KM)/Dissipation (the slope of the kcat/KM dependence on dissipation) from the
Supplementary Materials file “Linear Specificity-Dissipation Relationships” contain only
the ratios of rate constants. Thus, the slope never changes if random numbers s1 and s2 are
called once. It resulted in the perfect proportionality between the catalytic efficiency and
entropy production when equilibrium constants for all catalytic steps were fixed.

Noise survived only in expressions containing some of the selected constants that
could not be rendered as belonging to such ratios. In other programs, random numbers s1
and s2 were called for each of the selected rate constants, and there was no noise cancelation
in their ratios. In some cases, we used the Box–Muller transform to generate noise in
selected equilibrium constants using the expression Ki = Ki

expgi (see Equation (32)). The
legend of each figure specifies how we used the Box–Muller transform to present the results.
When the implicit assumption is that noise does not exist, we used the stepwise increase in
the selected rate constant to cover the range, which included the observed ki value.

Our NetLogo source codes extended the simulation “Enzyme Kinetics “(Stieff and
Wilensky: https://ccl.northwestern.edu/netlogo/models/EnzymeKinetics, accessed on
26 January 2024) of the traditional Michaelis–Menten model for the reversible E+S↔ES
transition and irreversible complex dissociation ES→E+P. We extended it to all reversible
transitions. For instance, our four-state schemes used the additional conformational states
EZ, EP or EX, and EZ (see Figure 1c and Figure 13). We implemented noise in the mi-
croscopic rate constants by using a broader usage of the NetLogo tools as described and
regularly updated by Prof. Wilensky’s group [54].

4. Triosephosphate Isomerase (TPI): The Favorite Enzyme for Computational
Optimization of Michaelis–Menten-Type Kinetics

Triosephosphate isomerase (TPI, EC 5.3.1.1) is an essential enzyme in glycolysis [55,56].
Its central housekeeping role is the very fast catalytic interconversion of dihydroxyacetone
phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP). There would be no net yield of
ATP from the anaerobic glucose metabolism without TPI forward activity (DHAP→GAP).
Of all enzyme-catalyzed reactions, the free-energy profile was first determined for TPI [57].
The seminal works of J. Knowles [32], J. Albery [58], and other authors described TPI as a
perfect enzyme, in the sense that it is a perfectly evolved enzyme with catalytic efficiency
close to the diffusion limit. In 1984, J. Richard [59] estimated that kcat/KM for TPI increased
3 × 1010 times compared to the inorganic DHAP to GAP conversion. Enzyme efficiency
inside the diffusion limit was confirmed for the wild-type TPI enzymes isolated from many
species [60].

As a reversible enzyme working close to the thermodynamic equilibrium, TPI can be
easily induced to work in the backward direction (GAP→DHAP). Its central physiological
role is maintaining the delicate balance between glycolysis and gluconeogenesis. However,
since TPI belongs to the most ancient enzymes [61], its biological evolution involved it in the

https://ccl.northwestern.edu/netlogo/models/EnzymeKinetics
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pentose phosphate pathway, triacylglyceride accumulation, and many other moonlighting
functions [62,63]. With such a broad spectrum of activities and functions, it is not surprising
that the TPI enzyme has attracted the medical community’s interest. TPI inhibitors are
promising as antiprotozoal drugs for the treatment of diseases caused by Trypanosoma cruzi,
Trypanosoma brucei, Plasmodium falciparum, Giardia lamblia, Leishmania mexicana,
Trichomonas vaginalis, and Entamoeba histolytica [64]. The upregulation of the TPI gene
is common in many cancers [65]. At the same time, TPI deficiency or reduced activity
causes the accumulation of DHAP connected to severe diseases, such as hemolytic anemia,
recurrent infections, cardiomyopathy, and fatal neuromuscular dysfunction [66].

S. Blacklow asserted [67] that the TPI enzyme “can improve no further as a catalyst”,
assuming the constraints of free diffusion and in vivo levels of its substrates. In the
meantime, researchers proposed electrostatic screening [68,69], TPI oligomerization [70],
elevated temperature for TPI from thermophilic cells [71], and other mechanisms [72]
for how TPI catalytic efficiency can be increased above the observed values. Ideally, the
mutations or modifications making TPI more resistant to oxidative damage and a more
efficient catalyst can help prevent and treat Alzheimer’s disease [72,73].

We stressed in our previous contributions [74,75] that increasing the TPI catalytic
turnover and efficiency above observed “perfect” values is theoretically possible when
enzyme kinetics is connected to the maximal partial entropy production principle from irre-
versible thermodynamics [4]. Regarding the simulation of TPI kinetics, we shall attempt to
answer the following questions: (a) Does TPI performance change after noise is considered?
(b) If it does change, is it possible to find the combination of microscopic rate constants
resulting in an at least ten-fold increased performance regarding the kcat/KM value cal-
culated from the experimental data? (c) How is the entropy production by TPI related to
corresponding enzyme efficiency values? (d) Are any published optimization methods
better at finding high forward kcat/KM values than different means of noise introduction?

Let us first present the observed values for TPI kinetic parameters [32,74] to easily
compare all our simulations with the experimental values (Table 1). Triosephosphate
isomerase can be found in four functional states [58]. According to Figure 1c, 1 is the
free enzyme (E), 2 is the enzyme–substrate-bound complex (ES), 3 is a transition state
intermediate (EZ), and 4 is the enzyme–product-bound complex (EP). The reference steady
state [58] is such that the concentration of substrate is [S] = 40 µM and the concentration
of product is [P] = 0.064 µM. The values of the kinetic constants k1 and k8 in Table 1 are
obtained, respectively, from the expressions k1 = k1* · [S] and k8 = k8* · [P], where the
second-order rate constants k1* and k8* are measured in (Ms)−1.

The initial TPI concentration in our simulations ranged from 10 to 50 nM. Mass con-
servation for all enzyme conformations is always taken into account in all simulations.
All NetLogo programs also required the mass conservation of ligands (substrates, prod-
ucts, and their intermediate TPI-bound forms). That requirement was entered into our
FORTRAN software as the [S]+[P] = constant condition when we allowed for changes
in the concentrations of ligands. The concentration of bound ligands [ES] + [EZ] + [EP]
is always much smaller than the [S]initial + [P]initial concentration because bound ligand
concentrations cannot exceed the initial low concentration of free TPI enzymes. Thus, the
mass conservation of ligands is considered a good approximation in our FORTRAN source
codes that examined how different parameters change after changes in the substrate and
product concentrations.

4.1. Stepwise Changes in Rate Constants

Let us first consider how catalytic efficiency depends on overall entropy production
in a deterministic manner when the implicit assumption is that noise does not exist. The
FORTRAN program is convenient to use for such a study. Figure 2 illustrates how the TPI
efficiency changes after a stepwise increase in the microscopic rate constant k7. All other
rate constants and the equilibrium constants K1, K2, and K3 are kept at their observed values
(see the calculated values of the rate constants and the values for the initial concentrations
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of substrates and products from Table 1). Since the equilibrium constant K4 = k7/k8 also
goes through the stepwise increase, the expected outcome of the first simulation scenario is
a regular increase in the chemical affinity or force (expressed as Xtot/RT values).

Table 1. Calculated microscopic rate constants and kinetic parameters from the experimental data [32] in the
case of the TPI isomerase-catalyzed conversion of DHAP (substrate) to GAP (product) at about 20 ◦C. The
substrate and product concentrations were, respectively, [S] = 40 µM and [P] = 0.064 µM. The initial values
presented in this table are identical to those we published in our previous computational optimization of TPI
kinetics [74].

Rate
Constants

Observed
Values [32,74]

Kinetic and Thermod.
Parameters

Calculated
Initial Values [74]

k1* 107 M−1s−1 [S] 4 × 10−5 M

k2 7000 s−1 [P] 6.4 × 10−8 M

k3 2000 s−1 [E] 5 × 10−8 M

k4 6000 s−1 kcat 432 s−1

k5 60,000 s−1 KM 5.5 × 10−4 M

k6 90,000 s−1 kcat/KM 7.86 × 105 M−1s−1

k7 4000 s−1 Keqtot 3.2 × 10−3

k8* 4 × 108 M−1s−1 Xtot/RT 0.685

k1 = k1* · [S] 400 s−1
P ( Dissipation

RT ) 9.9 s−1

k8 = k8* · [P] 25.60 s−1
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Figure 2. The catalytic efficiency dependence on dissipation after the stepwise increase in the last forward
rate constant k7 for positive force values. The k7 value jumped 10.0 units in each of the 1000 deterministic
steps in our source code Simulation-S1-TPI-FORTRAN (see Supplementary Materials), starting with the
k7 = 10 s−1. The K4 = k7/k8 is then calculated from fixed k8 and variable k7. There are no changes in the
other equilibrium constants. Their values follow from Table 1 as K1 = k1/k2, K2 = k3/k4, and K3 = k5/k6.
The Xtot/RT values also go through the stepwise increase. The near-equilibrium force value of 0.685
was kept constant, as in our previous simulation of TPI kinetics [74]. There was no change in the initial
concentrations of substrates (40 µM) and products (0.064 µM). The catalytic efficiency dependence on
dissipation has a surprisingly good linear fit with R2 = 0.9442.
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Negative force values correspond to negative backward flux (GAP→DHAP) and
positive dissipation, while positive force values correspond to positive forward flux
(DHAP→GAP) and positive dissipation. Both limits in the force range, negative and
positive, are associated with high dissipation. Still, only the positive limit corresponds to
the maximal enzyme efficiency value of 1.25 × 106 M−1s−1 (Figure 2). That result is an
encouraging 1.59-fold increase over the observed value of 7.9 × 105 M−1s−1 (corresponding
to Xtot/RT = 0.685), but not a significant improvement over the 1.13 × 106 M−1s−1 value
we obtained in an earlier optimization of TPI kinetics [74].

From the output of our source code Simulation-S1-TPI-FORTRAN (see Supplementary
Materials), selecting only the positive Xtot/RT values corresponding to forward performance
parameters given in Equations (29)–(31) is easy. The resulting efficiency dependence on dissi-
pation is then well correlated (R2 = 0.944) with straight-line proportionality (Figure 2). Thus,
from zero forward catalytic efficiency and vanishing entropy production in the thermodynamic
equilibrium, there must be an obligatory increase in dissipation, which is tightly coupled to the
increase in catalytic efficiency. The same source code allows TPI catalysis in the backward direc-
tion (GAP→DHAP). Figure S1 illustrates how TPI kinetics and thermodynamics are connected
when Xtot/RT values go through the stepwise increase from negative, at −5.3, to positive, at 1.6.
Negative force values correspond to the net backward flux when the performance parameters
in Equations (29)–(31) are no longer appropriate.

We did not ask how to achieve the increase in only the chosen kinetic constant k7 in
practice without any other change. It is unlikely that random or intentional mutations
can ever do so. However, fine-tuning microwave irradiation may produce the nonthermal
effect of significantly accelerating the product-release catalytic step (see Section 11). It
is easier to answer why the simulations presented in Figures 2 and S1 dealt with the k7
stepwise increase. As in [74], we assumed that the product-release rate limits TPI catalytic
power. In our notation for rate constants (see Figure 1c), k7 is the first-order rate constant,
determining the product-release rate.

We also explored the stepwise increase of k7 and k8 when all equilibrium constants and
all other rate constants maintain their observed values (see Table 1). Perfect proportionality
is obtained between kcat/KM and corresponding entropy production values (Figure 3).
That proportionality (perfect or less than ideal) is one main result of the present paper.
We shall confirm it in the following text for other enzymes and different variation choices
for microscopic rate constants whenever the equilibrium constants for all catalytic steps
are kept constant. The observed proportionality holds for all our previous publications
collected in [3,4] when we used the same constraints to optimize the Michaelis–Menten-type
enzyme kinetics.

The next task is to answer how thermodynamic and kinetic parameters change for
the TPI catalytic cycle when we limit deterministic changes to decreasing substrate and
increasing product concentrations. The answer is provided in Figure 4, which illustrates
how the net flux and overall dissipation vary with force changes.
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Figure 3. The catalytic efficiency dependence on dissipation for deterministic jumps between steady
states, such that increases in the forward rate constant k7 (for whatever reason) are constrained by the
requirement that the equilibrium constant K4 does not change from the observed value K4 = 156 [32].
Thus, the backward rate constant k8 in the last catalytic step must also go through stepwise increases
calculated from the K4 = const requirement. Other rate and equilibrium constants remain equal to
their initial values (see Table 1). The total force Xtot/RT remains equal to its initial value of 0.685
through all jumps between the 1000 steady states in our simulation software Simulation-S2-TPI-
FORTRAN (see Supplementary Materials). The figure illustrates the perfect proportionality between
enzyme efficiency and entropy production when change is not allowed in equilibrium constants for
the single-cyclic reversible catalytic steps.

The catalytic activity optimizations in the forward direction when the substrate is
converted into the product are better connected with the physiological role of the TPI
enzyme in glycolysis. We published one example of such optimization in 2017 [74]. It
was for the fixed positive force (chemical affinity) corresponding to Xtot/RT = 0.685 (the
vertical line in the insert of Figure 4). The optimization example for the reverse process
(product-to-substrate conversion) leads to decreased catalytic efficiency for the forward
process. The dissipation and net flux for the reverse process increased by several orders
of magnitude when the applied force has a high negative value (the vertical line in the
main figure). It is a pathological situation with no connection to TPI’s role in the cellular
metabolism. Still, calculated maximum rates for highly negative forces were described as
the basic methodology for predicting rate constants and optimizing the TPI kinetics [76–78]
(see Section 11 for more details).

It all depends on the choice of the optimization procedure. We chose to maximize the
partial entropy production in the rate-limiting product-release step (the fourth catalytic step
in the forward direction) [4]. We noticed in 2017 [74] how that choice led to the concomitant
increase in the optimal net flux (from 14.4 to 20.77 s−1), optimal catalytic constant (from
432 to 686 s−1), optimal catalytic efficiency (from 7.86 × 105 to 1.13 × 106 M−1s−1), and
optimal overall entropy production (from 9.9 to 14.2 s−1). Within the restriction we used
(fixed equilibrium constants for each catalytic step at their values calculated from the
experimental data), there was a common 30% increase in flux, efficiency, and dissipation.
Figure 3 above illustrates how a regular 30% increase follows from the constant slope
and perfect proportionality between enzyme kinetic parameters and its overall entropy
production.
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Figure 4. Triosephosphate isomerase thermodynamics and kinetics. Stepwise changes in the substrate
and product concentrations are the only causes for the change in the chemical affinity (force) at
the x-axis and of the entropy production and net flux (both in units of inverse seconds) at the y-
axis. We assumed that the initial sum of the substrate and product concentrations does not change.
Therefore, the decrease in the substrate concentration from its initial concentration of 40 µM is always
accompanied by the increase in the product concentration from its initial concentration of 0.064 µM.
Other parameters in our simulation software Simulation-S4-TPI-FORTRAN-f90 are the same as in
our 2017 paper [74], and we used the symbols from that paper to facilitate the comparison with that
and other older simulations. In the figure, we compared our results (the vertical line for the positive
force with arrows in the insert) with the simulation results of Šterk et al. [76] (the vertical line for
the negative force with arrows in the main figure). We constructed the insert after modifying the
Simulation-S4 source code for an indicated narrow range of affinities.

4.2. Computational Optimizations of TPI Catalytic Activity When Noise Is Included

Figure 5 illustrates the advantage of using noise when looking for the combination
of rate constants corresponding to higher enzyme efficiency. We took the representative
initial values of rate constant k8 = 25 s−1, 32 s−1, 40 s−1, 100 s−1, and 160 s−1. Fixed
equilibrium constants for each k7–k8 pair are then K4 = 160, 125, 100, 40, and 25, respec-
tively, each calculated using the experimental value k7 = 4000 s−1. We then introduced
random normal noise in forward (k7) and backward (k8) rate constants for the rate-limiting
product-releasing step. Random normal noise was called once in our simulation software
Simulation-S4-TPI-FORTRAN (see Supplementary Materials) as the Box–Muller transform
(see Section 3, Equation (32)) with the shift +2 to ensure that only positive rate constants k7
are the output. There was no need to call that function again for the multiplication with the
observed k8 value because we kept the no-change requirement for all equilibrium constants
Ki (i = 1, 2, 3, 4) from our 2017 paper [74] for each K4 choice. We used the same restrictions
in deriving the partial entropy production theorem [4,30,74].

The best enzyme efficiency values due to introduced noise are approximately the same
and about 30% higher from the best result we obtained after exploring maximal partial entropy
production for all catalytic steps [74]. For instance, the highest efficiency of 1.6 × 106 M−1s−1 in
Figure S2 for k7 = 4000 s−1 and K4 = 156.25 is associated with the highest total dissipation in the
RT units (20.3 s−1) due to the perfect proportionality between the main enzyme performance
parameter and the main physical parameter in irreversible thermodynamics (Figure S2). Thus,
noise introduction does not change the almost perfect straight-line relationship between kcat/KM
and corresponding entropy production values.
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Figure 5. Enzyme efficiency kcat/KM as a function of dissipation/RT for triosephosphate isomerase
when kinetic constants k7 and k8 in the last transition vary due to the introduction of Gaussian noise.
Representative initial values of rate constant k8 are 25 s−1, 32 s−1, 40 s−1, 100 s−1, and 160 s−1. In
each case, we used the K4 = const restriction and the experimental data for the kinetic constants
shown in Table 1 for transitions between other catalytic steps. However, different k8 values resulted in
the five different equilibrium constants K4 = 160, 125, 100, 40, and 25 to span five force values Xtot/RT
≡ X/RT from positive to negative (see inserted X/RT values and corresponding symbols). The
green points (forming a green line) closely correspond to Figure S2, which we constructed using the
Simulation-S3-TPI-FORTRAN software (see Supplementary Materials) for K4 = 156.25. We adjusted
that software four times to collect the results for the four remaining K4 values entered into Figure 5.

Enzyme efficiency kcat/KM as a function of dissipation/RT is shown in Figure 5 for
the forces X/RT equal to 0.2389, 0.4620, 0.6852, −0.6774, and −1.1474 corresponding to
the equilibrium constants K4 = 100, 125, 160, 40, and 25, respectively. We assumed a
constant sum of free substrates and free products. It is a good approximation for the mass
conservation of ligands only if the initial free enzyme concentration (50 nM) is much smaller
than the concentrations of [S]+[P] for all points and all forces. Figure 5 joins the results of
five FORTRAN programs that include noise in the last forward catalytic step.

Careful examination of the case Xtot/RT = −1.1474 reveals a slight curvature in the
efficiency as a function of the dissipation (magenta symbols). The slope

kcat/KM
Dissipation

is not constant because the k7 rate constant follows the noise we introduced into k8 (see
Equation (S3) from the Supplementary Materials file “Linear Specificity-Dissipation Re-
lationships”). The best linear fit slope increases when negative force values approach
thermodynamic equilibrium and decreases when positive force increases. Thus, we ex-
amined slope changes and goodness of linear fit changes for a wider span of force values
ranging from −3 to +4 (Figure S3). For that task, we constructed ten different simulation
codes. KM exhibits small changes due to random changes in k7 (see Section 2, Equation (30)).
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Figure S3 shows the output of these programs. It illustrates how the slope and the perfection
of the seemingly straight-line proportionality increase with the approach to thermodynamic
equilibrium when net force and entropy production vanish.

Next, we studied how the noise introduction affects various computational optimiza-
tions for TPI catalysis. In Figure S4, variations of K1 and K4 were introduced by the
multiplication of K4 = k7/k8 (see Table 1) with the normal noise. The fixed force restriction
X = Xtot/RT = 0.684 [74] ensured concomitant variations in K4 and K1. There was no explicit
requirement for maximal entropy production. Still, after going randomly through the 1000
quasi-steady states, our software Simulation-S5-TPI-FORTRAN (see Supplementary Mate-
rials) finds that the maximal overall dissipation corresponds to optimal enzyme efficiency
(Figure S4). The seven-fold efficiency improvement from 7.86 × 105 to 5.585 × 106 M−1s−1

follows after a four-fold dissipation increase (see Table 1).
The best combination of the backward rate constants k2 and k8 (k2 = 74 s−1 and

k8 = 2438 s−1) resulted in an even higher kcat/KM of 8.903 × 106 M−1s−1. The enzyme
working in that state has 11 times higher catalytic activity (the highest point in Figure S4)
than the value of 7.86 × 105 M−1s−1 calculated from the experimental data (Table 1).
Required changes in rate constants are two orders of magnitude changes in k2 (decrease)
and k8 (increase). These rate changes describe the inhibition of substrate release from
the ES complex and the stimulation of product association with the free enzyme. The
corresponding overall dissipation per RT of 21.3 s−1 is approximately double the value
calculated from the experimental data. Still, the dissipation needed to reach the maximal
efficiency state is halved compared to maximal dissipation (Figure S4).

Interestingly, the same dissipation value of 21 to 22 s−1 is connected with the two
very different catalytic efficiency values of 8.9 × 106 and 1.94 × 106 s−1, respectively. Thus,
when specific restrictions are imposed, the nonlinear system may be able to jump between
two quasi-steady states characterized by high and low efficiency and a minor change in
dissipation. How to force the system to live in about a 10-fold higher efficiency state with
only a 2-fold higher price in terms of overall dissipation is outside the scope of this paper.

Optimal efficiency can be obtained for fixed force when other pairs of equilibrium
constants are varied by introducing noise. We did not show corresponding efficiency–
dissipation dependence because the optimal kcat/KM values for the dissipation maximum
were considerably lower from the 8.9 × 106 M−1s−1 value obtained after K1–K4 variations.
We obtained the Figure 6 coordinates (20.6, 1.95 × 106) and (21.7, 1.9 × 106) for the best
efficiencies after the K2–K4 and K3–K4 variations. An overall conclusion from Figure 6 is
that our maximal total entropy production requirement and corresponding restrictions on
equilibrium constants for the chosen catalytic steps can produce higher catalytic efficiencies
for the fixed force than the maximal selected partial entropy production requirement.

The primary purpose of Figure 6 is to illustrate the relationships among different
methods for obtaining higher than referent values for catalytic efficiency (Table 1). That
task led to the map of dissipation–efficiency points when the x-axis is for dissipation
and the y-axis is for enzyme efficiency. Perfect efficiency–dissipation proportionality is
a straight-line fit to 1000 points after each kinetic constant is multiplied with the normal
noise invoked only once in the corresponding FORTRAN program. It is the consequence of
assuming fixed values for all equilibrium constants Ki, meaning that the overall force is also
identical for all data points (their referent values can be found in Table 1). Our previous
publications did not consider noise and variable equilibrium constants [4,30,74]. The first
two highlighted points, (9.9, 0.79 × 106) and (14.2, 1.13 × 106), are centered at the linear fit.
They are the dissipation and efficiency values calculated from the experimental data, and
the modest improvement achieved after the requirement that partial entropy production P4
in the rate-limiting product-release step is maximal [4,74,75].
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(39.4, 5.585 × 106), (20.6, 1.95 × 106), and (21.7, 1.9 × 106). Thus, Figure 6 clearly shows the 
advantage of the noisy substrate and product association with the free enzyme (the 
highest point). After considering many different optimization methods for entropy pro-
duction (either ours or by other authors), the K1–K4 variations with a constant force re-
striction resulted in the best theoretical increase in TPI catalytic efficiency above its ob-
served value [32]. 
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substrate and product concentrations similar to each other. It reversed the net flow in the 
direction of product→substrate due to the negative flux and force, and resulted in higher 

Figure 6. The map of dissipation–efficiency values for different constraints in the case of TPI
kinetics. The straight-line efficiency dependence on dissipation follows after the similar restrictions
we described in the legend of Figure 5 (green line) and Figure S2. Pairs of (x, y) values with higher
(dissipation/RT, kcat/KM) values from those in Figure S2 resulted because we introduced the same
normal noise in all kinetic constants, not just in the k7–k8 pair. Specifically, we multiplied each of the
four forward kinetic constants with the same Box–Muller transform containing two random numbers
and a positive shift of +2 (see Section 3), which was called only once in the simulation software. The +2
shift ensured the absence of negative values for some kinetic constants. The corresponding simulation
software Simulation-S6-TPI-FORTRAN calculated backward rate constants from the constant K1 to
K4 requirement (their referent values can be calculated from the corresponding rate constant values
in Table 1). That requirement ensured, combined with the normal noise introduction in each forward
ki, that (a) noise was canceled in the ratio of kinetic constants in each catalytic step and (b) all catalytic
constants were different in each of the 1000 changes among steady states. See the main text for the
meaning of the points (highlighted circles) obtained using different restrictions or optimizations with
or without introduced noise.

We discussed above the results after introducing noise in the pairs of equilibrium
constants K1–K4, K2–K4, and K3–K4. These are off-line points in Figure 6, respectively: (39.4,
5.585 × 106), (20.6, 1.95 × 106), and (21.7, 1.9 × 106). Thus, Figure 6 clearly shows the advan-
tage of the noisy substrate and product association with the free enzyme (the highest point).
After considering many different optimization methods for entropy production (either ours
or by other authors), the K1–K4 variations with a constant force restriction resulted in the
best theoretical increase in TPI catalytic efficiency above its observed value [32].

Computational optimizations of TPI kinetics by some other authors [76,77] used
substrate and product concentrations similar to each other. It reversed the net flow in
the direction of product→substrate due to the negative flux and force, and resulted in
higher total entropy production values of several orders of magnitude. For instance, Šterk
et al. [76] used the constraint k1* · k3 · k5 · k7 = K+ = constant equal to the observed value.
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That constraint also led to maximal total entropy production. Such optimization required
that the product of all kinetic constants in the forward direction and all kinetic constants in
the backward direction k2 · k4 · k6 · k8* remain fixed when other parameters change. As
expected, for the backward-directed enzyme turnover, the corresponding optimal efficiency
for the forward catalysis of 1.8 × 106 M−1s−1 (the right-hand arrow pointing outside
Figure 6) was substantially smaller than our best results.

We next introduced normal noise in microscopic rate constants with a sole restriction that
all rate constants must be positive. When noise is introduced without shift (see Equation (32))
in all rate constants, some ki can vanish or become negative. To avoid such cases, we replaced
negative with observed ki values (see Table 1). Figure 7 illustrates that reasonable proportionality
exists between efficiency and entropy production when there are no other restrictions on kinetic
constants and equilibrium constants for the TPI enzyme. The advantage of calling random
numbers eight times (once for each of eight kinetic constants) is an extended range of possible
steady states and forces. The highest efficiency state has a 30-fold better efficiency and 160-fold
higher dissipation compared to values calculated from experiments. The corresponding force for
that state is Xtot/RT = 6.335.
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Box–Muller transforms gi without shift (see Section 3) were called and multiplied with each of eight
rate constants ki (i = 1, 2, . . .8). Multiplication with gi > 0 introduced normal noise in these constants.
For the gi values that did not satisfy the gi > 0 condition, we kept observed ki values (see Table 1).
The main loop from our simulation software Simulation-S7-TPI-FORTRAN contained 10,000 steps.
After all steps, we examined the kinetic and thermodynamic parameters for maximal values in the
catalytic efficiency, overall entropy production, and possible correlation between enzyme efficiency
and total dissipation.

The basic assumption we used in calculating entropy production values is that each of
the 10,000 computational steps probes a new quasi-steady state in which all parameters of
interest can be calculated using the T. Hill method [5,6]. We found the maximal efficiency
value in the 1078th step. It corresponds to an unusually high information entropy of 1.181
and a low Michaelis-Menten constant of KM = 0.000015. Interestingly, only the kinetic
constants k2, k6, and k7 significantly differed from their experimental values, all being
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much smaller, at 56, 15, and 4 times, respectively. An increase in the k1 value (from 400 to
1144 s−1) may have resulted from the increased substrate concentration or an increased
second-order rate constant for the association between the substrate and enzyme to form
the ES complex. There was no change from the experimental values for the kinetic constants
k4, k5, and k8.

Enzyme turnover became slightly slower (kcat decreased from 432 to 348 s−1), but
the division with considerably smaller KM (from 5.5 × 10−4 to 1.474 × 10−5) ensured a
surprisingly high efficiency. As is usually the case, the most illustrative representation is
the profile of changes in the equilibrium constants or free-energy changes. The equilibrium
constant K1 increased about 160 times (from 0.057 to 9.07) and the K3 constant increased
nearly 15 times (from 0.667 to 9.75). It led to a significant increase in the total equilibrium
constant (from 1.98 to 564) despite a decrease in K2 (from 0.333 to 0.174) and K4 (from
156.25 to 36.59).

There were 3580 points corresponding to the force X = Xtot/RT ≤ 0. Thus, for 35.8%
of sets with random values for kinetic constants, the enzyme can still work in the reverse
direction, converting products into substrates. Most ki octuplets simulated the major
physiological role of the TPI enzyme in converting DHAP to GAP. The best case of kcat/KM
= 2.36 × 107 M−1s−1 is also for the forward-directed net flux. However, we used the
same forward catalytic efficiency definition for X > 0 and X ≤ 0. All the experimental
data in the literature were extracted for the force X > 0 and flux J > 0 under the conditions
when the substrate concentration greatly exceeded the product concentration. The initial
concentrations were [S] = 40 µM and [P] = 0.064 µM. Variations in k1 and k8 allowed
changes in the second-order rate constants or in the concentrations. The extreme case was
when X = −10.19 was obtained with k1 = 3.4 s−1 and k8 = 27.0 s−1. If the change in k1
occurred only due to the change in [S], the substrate concentration would decrease almost
120 times. Therefore, although we included the points with negative force and flux in this
figure, and other simulations from the literature considered such cases [76,77], there is no
experimental or physiological justification for retaining them.

4.3. Simulating Dynamics Using an Agent-Based Modeling Approach

Agent-based programming requires dimensionless numbers as the input. However,
when these numbers are specified as 40,000 for substrates, 64 for products, and 50 for
enzymes (for the TPI kinetics), they correspond to [S]initial = 40 µM, [P]initial = 0.064 µM,
and [E]initial = 0.1 µM. The mass conservation of all ligand forms ([S], [P], [ES], [EZ], and
[EP]) and all enzyme forms ([E]free, [ES], [EZ], and [EP]) is an explicit requirement for each
tick in all our NetLogo programs. Thus, [S]initial + [P]initial = [S] + [P] + [ES] + [EZ] + [EP]
and [E]initial = [E]total = [E]free + [ES] + [EZ] + [EP], because we left the system to itself and
never added ligands or enzymes.

Since the initial product concentration is small (64 nM), each stepwise increase in
the product concentration is seen as a jump from one straight-line fit to another in four
steps, “a” to “d”. It increased the product concentration to 67 nM. Thus, the proportionality
between enzyme efficiency and entropy production (dissipation) remained almost perfect.
Maximal efficiency values close to 3 × 106 M−1s−1 are about four-fold higher than those
calculated from experiments. A similar four-fold increase exists for the corresponding
dissipation.

When the simulation time was extended to 2137 ticks, the product concentration increased
from 64 to 74 nM, while the driving force decreased from Xtot/RT = 0.68 to Xtot/RT = 0.54
with the same stepwise slope increase for efficiency–dissipation dependence (Figure S5). The
best efficiency value of 3.3 × 106 M−1s−1 corresponded to the dissipation/RT = 27.2 s−1. Free
enzyme concentration dropped from 100 to 12 nM for this case of a more extended simulation.

The insight from Figure 8 and Figure S5 would be that maximal catalytic efficiency
remains approximately the same during the system relaxation toward thermodynamic
equilibrium. The slope of the efficiency–dissipation line keeps increasing toward an in-
finitely high value at the thermodynamic equilibrium when dissipation vanishes. Also,
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the perfection of the straight-line approximation for the fit connecting all (x, y) values
keeps increasing in discrete jumps (for each unit change in the product concentration)
while the chemical affinity decreases. The same time-development rule holds when the
equilibrium is spontaneously approached from high positive or negative initial forces (see
Figure S3). Better efficiency to dissipation proportionality for positive forces stems from
the kcat/KM definition of catalytic efficiency, where both the catalytic constant and the
Michaelis–Menten constant are defined for the forward direction [S] → [P] (see Section 2
and Equation (S3) from the Supplementary Materials).
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Figure 8. NetLogo simulation of the catalytic efficiency dependence on dissipation for TPI kinetics.
The initial enzyme concentration was 100 nM. All other initial values and assumptions were identical
to those we used previously [74]. Due to the dynamics inherent to the NetLogo agent-based language,
the assumption about unchanged equilibrium constants from that paper could be only partially
retained. Noise is introduced through different random-float values, not by Gaussian random
number values. Additional noise is due to random encounters among ligands and [enzyme]free

and among enzyme conformations [ES]-[EX] and [EX]-[EP] also specified with several different
random-float values. The source code for the simulation is available as Simulation-S8-TPI-NetLogo
(see Supplementary Materials).

For more extended simulations, the concentrations of enzyme conformations ES, EZ,
and EP after each step (tick) go through the typical Michaelis–Menten kinetics: slow
initial increase, a faster, nearly constant rise, a broad maximum with minor changes, and
prolonged decrease. That pattern repeats itself with the ES complex, after some delay with
the EZ complex, and finally with the EP complex.

We next examined if a broader scope search for better enzyme performance is possible
when Gaussian noise, gi (see Section 3), is multiplied with each microscopic rate constant, ki
(Figure 9). The best catalytic efficiency of kcat/KM = 2.22 × 107 M−1s−1 is indeed better than
previous NetLogo simulations and similar to the best result we obtained after a FORTRAN
language simulation for the TPI kinetics (Figure 7).
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Figure 9. The catalytic efficiency dependence on dissipation when each kinetic constant, ki, is independently
multiplied with the Gaussian noise function, gi (see Section 3), for the reversible 4-state triosephosphate
kinetic scheme. Initial conditions were the same as in Table 1 ([E]free = 50 nM). We constructed the program
Simulation-S9-TPI-NetLogo (see Supplementary Materials) to prepare this figure. It was stopped at the
1800th tick. At the 1109th tick, a positive force of 4.26 resulted in the best efficiency of 2.22 × 107 M−1s−1 and
significantly increased kcat = 1085 s−1. The final concentrations of enzyme conformations were [Efree] = 30 nM,
[ES] = 6 nM, [EX] = 8 nM, and [EP] = 6 nM.

5. Ketosteroid Isomerase (KSI) Case: What Is Different When the Operating Range Is
Farther from Equilibrium?

P. Talalay discovered, in 1951 [79], the Pseudomonas testosteroni bacterium (presently
named Commamonas testosteroni [80]) from the soil beneath a rosebush on the Berkeley
campus. The bacterium could grow in a medium containing testosterone as its only carbon
and energy source. That was a clever and brave approach because, at that time, many
steroid metabolites were known, but enzymic transformations of steroid hormones and
metabolites were yet undiscovered. P. Talalay and his collaborators purified highly active
small bacterial enzyme ketosteroid isomerase from that bacterium and reported their
findings from 1955 onward [79]. The alternative name for the KSI enzyme is 3-oxo-∆5-
steroid isomerase (EC:5.3.3.1).

A. Radzicka and R. Wolfenden reported typical high values for the catalytic constant, cat-
alytic efficiency, and catalytic proficiency of KSI as, respectively, 6.6 × 104 s−1, 3.0 × 108 M−1s−1,
and 1.8 × 1015 M−1 [13]. Catalytic proficiency is the catalytic efficiency rate enhancement
(kcat/KM)/kuncat when a nonenzymatic reaction rate constant kuncat can be found for a corre-
sponding spontaneous chemical reaction without the enzyme (1.7 × 10−7 s−1 in our case). Thus,
KSI is one of the fastest enzymes with extraordinary catalytic power. The formation of essential
steroid hormones would take months to millions of years without enzymes such as KSI [81].
The equilibrium constant Keq = 2400 [82] corresponds to far-from-equilibrium conditions, high
positive force, and the preference for the forward isomerization rate of 5-androstene-3,17-dione
(a substrate for KSI) to its conjugate isomer 4-androstene-3,17-dione. Elucidating how the KSI
reaction mechanism is connected to structure, kinetics, electrostatics, and thermodynamics was
a challenging but worthy task in the last 50 years [83–86]. Hopefully, the rational design of
KSI enzymes with augmented catalytic efficiency will benefit green chemistry goals for the
pharmaceutical industry in manufacturing specialized steroid chemicals [87].
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Mammalian steroid isomerases have multifunctional activity and a more complex
structure than bacterial KSI enzymes [88]. Although crucial in all mammals, their structure–
function connection has not been as extensively examined as in the case of the model
enzyme KSI from bacteria. Thus, we shall use the best-predicted KSI rate constants for
bacterial KSI [31] that agree well with those reported earlier [82,89].

Our first task was a broad exploration of possible system states when noise is intro-
duced into each of the eight rate constants for the four-state kinetic scheme (Figure 10).
Our FORTRAN simulation kept the concentrations of substrates and products fixed at their
initial values (Table 2, last column: [S] = 10−4 M, [P] = 5 × 10−5 M). Nevertheless, due to
random changes in all rate constants, the force changed in the range 0.72 < Xtot/RT < 17.17.
The best efficiency value required a 4.6 times higher dissipation. However, the third best
efficiency value from the (1.71 × 104, 1.66 × 109) point reveals that 5-fold higher efficiency
can be achieved when the corresponding entropy production is almost 10-fold smaller than
their experimental values. That is a rare case when the choice of rate constants results in
high catalytic activity despite the low dissipation for the KSI enzyme.
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Figure 10. The catalytic efficiency dependence on dissipation when all rate constants are noisy for
the ketosteroid isomerase kinetics. A spectrum of quasi-steady states with different ki octuplets
resulted after the multiplication of each observed ki (see Table 2) with a separately called normal
noise gi. There was no shift in eight Box–Muller transforms with the cosine function (see Section 3,
Equation (32)). The if–else condition in our Simulation-S10-KSI-FORTRAN software code ensured
that negative or zero ki values were replaced with their experimental values. The program went
through the 1000 steps, requiring the overall force X to be positive in each step.

As for the case of triosephosphate isomerase, perfect efficiency–dissipation propor-
tionality followed after the no-change requirement in the equilibrium constants for all
catalytic steps. When noise is called only once, a nearly perfect linear fit survives for
efficiency–dissipation dependence, no matter how many rate constants, ki, are multiplied
with the normal noise function. The consequence of fixed equilibrium constants, Ki, is a
constant overall force, too.
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Table 2. Calculated microscopic rate constants and kinetic parameters from experimental data [89]
and the global optimization of experimental data [31] in the case of the 3-oxo-∆5-steroid isomerase
catalyzed conversion of 5-androstene-3,17-dione (substrate) to 4-androstene-3,17-dione (product) at
25 ◦C.

Rate
Constants

Calculated Values
[89]

Calculated Values
[31]

Kinetic and
Thermod.

Parameters [31]

Initial Values ([31]
and This Work)

k1* 8.6 × 108 M−1s−1 8.3 × 108 M−1s−1 [S] 10−4 M

k2 8.6 × 104 s−1 8.6 × 104 s−1 [P] 5 × 10−5 M

k3 1.7 × 105 s−1 1.8 × 105 s−1 [E] 5 × 10−6 M

k4 >3 × 105 s−1 1.7 × 106 s−1 kcat 3.5 × 104 s−1

k5 >1 × 105 s−1 6.4 × 105 s−1 KM 1.16 × 10−4 M

k6 40 s−1 43 s−1 kcat/KM 3 × 108 M−1s−1

k7 1.3 × 105 s−1 1.5 × 105 s−1 Keqtot 2281

k8* 8.6 × 108 M−1s−1 1 × 109 M−1s−1 Xtot/RT 8.426

k1 8.3 × 104 s−1 Dissipation
RT

Initial value
(this paper)

k8 5 × 104 s−1 P 1.16 × 105 s−1

Regular dependence of enzyme efficiency on overall dissipation follows when noise is
introduced only into one or two kinetic constants without fixed Ki requirements (Figures 11 and S6).
However, that dependence is very different if the overall force Xtot/RT is allowed to vary too
(Figure S6), and when overall force is kept at the constant initial value Xtot/RT = 8.426 (Figure 11,
see Table 2). Figure 11 confirms the observation from Figure S4 that the maximum in overall
entropy production exists when variations in K1 and K4 equilibrium constants are introduced and
the fixed overall force is maintained in all simulation steps. Total entropy production is maximal
in point (1.3 × 105, 4.7 × 108) (Figure 11). The corresponding optimal efficiency is about 50%
higher than the observed value 3.02 × 108 M−1s−1. Still, the point with the highest efficiency (1.96
× 104, 8.15 × 108) corresponds to a dissipation 5.9 times smaller than the value 1.16 × 105 s−1

calculated from the experimental data (see Table 2). That is another rare case when randomly
chosen equilibrium constants within an imposed restriction (constant overall force) resulted in a
high catalytic efficiency despite the low overall dissipation for the enzyme.

Agent-based modeling extended and confirmed the simulation results for KSI kinet-
ics (Figure 12). Typical Michaelis–Menten kinetics for concentration changes, which we
described for the NetLogo simulation of TPI kinetics, is also seen for KSI kinetics. Initial
concentrations were [E]free = 5 µM, [S]free = 100 µM, and [P]free = 50 µM. Final concentra-
tions at the 6977th tick were [E]free = 4 µM, [S]free = 95 µM, [P]free = 54 µM, [ES] = 0.3 µM,
[EX] = 0.4 µM, and [EP] = 0.3 µM. The mass conservation conditions [Etot] = [Efree] + [ES] +
[EX] + [EP] and [ligands] = [S]free + [P]free + [ES] + [EX] + [EP] were satisfied through all
time jumps (ticks). Freedom to independently change rate constants in each transition and
each tick enabled the exploration of a wide range for overall force (1.1 < Xtot/RT < 16.8),
catalytic efficiency, and overall dissipation. The best pair of dissipation–efficiency values
(4.6 × 105, 2.6 × 109) corresponded to an approximately 4-fold higher dissipation and
almost 10-fold higher efficiency in comparison with the values calculated from observed
data (1.2 × 105, 3.0 × 108).
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6. CA I, CA II, and CA II-T200H (Also Four-State Enzymes)

Carbon dioxide conversion into biomass is essential for the survival and spreading
of life in all terrestrial environments. Carbon sequestration is also crucial for the sur-
vival of our carbon dioxide-producing civilization, which is unfortunately addicted to
fossil fuel burning and breaking all life-supporting balances the biosphere has developed
through eons. Nature developed multiple means and different organic structures for the
fast conversion of carbon dioxide to bicarbonate—the first step toward carbon fixation.
Carbonic anhydrases (CAs) are universal enzymes responsible for that process in all three
life domains: Bacteria, Archaea, and Eukarya [90]. With rare exceptions [91], CAs are
metalloenzymes containing a metal ion (usually zinc) in their central active-site cavity.
From their discovery in red blood cells in 1932, the scientific interest in CAs continued to
grow, as seen from the abundance of more than 900 solved CA structures deposited in the
Protein Data Bank [92].

The spontaneous reaction of CO2 with water can produce bicarbonate HCO−
3 + H+,

but that reaction is too slow to support respiration [93,94] and other biological processes
catalyzed by different CAs. Eight unrelated families of carbonic anhydrase (CA) enzymes
represent different ways nature performed the feat of fast catalytic interconversion between
carbon dioxide and carbonic oxide [95], reaching the catalytic turnover of 1 µs−1 or even
higher [96]. There is little or no sequence homology among the CA families α, β, γ, δ, ζ,
η, θ, and ι [91,97]. Molecular biologists concluded that convergent biological evolution
performed the spectacular function-enhancing feat at least seven times, because different
CAs evolved to perform an identical function [95,98,99].

Mammals possess 16 different CA isoenzymes from the alpha-class family [100].
All are metalloenzymes, with the Zn II hydride located at the enzyme center anchored
by three histidines. CA isoforms are involved in a variety of physiological functions.
Human CA isoforms are well-recognized drug targets for designing isoenzyme-specific
inhibitors [101,102] to help fight glaucoma, epilepsy, obesity, cancer, and other diseases.
Also, human CA II is one of the most efficient known enzymes. Its calculated catalytic
efficiency from experimental data is 1.5 × 108 M−1s−1 [102]. Earlier efficiency calculations
also positioned CA among “perfect” enzymes working close to the diffusion limit [15,60].

The genetic defects of specific CA isoforms can cause osteopetrosis, cerebral calcifica-
tions, retinal problems, hyperammonemia, hyperchlorhidrosis, and neurodegenerative and
other metabolic diseases [103], which is a good enough reason to look for CA activators [100]
or other means for increasing the activity of these isoforms. Memory enhancement can be
achieved through CA activation [104]. It opens the possibility for the targeted improvement
of brain CA performance to enhance cognition and slow the aging process [100,105]. Some
CA mutants can accelerate proton transfer, the rate-limiting step for CA turnover [96]. An-
other reason for increasing CA activity is the urgent need for the green ways of industrial
CO2 sequestration [106], which we mentioned above.

Krishnamurthy et al. [94] (Table 1 from [92]) compared all known CA enzymes for
their kCO2

cat and kcat/KCO2
M values for the catalytic hydration of CO2 and the dehydration of

bicarbonate:
CO2 + H2O ↔ HCO−

3 + H+

That is the first half-reaction. The carbon dioxide CO2 is the substrate, while the bicarbonate
ion HCO−

3 is the product of the CA catalytic activity in the forward direction. The buffer is
the second substrate in the two-substrate ping-pong reaction, which recovers free enzymes.

This subsection deals with the theoretical possibilities for catalytic efficiency improve-
ments of human CAs I, II, and the T200H variant of CA II with His200 replacing Thr200 [33].
There may be better models than the four-state kinetic model for reversible Michaelis–
Menten-type kinetics (Figure 13). Still, it is based on the publication [33] that contains all
microscopic rate constants needed to calculate and compare the enzyme’s performance
with associated dissipation. Referent (initial) state values can be found in Table 3.
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Figure 13. The four-state reversible kinetic scheme for three CA isoenzymes. Each CA converts
the CO2 substrate (S) into the HCO−

3 product (P) in the second catalytic step. The remaining two
catalytic steps in the forward direction serve to recover free enzymes with the help of the buffer (B).
Including a buffer in both transitions of the last catalytic step reflects the substantial difference in the
performance of all CAs for different buffers [33]. The buffer was 50 mM dimethylimidazole/H2SO4

(pH = 7.24).

Table 3. Calculated microscopic rate constants and kinetic parameters from experimental data [33] (Behravan-
1990) in the case of substrate (CO2) to product

(
HCO−

3
)

interconversion and the proton-transfer buffer
(B)-dependent step catalyzed by carbonic anhydrase isoenzymes at 25 ◦C.

Rate
Constants [33]

Initial
Values CA I

Initial
Values CA II Initial Values CA II T200H

k1* 3.4 × 107 M−1s−1 1.3 × 108 M−1s−1 8.2 × 107 M−1s−1

k2 3.8 × 104 s−1 1.8 × 106 s−1 5.4 × 104 s−1

k3 2.9 × 105 s−1 1.7 × 107 s−1 3.0 × 105 s−1

k4* 2.6 × 107 M−1s−1 2.0 × 108 M−1s−1 9.0 × 106 M−1s−1

k5 9.0 × 105 s−1 1.2 × 106 s−1 2.7 × 106 s−1

k6 9.0 × 106 s−1 1.2 × 106 s−1 2.1 × 107 s−1

k7* 1.1 × 108 M−1s−1 4.0 × 108 M−1s−1 3.6 × 108 M−1s−1

k8* 9.0 × 105 M−1s−1 2.0 × 107 M−1s−1 1.8 × 107 M−1s−1

k1 4.08 × 104 s−1 1.56 × 105 s−1 9.84 × 104 s−1

k4 6.24 × 105 s−1 4.80 × 106 s−1 2.16 × 105 s−1

k7 5.50 × 106 s−1 2.00 × 107 s−1 1.80 × 107 s−1

k8 4.50 × 104 s−1 1.00 × 106 s−1 9.00 × 105 s−1

Kinetic parameters Our initial and calculated
values (CA I)

Our initial and calculated
values (CA II)

Our initial and calculated
values (CA II T200H)

[S] 1.2 × 10−3 M 1.2 × 10−3 M 1.2 × 10−3 M

[P] 2.4 × 10−2 M 2.4 × 10−2 M 2.4 × 10−2 M

[B] 5.0 × 10−2 M 5.0 × 10−2 M 5.0 × 10−2 M

[E] 1.0 × 10−4 M 1.0 × 10−4 M 1.0 × 10−4 M

kcat 7.77 × 104 s−1 8.05 × 105 s−1 2.10 × 105 s−1

KM 3.13 × 10−3 M 9.63 × 10−3 M 3.10 × 10−3 M

kcat/KM 2.48 × 107 M−1s−1 8.36 × 107 M−1s−1 6.77 × 107 M−1s−1

Keqtot 6.10 6.14 6.51

Xtot/RT 1.81 1.81 1.87

Dissipation
RT

CA I
(this paper)

CA II
(this paper)

CA II T200H
(this paper)

Pinitial 2.84 × 104 s−1 1.25 × 105 s−1 6.29 × 104 s−1
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The simulation of noisy CA I kinetics did not change any of the initial concentrations
(Table 3), and it still found in the 246th step a dissipation–efficiency point (5.14 × 105,
1.12 × 108) with 4.5-times higher catalytic efficiency from the calculated value based
on the observed kinetic data (Figure S7). The corresponding overall force was positive
(Xtot/RT = 5.0) and closer to the upper end of the force range (Xtot/RT = 8.3). However, the
substantial efficiency increase (4.5-fold) was “paid for” with the 18 times higher overall
dissipation. Closer inspection of the performance parameters from the 246th computational
step (concerning observed initial values) revealed a 6.3-fold increase in the turnover number
and a 2.8-fold increase in the overall force as the main reason for the improved efficiency.

The agent-based simulation of noisy CA I kinetics (Figure S8) slightly changed the
initial substrate and product concentrations (Table 3). The 6-fold efficiency increase point,
which we found halfway through the simulation, was “paid-for” with the 22-fold dissipa-
tion increase. That quasi-steady state corresponded to a nearly three-fold increase in the
kcat and overall force.

Human red cell isoenzyme CA II is superior to CA I when their catalytic efficiencies are
compared [33] (see Table 3). Thus, simulations for CA II kinetics will have the advantage of
starting from a better initial state. Here, we show only the NetLogo simulation (Figure 14).
The CA II mutant T200H, constructed by Behravan et al. [33], was an attempt to find the
single amino acid substitution that would lead toward the catalytic parameters of CA I.
The NetLogo simulation (Figure S9) indicates the evolutionary potential for improving the
performance of CA-T200H as being indeed between CA I and CA II, but closer to CA II
(Figure 15).
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R2 = 0.35 (for T200H mutant) to R2 = 0.60 (for CA II) in our NetLogo simulations (Figures 
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Figure 14. The NetLogo simulation of the relationship between catalytic efficiency and overall dissipation
for the carbonic anhydrase II when each of the eight rate constants, ki, are multiplied with the independently
introduced normal noise function, gi, without shift (see Section 3, Equation (32)). The best efficiency value
of 4.25 × 108 M−1s−1 from the 288th tick is for Xtot/RT = 4.76. There was no apparent force decrease
with the time passage (ticks). From the initial 100 µM free enzyme concentration, the conversion during
8007 ticks ended up with less than 1 µM free enzyme concentration, with [ES] = 1 µM, [EX] = 50 µM, and
[EZ] = 49 µM. The Michaels–Menten time-dependence pattern was the same as that seen for CA I. We used
our Simulation-S16-CAII-NetLogo software (see Supplementary Materials) to construct Figure 14.
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Figure 15. The observed [33] and the best-predicted values for the performance of carbonic anhydrases
CA I, CA II, and the T200H mutant of CA II. We collected the NetLogo simulation results from Figures S8,
S9 and 14 to easily compare the enzyme efficiency and overall dissipation calculated from the observed rate
constants (dashed circle) and the best-simulated values when the noise was introduced in all ki (rounded
rectangle). The arrows connect such points for different isoenzymes (blue for CA I, orange for CA II, and
green for the T200H mutant). The small red arrow shows the performance and dissipation decrease for
the Thr200→His substitution mutant of carbonic anhydrase II. In contrast, the green arrow indicates the
possibility of improving its performance above the observed value for CA II. The potential to enhance the CA
II performance (yellow arrow) appears much higher than the CA I (blue arrow).

We next used the same constraint of unchanged equilibrium constants in all catalytic steps
as for the TPI and KSI enzymes. When identical noise is introduced in all rate constants, the
straight-line relationship (perfect proportionality) is revealed between the enzyme efficiency
and total dissipation for carbonic anhydrases CA I, CA II, and the T200H mutant of CA II.
The correlation between efficiency and dissipation ranged from R2 = 0.35 (for T200H mutant)
to R2 = 0.60 (for CA II) in our NetLogo simulations (Figures S8, S9 and 14). In Figure 15, we
constructed the performance–dissipation map for CA isoenzymes. Values calculated from
observed rate constants [33] are confined near the origin of that figure, while the best-simulated
values are expanded in the order CA II > CA II T200H > CA I. Improved catalytic efficiency is
associated with increased dissipation in the same order.

7. Evolutionary Related β-Lactamases

This section extends our earlier studies [3,30], when we examined the evolutionary
relationship among bacterial β-lactamases, their kinetic performance parameters, and
entropy production. The evolution of β-lactamases, as an example of adaptation in bacteria,
is not just of academic interest. Diverse classes of β-lactamases inactivate antibiotics (for
instance, ampicillin and cephalosporins) by performing the hydrolysis of their beta-lactam
bridge [107]. The rapid global spread of beta-lactamase-mediated bacterial resistance in
hospitals has become a severe challenge in treating bacterial infections [108].

We used here the same set of microscopic rate constants for S. aureus, E-coli, and B.
cereus enzymes (respectively labeled as PC1, RTEM, and Lac-1) determined during the
1980s [29] together with our estimate for missing backward rate constants [30] that were
needed for the calculation of nonequilibrium steady state quantities in the reversible three-
state Michaelis–Menten kinetic scheme (Figure 1b). The natural evolution of β-lactamases
happened millions of years before the widespread use of penicillin-based antibiotics (β-
lactam antibiotics) could accelerate it in the wild-type bacterial species studied during
the 1980s [109]. It probably developed as a defense from naturally occurring beta-lactam
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antibiotics produced by some fungi and bacteria [110]. Thus, evolutionary distances
based on β-lactamase sequences determined in the 1970s [3,4,111] should be suitable to
study possible connections to the total entropy production as the most crucial quantity in
nonequilibrium thermodynamics.

How appropriate is the “perfect” enzyme name for the three-state scheme with some
rate constants observed or calculated as representing fast transitions in the case of β-
lactamases [29,112]? That general claim about β-lactamases as almost perfect enzymes
has been supported for Lac-1 but not for RTEM and PC1 enzymes [113]. Perfect en-
zymes supplied with their best substrate should be able to operate close to or inside the
range 108–1010 M−1s−1 predicted for diffusion-limited enzyme reactions [67]. Collected
kcat/KM values for the hydrolysis of some characteristic β-lactams by various class A β-
lactamases [114] are considerably smaller from the lower end of the diffusion limit despite
the “close to the diffusion limit, i.e., 108 M−1s−1” assertion by these authors. However, the
latent potential for these lactamases to evolve further toward higher turnover numbers and
catalytic efficiency exists when thermodynamic principles are considered together with
kinetic restrictions [3,30].

We used Gaussian noise to explore the combinations of microscopic rate constants
and associated dissipation, leading to substantially improved catalytic activity for the PC1,
RTEM, and Lac-1 β-lactamases. We also wanted to answer whether efficiency–dissipation
proportionality exists for the three-state kinetic scheme named the Haldane reversible
three-step model (Figure 1b) [115,116]. The serendipitous discovery from this subsection is
that a linear-like relationship survives between the total entropy production increase and
evolutionary distance increase (from a putative common ancestor) even after dissipation is
calculated for the maximal catalytic efficiency points reached after the noise introduction.

7.1. PC1 β-Lactamase

When we maintain the same restrictions of unchanged initial values for the equilibrium
constants (except for the changes in the substrate and product concentrations), identical normal
noise introduction in all forward kinetic constants leads to only slight changes in the nearly
perfect proportionality between catalytic efficiency and dissipation (Figure S10). Besides noise,
an additional reason for changes in k1 and k6 is a decrease in the free substrate concentration
and an increase in the free product concentration during the enzyme cycling scheme E+S ↔ ES
↔ EP ↔ E+P. It produces a slight decrease in the first equilibrium constant K1 = k1* · [S]/k2 and
an increase in the third equilibrium constant K3 = k5/(k6* · [P]. Increased product concentration
is the main reason for the gradual force decrease, from the initial Xtot/RT = 11.4 to final Xtot/RT
= 10.8, after 5168 ticks of the NetLogo simulation. At the 381st NetLogo simulation tick, we
found the best efficiency value of kcat/KM = 4.18 × 107 M−1s−1, which corresponded to the
forward rate constants k1 = 1.35 × 105 s−1, k3 = 717 s−1, k5 = 398 s−1, the catalytic constant kcat
= 252 s−1, and the dissipation/RT = 2823.6 s−1. That is the same 4.1-fold increase for all these
parameters concerning their observed values (see Table 4).

The next goal is to look for limits to the evolvability of PC1 β-lactamase subject to the
variable rate constants k1 and k2 in the first catalytic step (association–dissociation between the
free substrate and free enzyme: E+S↔ES). Figure S11 illustrates how the multiplication of k1 and
k2 with the, respectively, Box–Muller normal noise functions named g1 and g2 can find a quasi-
steady state with 6.5 times higher catalytic efficiency and merely 1.2 times higher dissipation in
comparison with those values calculated from experiments (Table 4). That is a significantly better
result than all previous optimizations [30] based on the requirement of maximal partial entropy
production in proton transfer catalytic steps 2 (ES↔EP) and 3 (EP↔E+P). For instance, joint
optimizations of both catalytic steps for maximal transitional entropy production in these steps
find about two-fold higher efficiency, which is “paid for” by the 183 times higher dissipation.
The maximum total entropy production requirement combined with the obligatory K+ = k1 · k3
· k5 = const constraint leads to 333 times lower catalytic efficiency (Figure S11, and [30]).
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Table 4. Calculated microscopic rate constants, performance parameters, and dissipation from
experimental data [4,29,30] in the case of benzylpenicillin substrate hydrolysis catalyzed at 20 ◦C by
the A-class β-lactamases.

Rate
Constants [3]

Observed
Values, PC1

Observed
Values, RTEM

Observed
Values, Lac-1

k1* 2.2 × 107 M−1s−1 1.23 × 108 M−1s−1 4.1 × 107 M−1s−1

k2 196 s−1 1.18 × 104 s−1 2.32 × 103 s−1

k3 173 s−1 2.8 × 103 s−1 4.09 × 103 s−1

k4 4.0 s−1 6.0 s−1 50 s−1

k5 96 s−1 1.5 × 103 s−1 3.61 × 103 s−1

k6* 1.0 × 106 M−1s−1 4.0 × 107 M−1s−1 8.0 × 106 M−1s−1

k1 3.28 × 104 s−1 1.71 × 105 s−1 5.27 × 104 s−1

k6 8.0 s−1 4.4 × 103 s−1 1.72 × 103 s−1

Kinetic parameters
Initial values

PC1
(this paper)

Initial values RTEM
(this paper)

Initial values
Lac-1

(this paper)

[S] 1.492 × 10−3 M 1.390 × 10−3 M 1.285 × 10−3 M

[P] 8.0 × 10−6 M 1.1 × 10−4 M 2.15 × 10−4 M

[E] 10−5 M 10−5 M 10−5 M

kcat 61 s−1 9.75 × 102 s−1 1.91 × 103 s−1

KM 6.0 × 10−6 M 4.15 × 10−5 M 7.32 × 10−5 M

kcat/KM 1.01 × 107 M−1s−1 2.35 × 107 M−1s−1 2.60 × 107 M−1s−1

Keqtot 8.69 × 104 2.3 × 103 3.9 × 103

Xtot/RT 11.4 7.74 8.3

Dissipation
RT

Initial value
PC1 [3] Initial value RTEM [3] Initial value

Lac-1 [3]

P 689 s−1 6757 s−1 14,526 s−1

No further gain in enzyme efficiency follows after normal noise is independently
introduced in four or all six rate constants. The maximal kcat/KM ranged from 5.9 × 107 to
6.2 × 107 M−1s−1. Thus, we shall keep the best result from Figure S11 (6.5 × 107 M−1s−1)
to compare the evolutionary potential with other enzymes.

7.2. RTEM β-Lactamase

Figure S12 and Figure 16 for the NetLogo simulations of the RTEM β-lactamase
kinetics are analogs to Figures S10 and S11 for PC1 β-lactamase kinetics. Since RTEM
β-lactamase is the evolutionarily more advanced enzyme [3,4,30], the simulations had a
head start and ended with higher values for the best catalytic efficiency. The kcat/KM = 9.02
× 107 M−1s−1 point from Figure S12 also corresponds to the maximal dissipation, to the
highest values for the forward rate constants, and to the only slightly lower Xtot/RT = 7.71
compared to the initial value Xtot/RT = 7.74. That followed from an early 572nd tick when
all performance parameters increased about 3.8 times from their initial values (see Table 4).
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for PC1 (Figure S10), RTEM (Figure S12), and Lac-1 (Figure S16). We constructed corre-
sponding FORTRAN programs which confirmed it for all three β-lactamases (Figure 22). 
That is also the confirmation of an excellent efficiency–dissipation proportionality for the 
triosephosphate isomerase kinetics (Figures 3, S2, 5, 6, 8 and S5) and for the results we 
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Figure 16. The catalytic efficiency dependence on dissipation when noise is introduced twice in the NetLogo
simulation for RTEM β-lactamase kinetics—in the forward rate constant k1 and the backward rate constant
k2. The best catalytic efficiency from this NetLogo simulation (2.26 × 108 M−1s−1) corresponds to the
highest dissipation/RT: 1.08 × 104 s−1. Optimal k1 increased 2.4-fold, while optimal k2 decreased 14-fold,
significantly increasing the irreversibility of the substrate interaction with the enzyme. The best-case efficiency
is associated with the Xtot/RT = 11.18 for the 3163rd tick. We used our Simulation-S21-RTEM-NetLogo
software (see Supplementary Materials) to construct Figure 16.

As for the NetLogo simulation of the PC1 β-lactamase kinetics, variations in the kinetic
constants k1 and k2 resulted in the exponential dependence of the catalytic efficiency on
the overall dissipation (Figure 16). It is essential to introduce twice the normal noise, once
in the forward direction and once in the backward direction (see Section 3). The beneficial
consequence is the possibility of separating the enzyme efficiency from the dissipation
increase in favor of a former quantity. The best catalytic efficiency is already well inside the
diffusion-limited range.

7.3. Lac-1 β-Lactamase

For the case of the Lac-1 β-lactamase kinetics, we explored several options for the inde-
pendent noise introduction in each kinetic constant from the chosen pairs (Figures S13–S15). It
turned out that the k1–k2 pair is the best choice because it led to the catalytic efficiency value
of 1.25 × 108 M−1s−1, which is also inside the range 108–1010 M−1s−1 for diffusion-limited
enzyme reactions [67].

When normal noise is introduced only once in the forward rate constants k1, k3, and k5, with
the proviso that the equilibrium constants K1* = k1*/k2, K2 = k3/k4, and K3* = k5/k6* do not
change from their observed values, perfect proportionality follows for all efficiency–dissipation
pairs (Figure S16). Due to the higher initial product concentration (see Table 4), the constraints K1*
= const1, K2 = const2, and K3* = const3 are almost equivalent to the requirement that the initial
equilibrium constants K1, K2, and K3 never change during the NetLogo simulation for Lac-1 β-
lactamase kinetics. Since (kcat/KM)/dissipation expression depends only on equilibrium constants
and the ratios of the rate constants (see Supplementary Text file, Equation (S2)), there is no reason
for the slope change in the efficiency–dissipation dependence (Figure S16). The best efficiency
value of 9.68 × 107 M−1s−1 is close to the diffusion-limit range’s lower end (108 M−1s−1). It was
reached at the 2182nd tick for the Xtot/RT = 8.23 and 3.7-fold higher turnover of kcat = 7086 s−1.
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7.4. Summary for β-Lactamases

To summarize, we have seen nearly perfect kinetic–thermodynamic proportionality
for PC1 (Figure S10), RTEM (Figure S12), and Lac-1 (Figure S16). We constructed corre-
sponding FORTRAN programs which confirmed it for all three β-lactamases (Figure 22).
That is also the confirmation of an excellent efficiency–dissipation proportionality for the
triosephosphate isomerase kinetics (Figures 3, 5, 6, 8, S2 and S5) and for the results we
obtained, but which did not show for KSI and CA isoenzymes. It will likely hold whenever
the no-change condition is imposed for the equilibrium constants in all catalytic steps (see
Supplementary Materials for more details). That conclusion did not change when the same
Box–Muller transform (Equation (32) from Section 3) was used only once to introduce the
noise in forward rate constants k1, k3, and k5.

The capture–release initial step leads to different relationships when the no-change condition
is imposed on all first- and second-order rate constants, except k1 and k2 (Figures S11, S15 and 16
for β-lactamases). Noise was introduced twice in the corresponding NetLogo simulations—in the
forward rate constant k1 and the backward rate constant k2. A fast enzyme efficiency increase
can then occur for limited dissipation. The potential for the exponential-like efficiency increase is
likely to be a general phenomenon for all Michaelis–Menten enzymes after lowering the activation
barrier for the E+S→ES transition and increasing the activation barrier for the reverse ES→E+S
transition.

Figure 17 illustrates the relationship between the evolutionary distance and overall
entropy production for PC1, RTEM, and Lac-1 lactamase. We found blue points and
a corresponding fit line (black) from the simulation of experimental data [3,30]. The
dissipations associated with the red points (and red fit line) are from the best catalytic
efficiency points in Figures S11, S15 and 16. The dissipation increased in an almost linear
manner for more evolved β-lactamases. Noise introduction and searching for the highest
enzyme efficiency confirmed the proportionality between the time passage (evolutionary
distance) and overall entropy production.
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and Monod’s model for the regulation of gene expression [117], secondly because of 
numerous molecular biology procedures using its bright blue reaction product, and 
thirdly for the confirmation of the Michaelis–Menten mechanism at the single-molecule 

Figure 17. We compared evolutionary distances of 1.19, 1.44, and 1.60 for, respectively, β-lactamases PC1,
RTEM, and Lac-1 [3,4,30] with numerical values for the total entropy production either calculated from
experimental data (blue points) ([30] and Table 4) or for cases of maximal catalytic efficiency when normal
noise is present in the E+S ↔ ES step (red points) (see Figures S11, S15 and Figure 16). The figure illustrates
the proportionality between overall entropy production and evolutionary distance when natural or artificial
evolution produces the optimal or maximal possible catalytic efficiency.
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8. β-Galactosidase

β-galactosidase (βG, 3.2.1.23) also belongs to universal enzymes used by microbes and
mammals. Microbial βG has a unique role in molecular biology, firstly due to Jacob and
Monod’s model for the regulation of gene expression [117], secondly because of numerous
molecular biology procedures using its bright blue reaction product, and thirdly for the
confirmation of the Michaelis–Menten mechanism at the single-molecule level [118–120].
No less important is the βG role in the food industry [121]. The conventional βG use for
preparing dairy products with reduced lactose content has been recently extended as a
catalyst for lactose upgrading into valuable sweet glycosides, which support the growth
of beneficial gut microbes [121,122]. In this subsection, we used published microscopic
rate constants [26,119,123] to study how βG catalytic efficiency depends on its entropy
production (Table 5). Our contribution to Table 5 was calculating all relevant kinetic and
thermodynamic parameters using initial published values. For kcat/KM and P, we verified
that other authors obtained identical results using different methods (Case A from [18]).

Table 5. Initial values of microscopic rate constants from experimental data [26] and our calculations of
other initial kinetic and thermodynamic parameters in the case of the E. coli β-galactosidase-catalyzed
conversion of resorufin-b-D-galactopyranoside (substrate) to a fluorescent resorufin (product) at
25 ◦C.

Rate
Constants

Initial Values (This
Work and [26])

Initial Kinetic
Parameters This Work

k1* 5.0 × 107 M−1s−1 [S] 10−4 M

k2 1.83 × 104 s−1 [P] 10−7 M

k3 7.3 × 102 s−1 [E] 10−6 M

k4* 10 M−1s−1 kcat 730 s−1

k1 5.0 × 103 s−1 KM 3.81 × 10−4 M

k4 10−5 s−1 kcat/KM 1.92 × 106 M−1s−1

Initial
thermodynamic

parameters

Keqtot 2.0 × 107

Xtot/RT 16.81

Dissipation
RT

Initial value
(this paper)

P 2.55 × 103 s−1

In our NetLogo simulation, we first introduced noise only in the encounters among
substrates and enzymes that form or dissociate the ES complex (Figure S17). It amounts to
independent variations in k1 and k2. As expected, there was a steep increase in catalytic
efficiency for the moderate dissipation increase, as we already observed for the substrate
capture–release in the case of β-lactamases. The maximal efficiency point has the coordi-
nates 104 s−1 and 5.2 × 107 M−1s−1 in the efficiency–dissipation plot (Figure S17). It is
close to the point associated with the highest dissipation.

The next task was to examine a vast efficiency–dissipation space by introducing
changes in all four rate constants, ki (Figure 18). The best value we found of kcat/KM = 8.59
× 107 M−1s−1 is close to the diffusion limit. The NetLogo runs are not completely repro-
ducible. For instance, the second run with the identical agent-based software finds the
better enzyme efficiency of 1.09 × 108 M−1s−1 during a smaller number of re-setting steps
(Figure 19 and Table S1).
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them are listed in Table S1. In the first run (Figure 18), a 40-fold decrease occurred in the 
rate constant k2 for the ES complex dissociation back to the free enzyme and free sub-
strate (compared to Table 5 value). It resulted in a 40 times efficiency increase. The k1 in-
crease up to three times also contributes to stronger substrate–enzyme binding and a 
simulation result of higher catalytic activity. The second conclusion from the NetLogo 
simulations presented in Figures 18 and 19, and Table S1, is that significantly increased 
catalytic efficiency does not need maximal nor close to maximal dissipation. The third 
conclusion is that any means for increasing the irreversibility of the first catalytic step in 
the forward direction would increase the enzyme efficiency, since the enzyme already 
acts according to standard Michaelis–Menten kinetics by having the highly irreversible 
product-release step. We also presented the turnover numbers (kcat) in Table S1. In the 
two-state model for generalized (reversible) Michaelis–Menten kinetics, the turnover 
number kcat equals the forward rate constant k3 for dissociating the ES complex into en-
zyme E and product P. Our NetLogo simulations did not change much the initial (ob-
served) k3 = 730 s−1. Thus, the best enzyme efficiency increase in both Table S1 runs is 
mainly due to the considerably smaller Michaelis–Menten constant KM than the observed 
KM (see Tables 5 and S1). 

Figure 18. The catalytic efficiency dependence on dissipation when normal noise is introduced indepen-
dently in all kinetic constants ki for the β-galactosidase kinetics (see Section 3 and Table 5). We decreased the
probability of stochastic jumps between enzyme conformational states and the enzyme to ligand association–
dissociation to examine the initial system states with minor changes in substrate concentration. The highest
catalytic efficiency was found at the 390th tick when the overall force was at the upper end of its range
Xtot/RT = 25.3. We used our Simulation-S27-beta-GAL-NetLogo software (see Supplementary Materials) to
construct Figure 18.
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less impressive (9.48 × 106 M−1s−1) when compared to the best result from the NetLogo 
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Figure 19. Force and concentration dependence on the time steps (ticks) through 8021 ticks from the second
NetLogo simulation (see Table S1) as the system relaxes from the initial state values. From the 6323rd tick
onward, all free enzymes have been converted into the ES complex. Still, the substrate-to-product conversion
reached a stable state with a 28 times substrate excess, because we intentionally slowed down the conversion
to increase the chance of finding the catalytic efficiency value inside the diffusion limit. We used the same
Simulation-S27-beta-GAL-NetLogo software (see Supplementary Materials) to construct Figure 19.
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Figure 19 illustrates how the concentrations of [S], [E], [ES], and [P] change in the
second NetLogo simulation (see Table S1), together with noisy changes in the overall affinity
(force) during 8021 ticks. Still, there is a slow relaxation of the overall force and dissipation
during the program run (only the force relaxation is shown in Figure 19). Initially, faster
and nonlinear relaxation occurs when transformations among different conformations are
sped up.

We inspected all kinetic and thermodynamic parameters from the Simulation-S27-beta-
GAL-NetLogo software output (see Supplementary Materials). Some of them are listed
in Table S1. In the first run (Figure 18), a 40-fold decrease occurred in the rate constant
k2 for the ES complex dissociation back to the free enzyme and free substrate (compared
to Table 5 value). It resulted in a 40 times efficiency increase. The k1 increase up to three
times also contributes to stronger substrate–enzyme binding and a simulation result of
higher catalytic activity. The second conclusion from the NetLogo simulations presented
in Figures 18 and 19, and Table S1, is that significantly increased catalytic efficiency does
not need maximal nor close to maximal dissipation. The third conclusion is that any
means for increasing the irreversibility of the first catalytic step in the forward direction
would increase the enzyme efficiency, since the enzyme already acts according to standard
Michaelis–Menten kinetics by having the highly irreversible product-release step. We also
presented the turnover numbers (kcat) in Table S1. In the two-state model for generalized
(reversible) Michaelis–Menten kinetics, the turnover number kcat equals the forward rate
constant k3 for dissociating the ES complex into enzyme E and product P. Our NetLogo
simulations did not change much the initial (observed) k3 = 730 s−1. Thus, the best enzyme
efficiency increase in both Table S1 runs is mainly due to the considerably smaller Michaelis–
Menten constant KM than the observed KM (see Tables 5 and S1).

We also performed the FORTRAN simulation in the presence of noise with the same
initial values (Figure S18). We called random numbers s1 and s2 only once (see Section 3).
We multiplied the identical Box–Muller transform, gi, containing shift +1 with each of
the four kinetic constants, ki, to eliminate the cases of negative ki. Two equilibrium
constants, K1 and K2, went through small changes (decrease) because we allowed for
the stepwise changes in the substrate and product concentrations. Mass conservation
for ligands was approximately satisfied with the condition [S] + [P] = const for all ten
thousand computational steps by our Simulation-S28-beta-GAL-FORTRAN software (see
Supplementary Materials). We obtained the best result for the highest efficiency at the
9532nd step. It was less impressive (9.48 × 106 M−1s−1) when compared to the best result
from the NetLogo simulation. The force decrease during 10,000 steps exhibited a similar
gradual decrease from higher initial values as in Figure 19.

A considerably more comprehensive search for the best dissipation–efficiency coordinate
pairs occurred when we called the Box–Muller transform separately four times, once for each
of the four rate constants, ki. The kigi products gained the freedom to vary independently from
each other. The output of such a FORTRAN program (Figure 20) contains two catalytic efficiency
values close to the lower range of the diffusion limit (108 M−1s−1).
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[125,126,128–130]. Besides academic interest, that is also why theoretical research is de-
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Considering previous examples for other enzymes, the best option is to initiate re-
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nately, the best example [27] refers to GI preparation from Streptomyces murinus, which 
has very low measured activity. Nevertheless, the principles we employed in this section 
to significantly improve GI performance may be applicable for predicting the activity 
gains of the most promising GI variants for green industry applications. We also wanted 
to test our hypothesis about catalytic efficiency proportionality to dissipation by using 
the example of an inefficient enzyme working close to the thermodynamic equilibrium. 
The drawback is the restriction to the two-state model (Figure 1a); that is, the reversible 
Briggs–Haldane mechanism used in early and recent proposals for the kinetic mechanism 
of immobilized GI [27,131–134]. In the quasi-steady state, the solution is the Michae-
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Figure 20. The catalytic efficiency dependence on dissipation when the normal noise function, gi, with
shift +1 is called separately four times to multiply each rate constant, ki (i = 1, 2, 3, 4), in our simulation
for β-galactosidase kinetics. The highest catalytic efficiency was found at the 6540th computational
step when the total force was Xtot/RT = 20.8. We used our Simulation-S29-beta-GAL-FORTRAN
software (see Supplementary Materials) to get the kinetic and thermodynamic parameters we needed
to construct Figure 20.

9. Glucose Isomerase

Glucose isomerase (GI abbreviation) fulfills nutritional requirements mainly in bacte-
ria [124]. It is also known as xylose isomerase because GI reversibly isomerizes D-glucose
and D-xylose to D-fructose and D-xylulose, respectively. Glucose-to-fructose conversion is
relatively inefficient but critical for the commercial production of high-fructose corn syrup
(HFCS) due to its specificity (the absence of nonmetabolizable or toxic side products) and
mild ambient conditions [125]. Together with other industrial applications through the
decades, such as bioethanol production [126], GI maintained a high market share in the
food industry, among other industrial enzymes, despite its inherently low activity [124,127].
That is why there were frequent research efforts to use molecular engineering to improve
GI performance for different applications [125,126,128–130]. Besides academic interest, that
is also why theoretical research is devoted to enhancing GI performance when kinetic and
thermodynamic limits are considered.

Considering previous examples for other enzymes, the best option is to initiate research
with all the microscopic rate constants inferred from the observed data. Unfortunately,
the best example [27] refers to GI preparation from Streptomyces murinus, which has very
low measured activity. Nevertheless, the principles we employed in this section to signifi-
cantly improve GI performance may be applicable for predicting the activity gains of the
most promising GI variants for green industry applications. We also wanted to test our
hypothesis about catalytic efficiency proportionality to dissipation by using the example
of an inefficient enzyme working close to the thermodynamic equilibrium. The drawback
is the restriction to the two-state model (Figure 1a); that is, the reversible Briggs–Haldane
mechanism used in early and recent proposals for the kinetic mechanism of immobilized
GI [27,131–134]. In the quasi-steady state, the solution is the Michaelis–Menten equation
and the corresponding performance parameters kcat, KM, and kcat/KM. In our notation
(Figure 1a), k3 = kcat and KM = (k2 + k3)/k1s, where k1s is the second-order rate constant.
Unusual experimental conditions used to determine these kinetic parameters include an
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elevated temperature (65 ◦C) besides the immobilization of enzymes (Table 6). These
conditions are not responsible for the observed low kcat and kcat/KM values. If anything,
they slightly increase the performance parameters.

Table 6. Initial values of microscopic rate constants from experimental and estimated data [27,28] for
GI, to which we added our calculations of other initial kinetic and thermodynamic parameters in the
case of the Streptomyces murinus-catalyzed conversion of glucose (substrate) to fructose (product) at
65 ◦C.

Rate
Constants

Observed
Values [27]

Calculated
Values [28]

Other Relevant
Parameters

Initial Values
([28] and This

Paper)

k1* 3.8 M−1min−1 0.063 M−1s−1 [S] 2.0 M

k2 1.23 min−1 0.021 s−1 [P] 0.2 M

k3 1.75 min−1 0.029 s−1 [E] 0.01 M

k4* 4.9 M−1min−1 0.082 M−1s−1 kcat 0.029 s−1

k1 = k1* · [S] 0.126 s−1 KM 0.794 M

k4 = k4* · [P] 0.0164 s−1 kcat/KM 0.0365 M−1s−1

Keqtot 10.61

Xtot/RT 2.36

Dissipation
RT

Initial value
(this paper)

P 0.0406 s−1

Figure S19 results from the NetLogo simulation with noise independently introduced
in all rate constants. It illustrates the absence of a strong proportionality relationship
between catalytic efficiency and entropy production for an inefficient enzyme, such as
glucose isomerase. The best point with the coordinates (0.21, 0.21) was found at the 1715th
tick. It is associated with the Xtot/RT = 4.7, about 2.5-fold higher k1, 9-fold smaller k2,
24-fold higher equilibrium constant K1, and approximately 11-fold higher partial entropy
production P1. Thus, the association and dissociation of the substrate with the enzyme
should be shifted toward the ES complex formation to gain a significant 5.8-fold increase in
the enzyme efficiency and a 2.3-fold increase in the turnover number.

Imposing some constraints on the system can recover the efficiency–dissipation re-
lationship. For instance, rate constants k1 and k2 can be independently multiplied with
the normal noise without changes in rate constants k3 and k4, other than those caused by
the increased product concentration. The correlation R2 jumps to 0.881 for the kcat/KM
dependence on dissipation. However, the NetLogo simulation goes through a restricted
search space and finds lower values for the best efficiency.

We also performed FORTRAN simulations to verify that different software and ways
for noise introduction can still produce an approximately linear response in catalytic ef-
ficiency to the dissipation (Figure S20). Normal noise was called only once and used to
multiply all four rate constants. The best catalytic efficiency of 0.18 M−1s−1 was compa-
rable to the best result for the NetLogo simulations with noise. It was also considerably
better than the 0.0215 M−1s−1 catalytic efficiency, easily calculated from the Dobovišek
et al. optimization [28]. Incidentally, Dobovišek’s result was obtained for the positive
force Xtot/RT = 0.51 when the net flow was in the forward direction, and our two-state
expressions for kcat and KM (see Section 2) are appropriate to use for the calculation of
kcat/KM. It emerged due to the unique nature of the quasi-steady state that these authors
obtained after imposing the no-change constraint for the product of forward rate constants:
K+ = k∗1k3 = const.
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Normal noise with shift +1 (see Section 3) was called four times in the next FORTRAN
simulation so that each rate constant was multiplied with its own Box–Muller transform
(Figure 21). The best catalytic efficiency of 0.226 M−1s−1 result was found for the lower
overall dissipation in the RT units (0.12 s−1) compared to the previous NetLogo simulation
(Figure S19).

Entropy 2024, 26, x FOR PEER REVIEW 38 of 54 
 

 

lower overall dissipation in the RT units (0.12 s−1) compared to the previous NetLogo 
simulation (Figure S19). 

 
Figure 21. The catalytic efficiency dependence on dissipation when the normal noise function, gi, 
with shift +1 is called separately four times to multiply each rate constant, ki (i = 1, 2, 3, 4), in the 
simulation for the glucose isomerase kinetics. The main loop from our Simula-
tion-S32-GI-FORTRAN software (see Supplementary Materials) went through the 10,000 steps. We 
used its output to construct Figure 21. 

10. An Overall Summary of All Results 
When variations are allowed in concentrations and microscopic rate constants, an 

artificial evolution of enzymes is, in theory, possible. We explored the differences among 
reference parameters (calculated from the observed values) for ten studied enzymes and 
the best fold improvements for the catalytic efficiency kcat/KM after noise introduction. 
The research idea was to examine corresponding changes in the overall entropy produc-
tion. Is there any connection between the critical parameter for enzyme evolution and the 
most important parameter for the thermodynamic evolution of nonequilibrium systems? 
We provide the analysis of corresponding changes in kinetic–thermodynamic parameters 
in Table 7. We reached a simple conclusion after examining the best results for the in-
crease in enzyme efficiency. There is no exception for increased dissipation. When noise is 
independently introduced in all of the microscopic rate constants, the improvement in 
the highest enzyme efficiency ranges from 4.5 to 67 times, while the entropy production 
increase ranges from 3 to 161 times in the cases where we used our FORTRAN source 
codes to perform simulations. For our NetLogo simulations, kcat/KM improvements 
ranged from 5 to 45 times, while entropy production increases ranged from 4 to 198 
times. Thus, for isothermal conditions, entropy production or dissipation can be re-
garded as the thermodynamic performance parameter, which indicates how efficient 
enzymes are in opening the gates for decreasing electrochemical gradients. 

We visually picked up the conditions with high catalytic efficiency. That can be au-
tomated using an iterative procedure in which the best performance parameters are 
chosen as initial until no further improvements occur. Table 7 illustrates that enzymes 
differ in their evolutionary potential but have similar positive associations among their 
kinetic and thermodynamic performance parameters. Namely, a joint increase in kcat/KM 
and total entropy production argues for the fundamental connection between more effi-

Figure 21. The catalytic efficiency dependence on dissipation when the normal noise function, gi,
with shift +1 is called separately four times to multiply each rate constant, ki (i = 1, 2, 3, 4), in the
simulation for the glucose isomerase kinetics. The main loop from our Simulation-S32-GI-FORTRAN
software (see Supplementary Materials) went through the 10,000 steps. We used its output to construct
Figure 21.

10. An Overall Summary of All Results

When variations are allowed in concentrations and microscopic rate constants, an
artificial evolution of enzymes is, in theory, possible. We explored the differences among
reference parameters (calculated from the observed values) for ten studied enzymes and
the best fold improvements for the catalytic efficiency kcat/KM after noise introduction.
The research idea was to examine corresponding changes in the overall entropy production.
Is there any connection between the critical parameter for enzyme evolution and the most
important parameter for the thermodynamic evolution of nonequilibrium systems? We
provide the analysis of corresponding changes in kinetic–thermodynamic parameters in
Table 7. We reached a simple conclusion after examining the best results for the increase
in enzyme efficiency. There is no exception for increased dissipation. When noise is
independently introduced in all of the microscopic rate constants, the improvement in
the highest enzyme efficiency ranges from 4.5 to 67 times, while the entropy production
increase ranges from 3 to 161 times in the cases where we used our FORTRAN source
codes to perform simulations. For our NetLogo simulations, kcat/KM improvements
ranged from 5 to 45 times, while entropy production increases ranged from 4 to 198 times.
Thus, for isothermal conditions, entropy production or dissipation can be regarded as the
thermodynamic performance parameter, which indicates how efficient enzymes are in
opening the gates for decreasing electrochemical gradients.

We visually picked up the conditions with high catalytic efficiency. That can be
automated using an iterative procedure in which the best performance parameters are
chosen as initial until no further improvements occur. Table 7 illustrates that enzymes differ
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in their evolutionary potential but have similar positive associations among their kinetic
and thermodynamic performance parameters. Namely, a joint increase in kcat/KM and total
entropy production argues for the fundamental connection between more efficient free-
energy transduction into essential biochemical reactions and the level of thermodynamic
irreversibility.

Assuming that KM does not change for a chosen enzyme, the observed proportionality
between the enzyme’s entropy production and the specificity number, kcat/KM, implies
a linear increase in catalytic efficiency, kcat, with dissipation. When noise is present in
rate constants, approximate KM constancy will still hold for no changes in the k3/k1 ratio
(two-state Equation (24)), the k5/k1 and k5/k4 ratio (three-state Equation (27)), or the k3/k1,
k3/k5, and k5/k7 ratio (four-state Equation (30)) when the equilibrium constants do not
change. The turnover number, kcat, has a similar meaning and value to the cyclic flux J.
We calculated entropy production as the bilinear JX product in thermodynamic forces X
(in the RT units) and fluxes J (in inverse seconds). For the constant force X in isothermal
conditions, entropy production and dissipation must be proportional to the flux J. Thus,
kcat/KM to the dissipation proportionality must hold for all conditions of small changes
in KM and slight differences between J and kcat (see Supplementary Materials for more
mathematical details).

Table 7. Fold improvement for enzyme efficiency and the corresponding fold increase in the overall
dissipation in the best cases concerning values found from experiments. * The fold factor is the ratio
of the best efficiency/dissipation and observed efficiency/dissipation.

Enzyme (# Functional States,
Figure #)

Simulation Software
Abbreviation (Noisy ki)

Efficiency
Fold-Improv.

Dissipation
Fold Increase

Eff/Disssip. (Fold
Factor) *

Best Eff.
(M−1s−1)

Glucose isomerase (2, 21) S32-fortran (all ki noisy) 6.1 2.9 1.9 (2.1) 0.226

Glucose isomerase (2, S19) S30-netlogo (all ki noisy) 5.8 5.2 1.0 (1.1) 0.213

β-galactosidase (2, 18) S27-netlogo (all ki noisy) 44.8 6.7 5.1 × 103 (6.7) 8.59 × 107

β-galactosidase (2, 20) S29-fortran (all ki noisy) 67.2 4.1 1.2 × 104 (16.4) 1.29 × 108

Lac-1 β-lactamase (3, S15) S24-netlogo (noisy k1,k2) 4.8 1.3 6.4 × 103 (3.6) 1.3 × 108

RTEM β-lactamase (3, 16) S21-netlogo (noisy k1,k2) 9.6 1.6 2.1 × 104 (6.0) 2.3 × 108

PC1 β-lactamase (3, S11) S19-netlogo (noisy k1,k2) 6.5 1.2 7.6 × 104 (5.2) 6.5 × 107

Carbonic anhyd. I (4, S7) S14-fortran (all ki noisy) 4.5 18.1 218 (0.25) 1.1 × 108

Carbonic anhyd. I (4, S8) S15-netlogo (all ki noisy) 5.9 22.4 231 (0.26) 1.47 × 108

Carbonic anhyd. II (4, 14) S16-netlogo (all ki noisy) 5.1 13.4 254 (0.38) 4.25 × 108

Carbonic anhyd. T200H (4, S9) S17-netlogo (all ki noisy) 5.5 14.0 421 (0.39) 3.71 × 108

Ketosteroid isomerase (4, 10) S10-fortran (all ki noisy) 6.2 4.6 3.5 × 103 (1.34) 1.88 × 109

Ketosteroid isomerase (4, 12) S13-netlogo (all ki noisy) 8.6 3.8 5.7 × 103 (2.26) 2.59 × 109

Triophosphate isomerase (4, 7) S7-fortran (all ki noisy) 29.9 160.6 1.5 × 104 (0.19) 2.4 × 107

Triophosphate isomerase (4, 9) S9-netlogo (all ki noisy) 28.1 198.4 1.1 × 104 (0.14) 2.2 × 107

11. Discussion
11.1. Dissipation, Evolution, and the Catalytic Power of Enzymes

The evolution of the universe can be described as universal evolution. It created time,
space, and myriad beautiful objects, such as galaxies, stars, planets, and living beings [135].
An invisible, but not less important, product of universal evolution is increased entropy and
total entropy production. Evolution in physics is firmly connected to entropy production.
A new phase of universal evolution started with the appearance of objects that can be
associated with the massive jump in entropy production. The first living cells are one class
of such objects, originating in an aqueous environment endowed with rich chemistry. The
same volume of some bacterial cells, mitochondria, or chloroplast produces many orders of
magnitude higher dissipation than an equivalent average volume of a sun-like star, despite
the star’s much higher temperature [136,137]. The specific variety of complex life and
mineralogy we enjoy here on Earth is not likely to exist anywhere else in the universe [138].
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Thus, we should protect it, study it, and, if possible, understand it as a natural consequence
of universal evolution.

Standard evolutionary theory [139] has a simple answer to the question of how new
variations can arise: random mutations and natural selection ensure the adaptation of
organisms to their environment. Thus, a particular noise class (chance genetic changes) is
adapted to provide a better fit among organisms and environments. That view has been
extended recently by considering the physicochemical evolutionary driving forces [140],
including the maximization of dissipation [20].

Thermodynamic and biological evolution are connected. The major thermodynamic
process for living cells is a large outflow of entropy [141]. Only a small portion of available
free energy is used by cells for synthetic and mechanistic goals. For instance, the free energy
converted into chemical bonds is a minor contribution compared to the free energy change
from catabolism. Still, an almost perfect correlation exists between the total heat released
and the amount of dry mass grown or the total amount of oxygen consumed during the
aerobic growth of a yeast culture [142]. Theoretical studies also concluded that a higher
maximal growth rate would be achieved by replicating a system capable of producing
more heat [143,144]. Thus, higher entropy production can be an advantage during the
evolution of organisms. As a rule, total entropy production reaches its maximum value
before it decreases when microorganisms are fully supplied with free-energy sources and
engaged in vigorous growth during their short-term evolution in batch experiments. This
pattern is recapitulated in the life of every individual organism. Metabolic heat production
per surface area reaches the maximal value early, with a subsequent decline over the
lifetime [145].

Metabolism is the work of enzymes. Despite the enzymes’ complexity, they rep-
resent a “cleaner” opportunity than organisms for investigating evolution [146]. The
simplest and most successful description of how many such enzymes work is generalized
Michaelis–Menten kinetics [39,147–149]. The increased complexity of life through eons
required the means for increasing the catalytic efficiency of such enzymes. Wolfenden and
colleagues found with other authors that nothing makes a sharper distinction between
life and nonlife than a massive jump in catalytic power, which enzymes show when the
speed and specificity of the reaction they catalyze is compared to an equivalent reaction
in the presence of inorganic catalysts [11,13–17,150–152]. The marvelous biochemistry
of enzymes is tied to the evolutionary enhancements of enzymes’ catalytic rate (up to
1026-fold, according to Edwards et al. [17]). The corresponding catalytic proficiency for
alkylsulfatase is an astronomical number: (kcat/KM)/kuncat = 1029 M−1. Dynamic changes
essential for understanding the catalytic activity of enzymes are challenging to trace struc-
turally [153]. Structural studies did not help as much as we hoped in answering how
enzymes work [154,155]. Since an increase in entropy production speeds up the physical
evolution of any nonequilibrium system (it undergoes faster relaxation from the initial
far-from-equilibrium state), we can assume a connection with the evolution of catalytic
efficiency.

Martyushev and Seleznev [156] anticipated a fruitful connection between optimal ki-
netics parameters and entropy production for strongly nonequilibrium processes. However,
it is surprising that the relationship between the overall dissipation and the frequently mea-
sured specificity constant kcat/KM was never thoroughly examined. These two parameters
connect laboratory biochemistry with the fundamental thermodynamics of nonequilibrium
processes. Banerjee and Bhattacharyya’s finding [18] that the more efficient enzyme in-
volves higher total dissipation is in accord with the results presented in this paper. The
finding is based only on three pairs of dissipation–efficiency values for a single enzyme
(β-galactosidase). Still, it is gratifying that their different method for calculating overall
entropy production produced the same result (2553 s−1) as T. Hill’s approach [5], which we
used in our FORTRAN and NetLogo programs for β-galactosidase (see the last row from
Table 5). How changes in dissipation can lead to an increased catalytic efficiency kcat/KM
was not the main interest of these authors.
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The main results from this paper presented the proportionality between kcat/KM and
overall dissipation for 10 different enzymes belonging to 6 different EC classifications.
However, we could have shown kcat proportionality with overall entropy production for
each enzyme. One example of the proportionality between kcat and dissipation is for three
β-lactamases (Figure 22).

Entropy 2024, 26, x FOR PEER REVIEW 41 of 54 
 

 

The main results from this paper presented the proportionality between kcat/KM and 
overall dissipation for 10 different enzymes belonging to 6 different EC classifications. 
However, we could have shown kcat proportionality with overall entropy production for 
each enzyme. One example of the proportionality between kcat and dissipation is for three 
β-lactamases (Figure 22). 

Besides the proportionality between kcat and dissipation (in the units of inverse 
seconds), Figure 22 also illustrates the nearly linear connection between the evolutionary 
distances of PC1 (1.19), RTEM (1.44), and Lac-1 (1.60) lactamase and either kcat or overall 
dissipation (see Figure 17, [3,30] for the evolutionary distances we put in parenthesis). We 
obtained the same result after comparing experimental results for the kinetic and ther-
modynamic parameters of A-class β-lactamases and looking for the maximal partial dis-
sipation in the rate-limiting steps [3,4]. In these and other publications [30], we stressed 
that the optimization for high turnover numbers should be based on the physical princi-
ple of maximum transitional entropy production, not on the uncritical acceptance of the 
maximal catalytic efficiency or maximal catalytic constant as the selection or optimization 
criterion. 

There was no need in the present study to make an a priory assumption of either a 
physical or biological principle reigning supreme. We only required some mechanism for 
reasonable variations in the microscopic rate constants. A crowded cellular milieu and 
unavoidable errors in translation and transcription offer several such means for noise 
introduction in kinetic parameters. Stochastic fluctuations are always present and are 
relevant for applying the Michaelis–Menten-type kinetics inside cells for small volumes 
and small numbers of interacting molecules [157,158]. Our simulations are, admittedly, a 
crude and artificial way of considering the noise. Better methods for dealing with phys-
ical and biological noise sources are undoubtedly possible. However, we were primarily 
interested in whether different means of noise introduction can uncover regular rela-
tionships between the most critical thermodynamic and kinetic parameters for highly 
active enzymes that work arbitrarily far from the equilibrium. Using thermal and non-
thermal noise through stochastic fluctuations and dynamic disorder [159,160] may have 
been beneficial during biological evolution [161–164]. 

 
Figure 22. We performed simulations for kcat dependence on the total entropy production in the 
case of three β-lactamases (PC1, RTEM, and Lac-1). Figure 22 presents our results after constructing 
three programs in the FORTRAN language. Each forward rate constant was multiplied with the 

Figure 22. We performed simulations for kcat dependence on the total entropy production in the
case of three β-lactamases (PC1, RTEM, and Lac-1). Figure 22 presents our results after constructing
three programs in the FORTRAN language. Each forward rate constant was multiplied with the
identical normal noise function, while corresponding backward rate constants were determined from
the no-change requirement to the equilibrium constants. Table 4 parameters were used for each
enzyme. Concentrations were not allowed to change from their initial (observed) values. As for other
figures, the Ptot label at the x-axis is the dissipation/RT in inverse seconds. The figure illustrates the
proportional increase or decrease in the turnover number with dissipation from observed (calculated)
points for PC1 (689, 61), RTEM (6757, 975), and Lac-1 (14,526, 1905) (see Table 4 and Juretić et al.,
2019 [3,30]). The highest points have the coordinates (3035, 268) for PC1, (3 × 104, 4303) for RTEM,
and (6.4 × 104, 8394) for Lac-1. As for catalytic efficiencies (Figure 17), both the observed and
the highest points (dissipation, kcat) are nearly proportional to the evolutionary distance from the
putative common ancestor in the order PC1 (1.19) < RTEM (1.44) < Lac-1 (1.60).

Besides the proportionality between kcat and dissipation (in the units of inverse
seconds), Figure 22 also illustrates the nearly linear connection between the evolutionary
distances of PC1 (1.19), RTEM (1.44), and Lac-1 (1.60) lactamase and either kcat or overall
dissipation (see Figure 17, [3,30] for the evolutionary distances we put in parenthesis).
We obtained the same result after comparing experimental results for the kinetic and
thermodynamic parameters of A-class β-lactamases and looking for the maximal partial
dissipation in the rate-limiting steps [3,4]. In these and other publications [30], we stressed
that the optimization for high turnover numbers should be based on the physical principle
of maximum transitional entropy production, not on the uncritical acceptance of the
maximal catalytic efficiency or maximal catalytic constant as the selection or optimization
criterion.

There was no need in the present study to make an a priory assumption of either
a physical or biological principle reigning supreme. We only required some mechanism
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for reasonable variations in the microscopic rate constants. A crowded cellular milieu
and unavoidable errors in translation and transcription offer several such means for noise
introduction in kinetic parameters. Stochastic fluctuations are always present and are
relevant for applying the Michaelis–Menten-type kinetics inside cells for small volumes and
small numbers of interacting molecules [157,158]. Our simulations are, admittedly, a crude
and artificial way of considering the noise. Better methods for dealing with physical and
biological noise sources are undoubtedly possible. However, we were primarily interested
in whether different means of noise introduction can uncover regular relationships between
the most critical thermodynamic and kinetic parameters for highly active enzymes that
work arbitrarily far from the equilibrium. Using thermal and nonthermal noise through
stochastic fluctuations and dynamic disorder [159,160] may have been beneficial during
biological evolution [161–164].

11.2. Computational Improvements of the Catalytic Power for Specific Enzymes

The catalytic power of enzymes is measured as kcat or kcat/KM. Experts in the field did
not object to the word “efficiency” when kcat/KM was named catalytic or enzyme efficiency.
However, it is not the efficiency of biological nanomotors in the range of 0 to 1. Some authors
did not recommend using kcat/KM as an index for comparing the catalytic effectiveness
of enzymes [165]. The majority consensus is that kcat/KM is the appropriate measure for
the specificity of noncooperative Michaelis–Menten enzymes [23,166,167]. In rare cases,
when all microscopic rate constants have been determined [168], kcat and kcat/KM can
be connected to partial and total entropy production when an enzyme reversibly cycles
through all of its functionally important conformations (this work, [3,4]). Moreover, after
variations in rate constants around their observed values, we can analyze optimal rate
constants ki and dissipations associated with the highest performance parameters kcat and
kcat/KM. What are, if any, the common features of the states with the highest enzyme
efficiency, and how do the thermodynamic and kinetic parameters of these states differ
from the same values calculated or inferred from the experimental data? Table 8 helps deal
with that question. Our choice in this paper was to examine the best kcat/KM values for
corresponding ki, partial, and total dissipation. Table 8 gives the partial entropy production
in the first forward catalytic step, because it exhibited the highest increase regarding the
observed value. That is the consequence of an increased forward rate constant k1 and
decreased backward constant k2 for substrate-to-enzyme association and dissociation.

In the case of triosephosphate isomerase (TPI), there was a 1454-fold increase in the
partial entropy production P1 for the E+S↔ES transition, which became a 42% instead of
6% contribution to the total dissipation. We used our Simulation-S9-TPI-NetLogo software
(see Supplementary Materials) to produce the results for constructing Figure 9, but other
results from the same program gave values for all partial entropy productions. Figure 9
results associate positive force with a significantly increased flux J = 461.40 and catalytic
constant kcat = 1085.02 s−1 regarding the observed values (see Table 1). After maximizing
the total entropy production density, the result from Šterk et al. [76] was J = −1272 s−1

(the blue point at the vertical line in the main Figure 4). It is about a 100 times higher net
reaction flow in the reverse GAP→DHAP direction when compared to the experimentally
observed reaction rate J = 14 s−1 facilitating glycolysis [32,74]. Šterk et al. [76] used the
steady-state concentrations [S] = 31.45 and [P] = 8.55 µM and a controversial constraint [75]
on all forward rate constants. The corresponding force was then highly negative at Xtot/RT
= −4.47. When multiplied with the high negative flux, it produced such a high dissipation
that the optimal values (5685, 1.8 × 106) could not be illustrated as the (x, y) point within
the confines of Figure 6. The authors found the maximum in the overall entropy production,
but it was about 570-fold higher than the calculated value from the experimental data. Klipp
and Heinrich [77] obtained an even higher net reaction flow in the backward GAP→DHAP
direction ranging from J = −1620 (for the experimental rate constant values when [DHAP]
= [GAP] = 40 µM) to J = −4010 s−1 (for the separate limit optimization model), the result
that was verified and commented on by Bish and Mavrovouniotis [78]. These optimizations
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for highly negative flux and negative force can only ensure the nonphysiological operation
of the TPI enzyme and the loss of its primary function of balancing glycolysis and gluco-
neogenesis. For instance, the optimized kcat in the forward direction of Šterk et al. [76] is
kcat = 222 s−1, which is worse than kcat = 432 s−1 (experimental data [32]). In contrast, our
optimized kcat = 686 s−1 [74] and kcat = 1085.02 s−1 (this paper) are improvements over the
kcat value calculated from the experimental data.

For other enzymes and software simulations in the presence of noise, P1 increased
one to two orders of magnitude, and its percentage also increased for the best enzyme
efficiency results. The single exception is carbonic anhydrase. For CA I, CA II, and the
T200H CA II mutant, an absolute increase in P1 was not accompanied by an increase in its
percentage. A possible reason is a different kinetic scheme for the CA enzyme (Figure 13)
and an inadequacy of the standard kcat and kcat/KM expression (Equations (29)–(31)) for
that scheme.

The best efficiency fold improvement is seen for β-galactosidase, which also reaches
the highest efficiency-to-dissipation fold ratio (Table 7). However, ketosteroid isomerase
has the best evolutionary potential in our simulations. That can be connected to the two
proton transfer reactions catalyzed by KSI [169–171] and a powerful electric field [172].
Electric field catalysis needs a strong and correctly oriented field. The measured field of
1.44 × 1010 V/m is enough to account for 72% of the total acceleration rate [172]. The
transient appearance of billions of volts per meter electric field strength in the interior of
active proton-shuffling enzymes frequently speeds up catalysis [4]. The isomerization of
5-androstene-3,17-dione in solution through the same mechanism utilized by KSI is slow.
That is why KSI catalytic proficiency is so high. As mentioned in the KSI section, Radzicka
and Wolfenden [13] estimated it as 1.8 × 1015 M−1 based on kuncat = 6 × 10−7 s−1.

Interestingly, the efficiency fold improvement (Table 7) is similar for the best (KSI) and worst
enzymes (glucose isomerase). The kcat = 0.029 s−1 (experimental) and kcat = 0.031 s−1 or 0.068 s−1

(optimal) values for the GI enzyme (see k3 results in Table 8) are two orders of magnitude smaller
than the turnover numbers 2 s−1 and 11 s−1 reported in the literature [128,173]. The Converti
et al. [27] data we used to initiate simulations pertain to weakly active GI working close to the
thermodynamic equilibrium. Nevertheless, our method for the theoretical increase in catalytic
activity is robust enough to ensure its close to a 10-fold increase (from 0.0365 to 0.2262 M−1s−1,
Figure 21). In conclusion, the present analysis of the role of total entropy production extends
previous approaches to optimizing enzyme kinetics using the maximization of partial entropy
production [3,4].

11.3. Possible Benefits of Considering Unanswered Questions

Most enzymes did not use their potential to evolve higher catalytic efficiencies due
to the absence of selection pressure to maximize it for individual enzymes [19]. When
metabolic demand existed, the superstars of enzyme evolution developed, often named
perfect enzymes [168]. Our simulations suggested the theoretical possibility of increasing
the kcat/KM of either moderately efficient or perfect enzymes. In practice, more than one
amino acid substitution is needed to improve the performance parameters. Several orders
of magnitude improvement typically require at least 5 to 10 beneficial mutations [174].

Living far from equilibrium is an essential asymmetry of present-day life [175,176].
Higher dissipation increased the catalytic efficiency of the enzymes we explored in this
paper and the system’s distance from thermodynamic equilibrium. The plausible inference
is that some abiotic driving forces, such as proton gradients in alkaline hydrothermal vents,
must have operated to maintain far-from-equilibrium situations and high entropy produc-
tion during the emergence of life on Earth. According to that assumption, bioenergetics
and vectorial biochemistry are older than the genetic code and the first universal common
ancestor [3]. It enabled the enzymeless and cell-less synthesis of amino acids, sugars,
nucleotides, and lipids. Nonlinearity and far-from-equilibrium conditions are two require-
ments for driving the protometabolism toward autocatalysis and self-organization. The
accelerated accumulation of organic molecules followed in the presence of the long-lived
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abiotic protonmotive force to jump-start the development of life [177]. The efficiency of
organic synthesis with protoenzymes was likely low compared to present-day enzymatic
catalysis. However, such self-reinforcing reactions increased the efficiency of dissipating
available free-energy gradients. The present-day connection between dissipation and cat-
alytic efficiency we studied in this paper is thus likely to reflect the linkage between the
higher dissipation potential and the accelerated synthesis of ever more complex organic
compounds, which was already present at the origin of life. Entropy production increases
faster due to an enzyme’s activity, albeit in the microscopic world.

Within biology, we cannot find the answer to why dissipation was crucial for the
emergence of life, as it is essential for the present-day catalytic efficiency of uni–uni enzymes.
Can entropy production have an autocatalytic role too? Namely, did increased entropy
production promote the selection of the organic structures capable of increasing entropy
production? That question has yet to be answered in the biophysics or the physics of
nonequilibrium processes. The evolution of all systems in the universe may be coupled
with decreasing their free energy in the least possible time [178]. Thus, living systems and
biological macromolecules can be regarded as manifestations of physical principles about
dissipation intensity rather than ends in themselves [179].

We mainly dealt with the academic interest in answering how measured kinetic
parameters are connected to an enzyme’s entropy production. However, there is also a
practical goal of enhancing the desired activity of natural enzymes or competing with nature
in the rational design of artificial enzymes with better catalytic performance. These research
fields are still in their infancy. Microwave irradiation can enhance enzyme activity and
entropy production under chemiosmotic conditions [180]. A vortex fluidics device using
pressure waves contained within thin films displayed an increase in enzyme efficiency
for β-glucosidase and three other enzymes [181]. Faster protein motion can accelerate
catalysis, while higher catalytic efficiency and additional heat released in the reaction can
speed up the enzyme diffusion [9]. For instance, the catalysis of the exergonic enzymes
(∆G < 0) induced enhanced diffusion, which exhibited a striking proportionality to the
energy release rate [182]. Also, the enhancement in biochemical and physical parameters
can result from distal mutations that do not change individual equilibrium constants for
each catalytic step or the overall equilibrium constant of the reaction [183]. All ways and
means for hypothetic positive feedback between Gibbs energy release during enzyme
catalysis, nonthermal motion, and increased enzyme performance parameters are likely to
be strictly regulated in the cellular environment [184].

De novo enzyme design for green chemistry and medical goals has a huge poten-
tial [185–190]. It has been recently explored by combining computational methods and
directed evolution experiments [191]. Still, something needs to be added to our insights
about enzymatic catalysis. Artificial enzymes are generally inferior in catalytic efficiency
compared to their natural counterparts [187]. While the role of reorganization energy is
recognized in rational protein design [187], that is not the case with the catalytic efficiency
to dissipation proportionality for the uni–uni enzymes we described in this paper. After all
other means are employed to identify possible beneficial mutations for increasing catalytic
efficiency with a given substrate, the computer-aided enzyme design can be extended
with an additional selection for higher overall entropy production. In principle, mutations
can be predicted based on their contribution to total entropy production, not only their
contribution to transition state stabilization and reorganization energy.
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Table 8. Kinetic and thermodynamic parameters for the best NetLogo and FORTRAN results concerning the values found from experiments. The green highlight
denotes increased values, yellow denotes decreased values, and orange equals the experimental values.

Figure Enzyme Software k1 (s−1) k2 (s−1) P1 (s−1) (%P) P (s−1) k3 (s−1) k4 (s−1) k5 (s−1) k6 (s−1) k7 (s−1) k8 (s−1)

TPI
Exper&calc. 400 7.0 × 103 0.573 (6) 9.883 2.0 × 103 6.0 × 103 6.0 × 104 9.0 × 104 4 × 103 25.60

Figure 9 NetLogo 1.05 × 103 303 833 (42) 1.96 × 103 5.4 × 103 12.6 × 103 9.4 × 104 9.97 × 104 6.5 × 103 128
Figure 7 FORTRAN 1.14 × 103 126 435 (27) 1.59 × 103 1.05 × 103 6.0 × 103 6.0 × 104 6.15 × 103 937 25.60

KSI
Exper&calc. 8.3 × 104 8.6 × 104 6.22 × 103 (5)

(5) 1.16 × 105 1.8 × 105 1.7 × 106 6.4 × 105 43 1.5 × 105 5.0 × 104

Figure 12 NetLogo 2.77 × 105 3.7 × 104 7.9 × 104 (18) 4.50 × 105 4.95 × 105 7.1 × 105 1.02 × 106 16 6.9 × 104 7.7 × 104

Figure 10 FORTRAN 2.30 × 105 2.5 × 104 7.17 × 104 (13) 5.39 × 105 1.8 × 105 3.97 × 105 6.4 × 105 43 1.5 × 105 2.9 × 104

CA I
Exper&calc. 4.08 × 104 3.8 × 104 1.48 × 104 (52) 2.84 × 104 2.9 × 105 6.24 × 105 9.0 × 105 9.0 × 106 5.5 × 106 4.5 × 104

Figure S8 NetLogo 2.0 × 105 2.3 × 104 2.51 × 105(40) 6.36 × 105 4.7 × 105 6.55 × 105 2.0 × 106 9.3 × 106 8.8 × 106 1.8 × 104

Figure S7 FORTRAN 1.53 × 105 1.5 × 104 2.13 × 105 (41) 5.14 × 105 1.95 × 106 7.71 × 105 2.3 × 106 8.5 × 106 6.6 × 106 3.1 × 104

CA II
Exper&calc. 1.56 × 105 1.8 × 106 5.33 × 104 (43) 1.25 × 105 1.7 × 107 4.80 × 106 1.2 × 106 1.2 × 106 2.0 × 107 1.0 × 106

Figure 14 NetLogo 6.38 × 105 2.5 × 106 5.61 × 105 (34) 1.67 × 106 3.7 × 107 3.93 × 106 1.5 × 106 1.5 × 106 3.0 × 107 6.6 × 105

CA II T200H
Exper&calc. 9.84 × 104 5.4 × 104 4.03 × 104 (64) 6.3 × 104 3.0 × 105 2.16 × 105 2.7 × 106 2.1 × 107 1.8 × 107 9.0 × 105

Figure S9 NetLogo 6.49 × 105 6.7 × 104 4.05 × 105(46) 8.82 × 105 7.98 × 105 7.4 × 104 3.2 × 106 2.9 × 107 7.4 × 106 4.6 × 105

PC1
Exper&calc. 3.28 × 104 196 37 (5) 689 173 4.0 96 8.0

Figure S11 NetLogo 1.15 × 105 32 111 (13) 858 173 4 96 11

RTEM
Exper&calc. 1.71 × 105 1.18 × 104 185 (3) 6.76 × 103 2.8 × 103 6.0 1.5 × 103 4.4 × 103

Figure 16 NetLogo 4.07 × 105 851 1.4 × 103 (13) 1.08 × 104 2.8 × 103 6 1.5 × 103 4.7 × 103

Lac-1
Exper&calc. 5.27 × 104 2.32 × 103 1.8 × 103 (12) 1.45 × 104 4.09 × 103 50 3.61 × 103 1.72 × 103

Figure S15 NetLogo 1.98 × 105 976 3.1 × 103 (16) 1.95 × 104 4.09 × 103 50 3.61 × 103 1.76 × 103

β-galacto-
sidas

Exper&calc. 5.0 × 103 1.83 × 104 5.84 (0.2) 2.55 × 103 730 1.0 × 10−5

Figure 18 NetLogo 1.4 × 104 467 628 (4) 1.70 × 104 726 2.25 × 10−7

Figure 20 FORTRAN 1.3 × 104 61 1.12 × 103 (11) 1.04 × 104 520 0.0001

Glucose
isomerase

Exper&calc. 0.126 0.021 0.0126 (31) 0.0392 0.029 0.016
Figure S19 NetLogo 0.320 0.002 0.143 (68) 0.211749 0.068 0.088
Figure 21 FORTRAN 0.499 0.004 0.057 (48) 0.119 0.031 0.045
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12. Conclusions

Our results stress the hallmark of uni-cycle enzymes as dissipation gates. Enzymes
are not Maxwell’s demons that fight the mechanical tendency toward disorder, as Jacob
argued in his book The Logic of Life [192]. Just the opposite, enzymes open the gates for the
incomparably faster equilibration of concentrations than in their absence. When such gates
opened during biological evolution, they sped up the spontaneous free-energy transduction
into dissipative catalytic cycling by many orders of magnitude.

Selecting enzyme structures exhibiting high catalytic efficiency, kcat/KM, is the hall-
mark of biological evolution through natural selection. Together with the production
of small molecules essential for life, it is indeed an order-creating function of enzymes.
Still, it arises through opening the dissipation gates for a vast increase in dissipation. A
search to open dissipation avalanches implies random structural changes (mutations) and
a way to simultaneously fix the advantageous changes causing higher enzyme efficiency
and dissipation. Thus, random noise and the increase in overall entropy production are
prerequisites rather than hindrances to the evolution of complex life.

There are no known rules for repeating the miracle of biological evolution in increasing
or improving enzyme efficiency [174,193]. However, a better connection of observed
performance parameters with overall or partial dissipation and introducing dynamic
disorder can help find such rules. Among other enzymes, we performed simulations with
five well-known “perfect” enzymes cycling through generalized Michaelis–Menten-type
kinetics near the diffusion limit. Increased catalytic efficiency and increased total entropy
production go hand-in-hand, and there exists the scope for the further improvement
of catalytic efficiency, even for the enzyme stars of biological evolution, with entropy
production providing a thermodynamic measure of this improvement. The take-home
message is that increased catalytic efficiency is connected to higher entropy production.

The changes in enzyme activity and specificity depend on noise-channeling constraints.
Enzyme efficiency is more or less proportional to overall entropy production when we allow
less or more freedom in the choice of restrictions. The efficiency–dissipation proportionality
is perfect when we do not permit change in the driving force and equilibrium constants
in each catalytic step. When translated into biological terms, it is the requirement that
identical enzymes work in steady- or quasi-steady-state homeostatic conditions.

Dissecting entropy production contributions suggested the formation of the Michaelian
complex ES as the critical catalytic step. An increased equilibrium constant for the substrate–
enzyme association can increase the catalytic efficiency in the forward direction (S→P), the
partial entropy production of that step, and the overall dissipation better than other means
for increasing the activity for most enzymes.

Thus, within physics, we can find the answer to why dissipation was crucial for the
emergence of life, as it is essential for the present-day catalytic efficiency of uni–uni enzymes.
It is impossible to separate the enzyme catalytic rate, efficiency, or power from its overall
dissipation. The question for further research regards increased catalytic efficiency as the
outcome of higher entropy production. The proportionality between evolutionary distances,
kinetic parameters, and dissipation also merits further investigation. We postulate that
biological evolution proceeded within the laws of universal thermodynamic evolution, but
with the ability to accelerate the latter. The origin of enzymes’ prodigious catalytic power
is the synergy between thermodynamic and biological evolution. If increasing enzyme
efficiency is the natural evolutionary target for some enzymes and the target for the directed
evolution of designed enzymes, researchers can explore beneficial mutations based on their
contribution to partial and total entropy production.
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