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Abstract: The two-dimensional sample entropy marks a significant advance in evaluating the regular-
ity and predictability of images in the information domain. Unlike the direct computation of sample
entropy, which incurs a time complexity of O(N2) for the series with N length, the Monte Carlo-
based algorithm for computing one-dimensional sample entropy (MCSampEn) markedly reduces
computational costs by minimizing the dependence on N. This paper extends MCSampEn to two
dimensions, referred to as MCSampEn2D. This new approach substantially accelerates the estimation
of two-dimensional sample entropy, outperforming the direct method by more than a thousand fold.
Despite these advancements, MCSampEn2D encounters challenges with significant errors and slow
convergence rates. To counter these issues, we have incorporated an upper confidence bound (UCB)
strategy in MCSampEn2D. This strategy involves assigning varied upper confidence bounds in each
Monte Carlo experiment iteration to enhance the algorithm’s speed and accuracy. Our evaluation
of this enhanced approach, dubbed UCBMCSampEn2D, involved the use of medical and natural
image data sets. The experiments demonstrate that UCBMCSampEn2D achieves a 40% reduction in
computational time compared to MCSampEn2D. Furthermore, the errors with UCBMCSampEn2D
are only 30% of those observed in MCSampEn2D, highlighting its improved accuracy and efficiency.

Keywords: sample entropy; Monte Carlo algorithm; upper confidence bound strategy

1. Introduction

Information theory serves as a foundational framework for developing tools to rep-
resent and manipulate information [1], particularly in the realms of signal and image
processing. Within this paradigm, entropy stands out as a key concept, functioning as a
metric for quantifying uncertainty or irregularity within a system or dataset [2]. Stemming
from Shannon’s pioneering work on entropy [1], subsequent researchers have advanced
the field by introducing diverse methods. Notable examples include one-dimensional
approximate entropy (ApEn) [3,4], dispersion entropy [5], sample entropy (SampEn) [2],
and other innovative approaches. Multiscale entropy, hierarchical entropy, and their vari-
ants have been applied to various fields, such as fault identification [6,7] and feature
extraction [8], beyond physiological time series analysis.

In 1991, the concept of ApEn was introduced as a method for quantifying the irregu-
larity of time series [3]. ApEn relies on the conditional probability of the negative average
natural logarithm, specifically examining the likelihood that two sequences, initially similar
at m points, will remain similar at the subsequent point. Addressing the computational
challenges associated with self-similar patterns in ApEn, SampEn was subsequently de-
veloped, obtaining sampling points using global random sampling to represent the signal,
leading to more robust estimations [1]. Notably, in the domain of biomedical signal pro-
cessing, SampEn has been successfully employed, demonstrating its effectiveness and
applicability [9].
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Computing SampEn involves enumerating the number of similar templates within
a time series, essentially requiring the count of matching template pairs for the given
series. The direct computation of SampEn inherently has a computational complexity
O(N2), where N represents the length of the time series under analysis. To expedite
this process, kd-tree based algorithms have been proposed for sample entropy computa-

tion. These algorithms effectively reduce the time complexity to O(N2− 1
m+1 ), where m is

denoting the template (or pattern) length [10,11]. Additionally, various approaches like
box-assisted [12,13], bucket-assisted [14], lightweight [15], and assisted sliding box
(SBOX) [16] algorithms have been developed. Nonetheless, the computational complexity
for all these algorithms remains at O(N2).To tackle the challenge of computational com-
plexity, a rapid algorithm for estimating Sample Entropy using the Monte Carlo algorithm
(MCSampEn) has been introduced in [17]. This algorithm features computational costs that
are independent of N, and its estimations converge to the exact sample entropy as the num-
ber of repeated experiments increases. Experimental results reported in [17] demonstrate
that MCSampEn achieves a speedup of 100 to 1000 times compared to kd-tree and assisted
sliding box algorithms, while still delivering satisfactory approximation accuracy.

However, the MCSampEn algorithm utilizes a random sampling pattern where the
importance of each sampling point varies. The application of averaging methods in this
context leads to significant fluctuations in errors, resulting in a large standard deviation and
slow convergence of the entire process. To address this, we introduce the upper confidence
bound (UCB) strategy to set different confidence bounds for various sampling points,
assigning varying levels of importance to these points. This approach mitigates errors
caused by averaging methods, reduces the standard deviation of the MCSampEn algorithm,
accelerates the convergence speed, and significantly improves computational speed.

In this paper, we extend MCSampEn to compute two-dimensional sample entropy,
referred to as MCSampEn2D. To mitigate the challenges of convergence brought about
by MCSampEn2D, we integrate MCSampEn2D with the upper confidence bound (UCB)
strategy to reduce variance [18]. We call this refined algorithm as the UCBMCSampEn2D.
By establishing a confidence upper bound for each experimental round, we differentiate
the importance of each experiment. The higher the importance of an experiment, the
greater its assigned confidence upper bound. Conversely, for experiments with lower confi-
dence upper bounds, our objective is to minimize the errors they introduce to the greatest
extent possible.

The UCBMCSampEn2D algorithm is a notable enhancement, enabling swift conver-
gence and minimal errors, even in scenarios with a limited number of sampling points.
The UCBMCSampEn2D algorithm eliminates the need for explicit knowledge of the data
distribution. By optimistically adjusting the weights for each round of experiments and esti-
mating the upper bound of the expected value, the UCBMASampEn2D algorithm operates
without introducing additional computational burden. This algorithm continuously opti-
mizes weights through online learning [19], providing a solution without the requirement
for explicit knowledge of the data distribution. In this study, we systematically assess the
performance of the UCBMCSampEn2D algorithm across medical image and natural image
datasets. Our investigation reveals two primary advantages of the proposed UCBMCSam-
pEn2D algorithm: (1) The UCBMCSampEn2D algorithm places greater emphasis on the
importance of different rounds of experiments by assigning importance levels, leading to a
reduction in overall errors and faster convergence speed. (2) Leveraging a reinforcement
learning approach, the UCBMCSampEn2D algorithm utilizes local optima to represent true
entropy. Through the application of upper confidence bounds, it effectively addresses the
challenge of determining how to set importance levels.

Further detailed analysis and results will be provided in subsequent sections to ex-
pound upon these advantages and demonstrate the effectiveness of the UCBMCSampEn2D
algorithm in comparison to conventional methods.
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2. Fast Algorithms for Estimating Two-Dimensional Sample Entropy

In this section, we introduce the MCSampEn2D and UCBMCSampEn2D algorithms.
Before delving into the details of these approaches, we will first establish the key mathe-
matical symbols and fundamental concepts integral to understanding MCSampEn2D. This
groundwork provides a clear and comprehensive exposition of both the MCSampEn2D
and UCBMCSampEn2D algorithms.

2.1. Groundwork of Two-Dimensional Sample Entropy

Let U = {ui,j ∈ R}j=1,2,...,w
i=1,2,...,h be an image of size h×w. For all k ∈ {1, 2, . . . , h− (mh − 1)}

and l ∈ {1, 2, . . . , w − (mw − 1)}, define two-dimensional matrices Xm
k,l with size mh × mw,

named template matrices, by

Xm
k,l =


uk,l uk,l+1 . . . uk,l+(mw−1)

uk+1,l uk+1,l+1 . . . uk+1,l+(mw−1)
...

...
...

...
uk+(mh−1),l uk+(mh−1),l+1 . . . uk+(mh−1),l+(mw−1)

, (1)

where m = [mh, mw] is the embedding dimension vector [20]. We also define Xm := {Xm
a,b :

a ∈ {1, 2, . . . , h − (mh − 1)}and b ∈ {1, 2, . . . , w − (mw − 1)}}. For all k, a ∈ {1, 2, . . . , h −
(mh − 1)} and l, b ∈ {1, 2, . . . , w − (mw − 1)}, let d(Xm

k,l , Xm
a,b) be the greatest element of

the absolute differences between Xm
k,l and Xm

a,b. We denote by #E the cardinality of a set E.
Then, for fixed k and l, we count #{Xm

a,b ∈ Xm : d(Xm
k,l , Xm

a,b) ≤ r and (k− a)2 +(l − b)2 ̸= 0},
and compute

ϕm
k,l(r) =

#{Xm
a,b ∈ Xm : d(Xm

k,l , Xm
a,b) ≤ r and (k − a)2 + (l − b)2 ̸= 0}

(h − mh)(w − mw)− 1
, (2)

where r is the predefined threshold (tolerance factor). We also define ϕm(r) as

ϕm(r) =
1

(h − mh)(w − mw)

k=h−mh

∑
k=1

l=w−mw

∑
l=1

ϕm
k,l(r). (3)

Finally, SampEn2D is defined as follows [20]:

SampEn2D(U, m, r) = − log
ϕm+1(r)

ϕm(r)
, (4)

where m + 1 = [mh + 1, mw + 1]. The parameter m indicates the size of the matrices, which
are analyzed or compared along images. In this study, [20,21], m is chosen to obtain squared
template matrices, and let mh = mw ∈ Z. For all w, h ∈ Z, we denote Zw,h := {(i, j) ∈ Z2 :
1 ≤ i ≤ w, 1 ≤ j ≤ h}. The process for computing SampEn2D(U, m, r) is summarized in
Algorithm 1.

The parameter r is selected to strike a balance between the quality of the logarithmic
likelihood estimates and the potential loss of signals or image information. If r is chosen
to be too small (less than 0.1 of the standard deviation of an image), it leads to poor
conditional probability estimates. Additionally, to mitigate the influence of noise on the
data, it is advisable to opt for a larger r. Conversely, when r exceeds 0.4 of the standard
deviation, excessive loss of detailed data information occurs. Therefore, a trade-off between
large and small r values is essential. For a more in-depth discussion on the impact of these
parameters in SampEn2D, please refer to [20].
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Algorithm 1 Two-dimensional sample entropy

Require: Sequence U := {ui,j : 1 ≤ i ≤ w, 1 ≤ j ≤ h}, s ⊂ Zw,h template length m and
threshold r.

1: procedure SAMPEN2D(U, s, m, r)
2: Set count = 0,
3: Set N0 = #s,
4: for i = 1 to N0 do
5: for j = i to N0 do
6: (k, l) = si; (a, b) = sj,
7: Xm

i,j = U[i : i + m − 1][j : j + m − 1],
8: Xm

a,b = U[a : a + m − 1][b : b + m − 1],
9: if d(Xm

i,j, Xm
a,b) ≤ r then

10: count = count + 1,
11: return count

2.2. A Monte Carlo-Based Algorithm for Estimating Two-Dimensional Sample Entropy

The SampEn is fundamentally defined as − log(B/A), where B represents the number
of matching template pairs of length m, and A represents the number of matching template
pairs of length m + 1. The most computationally intensive step in calculating SampEn
involves determining the ratio B/A for templates of lengths m and m + 1. Notably, A

N(N−1)

(resp. B
N(N−1) ) denotes the probability of template matches of length m (resp. m + 1), and

the ratio B/A can be interpreted as a conditional probability. The statement indicates that
the computation time of the MCSampEn method becomes independent of the data size
and, instead, depends on the number of sampling points N0 and the number of repetitions
N1. This complexity is denoted as O(N1(N0 + N2

0 )) [17].
The objective of the MCSampEn algorithm [17] is to approximate this conditional

probability for the original dataset by considering the conditional probability of a randomly
subsampled dataset. Specifically, the MCSampEn randomly selects N0 templates of length
m and N0 templates of length m + 1 from the original time series. It subsequently computes
the number of matching pairs in the selected templates of length m (resp. m + 1), denoted
as Ã (resp. B̃). This selection process is repeated N1 times, and the average value of
{Ãk : k = 1, 2, . . . , N1} (resp. {B̃k : k = 1, 2, . . . , N1}), represented as ĀN1 (resp. B̄N1),
is then calculated. Finally, − log(B̄N1 /ĀN1) is employed to approximate the complexity
measurement − log(B/A) for the time series. The entire process can be expressed succinctly
using the following formula:

ĀN1 :=
1

N1

N1

∑
k=1

Ãk, and B̄N1 :=
1

N1

N1

∑
k=1

B̃k,

MCSampEn := − log
B̄N1

ĀN1

, (5)

where Ãk (resp. B̃k) means the number of matching pairs in the selected templates of length
m (resp. m + 1) in in the k-th experiment.

When extending the MCSampEn algorithm to process two-dimensional data, a random
sampling step is essential at the outset to acquire N data points. The technique employs
a specific sampling strategy to sample N0 positive integer sets, denoted as V = {vi : i =
1, 2, . . . , N0} and vi ≤ (h − mh)× (w − mw). Subsequently, for each vi, compute k = vi/h
and l = vi%h, which indicates a two-dimensional matrix Xm

k,l ∈ Xm. Then, we randomly
select N0 templates of size m and N0 templates of length m + 1 from the original two-
dimensional data. It subsequently computes the number of matching pairs, with tolerant
factor r, in the selected templates of length m (resp. m + 1), denoted as ϕ̃m (resp. ϕ̃m+1).
This selection process is repeated N1 times, and the average value, represented as ϕ̄m

N1
(resp.
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ϕ̄m+1
N1

), is then calculated. Replacing ĀN1 and B̄N1 by ϕ̄m
N1

and ϕ̄m+1
N1

in (5), respectively, we
obtain an approximation of SampEn2D. This process is summarized in Algorithm 2, which
calls Algorithm 1.

Algorithm 2 Two-dimensional Monte Carlo sample entropy (MCSampEn2D)

Require: Sequence U := {ui,j : 1 ≤ i ≤ w, 1 ≤ j ≤ h}, template length m, threshold r,
Sample numbers N0 and experimental rounds N1.

1: procedure MCSAMPEN2D(U, m, r, N0, N1)
2: Set ϕ̄m

N1
= 0 and ϕ̄m+1

N1
= 0,

3: for k = 1 to N1 do
4: Set Cor = {(hs, ws) : 1 ≤ s ≤ N0} where hs and ws are selected on U pixel

coordinates with uniform distribution,
5: Compute ϕ̃m

k by calling SampEn2D(U, Cor, m, r),
6: Compute ϕ̃m+1

k by calling SampEn2D(U, Cor, m + 1, r),
7: ϕ̄m

N1
= ϕ̄m

N1
+ 1

N1
∑N1

k=1 ϕ̃m
k ,

8: ϕ̄m+1
N1

= ϕ̄m+1
N1

+ 1
N1

∑N1
k=1 ϕ̃m+1

k

9: entropy = − log
ϕ̄m+1

N1
ϕ̄m

N1
,

10: return entropy

It is easy to check the computational cost of MCSampEn2D is O(N1N2
0 ) when m is

fixed. Through a proof process similar to that of Theorem 5 in [17], we can see that the

output of MCSampEn2D, − log
ϕ̄m+1

N1
ϕ̄m

N1
, is approximating the output of SampEn2D with the

rate O(N−1
1 log N1) in the sense of almost sure convergence when N0 is fixed. Furthermore,

in our examination of MCSampEn2D, we observed variability in the significance of the
randomly subsampled dataset. This is manifested as large fluctuations in the errors between
the values of ϕ̃m (or ϕ̃m+1) obtained in each of the N1 rounds of experiments and their
respective average values, ϕ̄m

N1
(or ϕ̄m+1

N1
). Such fluctuations amplify the errors in the

output of MCSampEn2D. This phenomenon made us realize that if we could capture
the importance of different experimental rounds and use this importance to calculate a
weighted average of ϕ̃m (or ϕ̃m+1) obtained in the N1 rounds of experiments, we could
achieve a faster algorithm than MCSampEn2D.

2.3. Monte Carlo Sample Entropy Based on the UCB Strategy

The UCB strategy is a refinement in the field of optimization, particularly tailored for
the intricate problem of the multi-armed bandit. This problem, often conceptualized as
a machine or ’gambler’ with multiple levers (or ’arms’), each offering random rewards
on each interaction, demands finding the optimal lever that maximizes reward yield with
minimal experimentation. The UCB strategy’s core principle is to meticulously balance the
pursuit of exploration and exploitation. Exploration, in this context, signifies the willing-
ness to experiment with untested options, while exploitation underscores the preference
to capitalize on the rewards offered by gamblers with a proven track record of high per-
formance. This balancing act, inherent in the UCB strategy, aids in optimizing the overall
reward yield by efficiently determining the optimal balance between exploring new op-
tions and exploiting known high-reward choices, thereby minimizing the number of trials
required to reach the optimal solution [22,23].

In the preceding section, we presented the MCSampEn2D for estimating
two-dimensional sample entropy. The precision of MCSampEn2D is contingent upon
factors such as the number of experimental rounds, denoted as N1, the quantity of sam-
pled points, N0, and the representativeness of these sampled points. Given that distinct
experimental rounds involve the selection of different sampled points, their representa-
tiveness inherently varies. In Equation (5), the weight assigned to each round is statically
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set to 1/N1. To enhance accuracy, we can dynamically adjust the weights based on the
representativeness of the sampled points in each round.

The adjustment of weights based on the representativeness of the sampled points
serves to refine the estimation of sample entropy in each round, thereby enhancing the
overall precision of the algorithm. This approach aims to ensure that the sampling process
more accurately reflects the inherent characteristics of the dataset.

In the realm of decision-making under limited resources, the multi-armed bandit
problem represents a classic challenge in reinforcement learning, involving a series of
choices with the goal of maximizing cumulative rewards. The UCB strategy emerges as a
crucial approach for tackling the multi-armed bandit problem. Its central concept revolves
around dynamically assessing the potential value of each choice [24,25], seeking a balance
between the exploration of unknown options and the exploitation of known ones.

At the core of the UCB strategy is the principle of making selections based on the
upper confidence bounds. In this strategy, each arm represents a potential choice, and the
true reward value of each arm remains unknown. In Algorithm 2, we refer to the process
executed from step 5 to step 6 as one epoch. Under the UCB strategy, we conceptualize
each epoch as an arm, which means that N1 epochs represent N1 arms, and dynamically
update its upper confidence bound based on a designated reward function for each epoch.
The UCB strategy involves the following three steps at each time step.

Firstly, the average reward for each round of epochs is calculated by

q̂(i) =
X(i)
K(i)

,

where q̂(i) signifies the average reward for the i-th round. In our design, each epoch is
utilized only once per round, thus we set K(i) = 1 for all i ∈ {1, 2, . . . , N1}. Here, X(i)
represents the reward for the current epoch, estimated from historical data.

To design X(i), we define the following notations. For all 1 ≤ i ≤ N1, let r̄i be the
average of the sample entropy of the preceding i − 1 rounds, ri, be the entropy computed
for the ongoing round, and ei := r̄i−1 − ri, where r̄0 := 0. Considering that different images
inherently possess distinct entropies, we introduce the error ratio eri =

ei
r̄i−1

to characterize
the error situation for the i-th round. This ratio is then used as an input to the reward
function X(i). In formulating the reward function, our objective is to assign higher rewards
to rounds where errors are closer to 0. Multiple choices exist for defining the reward
function R, provided that it aligns with the design specifications of the particular scenario.
Various mathematical functions, such as the cosine function and normal distribution
function, among others, are viable options for constructing the reward function. The
selection of a specific function is contingent upon its ability to meet the desired criteria and
effectively capture the intended behavior in the context of the given problem. Then, we set
the average reward q̂(i) for the i-th round of epochs formula as

q̂(i) = X(i) := a × R(b × eri), (6)

where a is a scaling factor for the reward and b controls the scale of eri.
Secondly, we calculate the upper confidence limit boundary for each round of

epochs by

ucbi = q̂(i) + c
√

2 ln(i), (7)

where ucbi represents the upper confidence bound for the i-th round and set K(i) as a
constant equal to 1, we use a parameter c to control the degree of exploration. Denote
Ũ := {ucbi : i ∈ {1, 2, . . . , N1}}, which is the set of UCB.
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Thirdly, for the set Ũ, we employ the softmax function to determine the proportional
weight each epoch round should have, thereby replacing the average proportion used in
MCSampEn2D. We then calculate ĀUcb and B̄Ucb for the UCBMCSampEn2D by

ĀŨ =
N1

∑
k=1

Sk Ãk, B̄Ũ =
N1

∑
k=1

Sk B̃k,

where S = softmax(Ũ) and the UCBMCSampEn can be calculated by

UCBMCSampEn = − log
B̄Ũ
ĀŨ

.

The pseudocode for the entire UCBMCSampEn is outlined in Algorithm 3.

Algorithm 3 Monte Carlo sample entropy based on UCB strategy

Require: Sequence U := {ui,j : 1 ≤ i ≤ w, 1 ≤ j ≤ h}, template length m, threshold r,
Sample numbers N0 and epoch numbers N1.

1: procedure UCBMCSAMPEN(U, m, r, N0, N1)
2: Set ĀŨ = 0 and B̄Ũ = 0,
3: for k = 1 to N1 do
4: Set Cor = {(hs, ws) : 1 ≤ s ≤ N0} where hs and ws are selected on U pixel

coordinates with uniform distribution,
5: Compute Ãk by calling SampEn2D(U, Cor, m, r),
6: Compute B̃k by calling SampEn2D(U, Cor, m + 1, r),
7: Compute ek = − log B̃k

Ãk
, em = 1

k ∑k
1 ek,

8: Compute erk =
em−ek

em
,

9: Compute ucbk = a × R(b × erk) + c
√

2 ln(i),
10: Set Ũ = {ucbk : k ∈ (1, 2, . . . , N0)},
11: Set S = softmax(Ũ),
12: for k = 1 to N1 do
13: ĀŨ = ĀŨ + Ãk × Sk,
14: B̄Ũ = B̄Ũ + B̃k × Sk,

entropy = − log B̄Ũ
ĀŨ

15: return entropy

Because the averaging strategy in the MCSampEn method does not consider the
varying importance of sampling points across different epochs, it can result in significant
errors. Although the UCB strategy introduces bias [26], it can mitigate the errors introduced
by the averaging strategy, transforming the uniform strategy in the original method into
an importance-based strategy. This adjustment aligns the sampling more closely with the
actual characteristics of the data.

3. Experiments

This section is dedicated to thoroughly evaluating the effectiveness of the UCBMC-
SampEn algorithm by implementing it across various domains. All of our experiments
were carried out on the Linux platform. The platform utilizes an Intel(R) Xeon(R) Gold
6248R processor with a clock frequency of 3.00 GHz.

3.1. Datasets

To facilitate a thorough investigation, our experiments incorporate a range
of sequences characterized by distinct features. These sequences are categorized
primarily into datasets encompassing medical image data and natural image data.
The medical image dataset, named Warwick QU dataset, is derived from the Colon Histol-
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ogy Images Challenge Contest for Gland Segmentation (GlaS), organized by MICCAI 2015,
where participants developed algorithms for segmenting benign and diseased tissues [27].
It contains 165 samples extracted from H&E-stained colon histology slides. The slides
were derived from 16 different patients, from which malignant and benign visual fields
were extracted. The dataset example is illustrated in Figure 1.

(a) (b)

(c) (d)

Figure 1. Examples of reference images include: images (a,b) in the Warwick QU Dataset,
which represent benign and malignant cases, respectively, each with a size of 580 × 440; image
(c) is a natural image with a size of 775 × 522; and image (d), called the wallpaper, with a size of
3000 × 3000, is used to verify the method’s performance on large-scale data.

3.2. Main Results

In this section, we validate the effectiveness of the UCBMCSampEn2D, compar-
ing its computational time and computational error with the MCSampEn2D algorithm.
Figure 2 illustrates the variation in entropy mean error with the number of epochs N1 using
sampling points N0 on the Warwick QU dataset and natural image dataset. The formula
for calculating the mean error is as follows:

MeanError =
∑N

i=1 |di − ei|
W

,

where W represents the number of images in the dataset, di is the entropy of the i-th image
calculated using the direct algorithm, and ei is the entropy of the i-th image calculated
using the MCSampEn2D (or UCBMCSampEn2D) algorithm. The results demonstrate that
the UCBMCSampEn2D algorithm converges more quickly, significantly reducing the error
in comparison to the MCSampEn2D algorithm.

In Equation (6), we discussed that the reward function R offers flexibility, providing
multiple choices to meet the design requirements of the scenario. In Figure 3, we conducted
experiments using two different reward functions, and the results indicate that, with
reasonable parameter settings, different reward functions R exhibit similar trends in average
error changes. This suggests that the UCB strategy has a certain degree of generality and is
not confined to specific forms. The remaining experiments were all conducted using the
cosine function.

Figure 2 provides a detailed view of the situation with sampling points set at N0 = 128.
Based on the experimental results, it is evident that the UCBMCSampEn2D algorithm
demonstrates more rapid convergence with an increase in the number of experiments (N1)
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compared to the MCSampEn2D. In Figure 2, with N0 = 128, the UCBMCSampEn2D algo-
rithm initially exhibits a larger error during the first 150 rounds of experiments. However,
as the number of experiments increases, the UCBMCSampEn2D algorithm quickly reduces
the error and achieves a lower convergence error than the MCSampEn2D. This substantial
improvement in accuracy is consistently observed across various values of N0.

200 400 600 800 1000 1200 1400 1600 N1

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Mean Error
MC  N0 = 128
UCBMC N0 = 128
MC  N0 = 256
UCBMC N0 = 128
MC  N0 = 512
UCBMC N0 = 512

(a) Warwick QU dataset

200 400 600 800 1000 1200 1400 1600 N1

0.014

0.016

0.018

0.020

0.022

Mean Error
MC  N0 = 128
UCBMC N0 = 128
MC  N0 = 256
UCBMC N0 = 128
MC  N0 = 512
UCBMC N0 = 512

(b) Natural datasets

Figure 2. (a) depicts the average error variation in MCSampEn2D and UCBMCSampEn2D experi-
ments on the Warwick QU dataset with changing N1, where parameters are set to m = 2 and r = 0.3;
(b) depicts the average error variation in MCSampEn2D and UCBMCSampEn2D experiments on
natural datasets with changing N1, where parameters are set to m = 2, r = 0.3, a = 5 and b = 1. The
reward function is set as the cosine function.
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Figure 3. The average error variation in different reward function R with changing N1 on the Warwick
QU dataset, where parameters are set to m = 2 and r = 0.3. The parameters for the cosine function
in the reward function are set as a = 8 and b = 0.5, while for the normal distribution function, the
parameters are set as a = 8 and b = 2.

This phenomenon is elucidated in Section 2.3 of our algorithm, where the first i rounds
of epochs are utilized to calculate the average entropy, simulating the true entropy. When
i is small, there is not enough historical data to support it, the average entropy at this
point introduces a relatively large error. However, since the entropy calculated from the
previous i rounds is relatively close, the reward obtained for these initial rounds in (6)
tends to be too high, leading to a larger error. As i increases, the average entropy more
closely approximates the true entropy, and the weights assigned subsequently become
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more accurate in reflecting the real situation, thereby enabling the algorithm to converge
more effectively.

Table 1 details the specifics of the UCBMCSampEn2D algorithm. Throughout the
experiment, we maintained a consistent template length of m = 2 and a fixed similarity
threshold of r = 0.3. Adjustments were made only to the number of sampling points, N0,
and the number of epochs, N1.

Table 1. The mean error comparison among different algorithms under the same amount of time.
The UCB parameters were set at a = 8 and b = 1.

Method N0/N1 Mean Error (Proportion) Mean Time (s)

SampEn2D / / 402.98

MCSampEn2D
128/1300 13.21 × 10−3 (0.906 × 10−3) 4.91
256/1100 6.78 × 10−3 (0.465 × 10−3) 4.29
512/900 3.69 × 10−3 (0.253 × 10−3) 4.87

UCBMCSampEn2D
128/1300 4.80 × 10−3 (0.329 × 10−3) 4.91
256/1100 3.96 × 10−3 (0.271 × 10−3) 4.29
512/900 2.78 × 10−3 (0.191 × 10−3) 4.87

In Table 2, under identical time constraints and with the same values of N0 and N1, the
UCBMCSampEn2D algorithm demonstrates an error that is only 30% of the error observed
with the MCSampEn2D algorithm when N0 is small. Additionally, when N0 is large, the
UCBMCSampEn algorithm consistently outperforms the MCSampEn2D algorithm in terms
of error reduction.

We can see that the MCSampEn2D algorithm has a significantly improved computa-
tion speed compared to the traditional SampEn2D, with an acceleration ratio exceeding
a thousand-fold. Additionally, we conducted a time comparison between the UCBMC-
SampEn2D algorithm and the MCSampEn2D algorithm, setting the error below 5 × 10−3.
The UCBMCSampEn2D algorithm also demonstrated advantages, as shown in Table 2. In
comparison to the MCSampEn2D algorithm, the UCBMCSampEn2D algorithm reduced
the computation time by nearly 40%. Moreover, for larger-sized sequences, the UCBMC-
SampEn2D algorithm exhibited a significant advantage over the MCSampEn2D algorithm
in terms of computation time and error.

Table 2. The comparison of time and error for image (d) in Figure 1 under different methods.

SampEn2D MCSampEn2D UCBMCSampEn2D

time(s) 161,322 1.5816 0.9057

error / 1.499 × 10−3 0.442 × 10−3

Simultaneously, we conducted numerical experiments on randomly generated binary
images with a size of 512 × 512. The generation function MIX(p) [20] had a parameter
p = 0.9. The results are shown in Table 3. Our method continues to demonstrate advantages
even in the presence of high data randomness.

Table 3. The comparison of time and error for randomly generated binary images under
different methods.

SampEn2D MCSampEn2D UCBMCSampEn2D

time (s) 230.546 1.4046 0.9773

error / 5.016 × 10−3 3.362 × 10−3
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4. Discussion
4.1. Analysis of the UCB Strategy

In Section 2.2, we observed that the MCSampEn2D algorithm utilizes a random sam-
pling method to select N0 points and computes sample entropy across N1 epoch numbers
by averaging the outcomes. The chosen points’ proximity to key image features affects
their representativeness for the entire image, thereby influencing their relative importance.
When sampled points accurately capture critical information, the error in that epoch num-
ber is reduced, resulting in sample entropy values that more closely approximate the true
entropy. On the other hand, if the points fail to effectively capture information in the
image, the resultant error in that round is magnified. The MCSampEn2D algorithm, which
simply averages results across all rounds without weighing their importance, is adversely
affected by these variations. This situation results in larger errors during convergence,
particularly influenced by the number of sampled points N0. Additionally, due to its inher-
ent random sampling method, the standard deviation of the MCSampEn2D algorithm’s
results varies significantly with each epoch, leading to slower convergence and extended
computation times.

We have addressed the MCSampEn2D algorithm’s limitation in accurately reflecting
the importance of epochs by integrating the UCB strategy. This strategy assigns signif-
icance to different epochs, thus modulating their individual impact on the final result.
To compare the effectiveness of these approaches, we conducted 50 epochs each for MC-
SampEn2D and UCBMCSampEn2D using images from a natural dataset, specifically of
size 3000 × 3000. We calculated the average and standard deviation of the error for the
k-th round (k ∈ {1, 2, . . . , N1}). The results, displayed in Figures 4 and 5, reveal that the
standard deviation of MCSampEn2D shows significant fluctuations across different rounds,
while UCBMCSampEn2D maintains a more consistent performance. Furthermore, the
error values for MCSampEn2D are consistently higher compared to those of UCBMC-
SampEn2D. This demonstrates that UCBMCSampEn2D not only achieves smaller errors
than MCSampEn2D within the same timeframe but also effectively mitigates the issue of
MCSampEn2D’s inability to adequately capture the importance of each epoch.

Furthermore, we observed larger errors in the initial rounds of epochs with UCBM-
CSampEn2D. This can be attributed to the fact that the average entropy, serving as a
temporary anchor, does not initially consider the historical context. Consequently, this
leads to an overly high reward, q̂(i), in Equation (6) which, in turn, causes the confidence
bound, ucbi, in Equation (7) to be inconsistent. As a result, this inconsistency contributes to
larger errors in the early rounds of epochs.

4.2. The Impact of Parameters on the UCB Strategy

In Section 2.3, where we introduced the formula for UCBMCSampEn2D, it was ob-
served that the parameters a and b significantly impact the convergence speed and error
of the algorithm. Since eri in (6) reflects the proportion of bias, an unreasonable bias
proportion could render the reward function ineffective. We conducted 50 experiments
using wallpaper images and computed the standard deviation of the error for the k-th
round (k ∈ 1, 2, . . . , N1), as shown in Figure 6. The results in Figure 6 demonstrate that the
effectiveness of UCBMCSampEn2D is influenced by the parameters a and b. Appropriate
selection of the values for a and b can reduce the standard deviation of the errors. Based
on our experimental tests, we recommend using a ∈ (7, 9) and b ∈ (0.4, 0.6). However,
adjustments may still be necessary based on the image size and the number of sampling
points N0.
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Figure 4. The error standard deviation variation for the wallpaper, where N0 = 128, N1 = 300, where
the UCB parameters were set at a = 8 and b = 1.
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Figure 5. The mean error variation for the wallpaper, where the UCB parameters were set at a = 8
and b = 1.
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Figure 6. The error standard deviation variation for the wallpaper, where N0 = 128 and N1 = 300.

4.3. The Application of Sample Entropy in Medical Image Dataset

In the Warwick QU dataset, all pathological slices can be categorized into two classes:
Benign and Malignant. We computed the entropy using the UCBMCSampEn2D algorithm
for the dataset and utilized an SVM for training and classification, yielding the results
presented in Table 4. It is evident that the entropy calculated by the UCBMCSampEn2D
algorithm exhibits distinct trends for the two types of pathological slices, demonstrating
potential in pathological slice diagnosis and positioning it as a viable feature for aiding
future work in this field. The findings suggest that sample entropy can serve as a valuable
supplementary characteristic in the context of pathological diagnosis.

Table 4. The UCBMCSampEn2D results for some different categories of pathological slices in Warwick
QU dataset.

Image Name UCBMCSampEn2D Benign or Malignant

testB_1 0.317812 Benign
train_15 0.529283 Benign
train_47 0.672241 Benign
testA_17 0.762295 Benign
testA_24 1.06252 Benign

testA_57 2.37266 Malignant
testA_59 2.1973 Malignant
testA_8 2.36954 Malignant

testA_19 2.10283 Malignant
testB_7 2.07255 Malignant

5. Conclusions

This paper introduces two accelerated algorithms for estimating two dimensional
sample entropies, termed MCSampEn2D and UCBMCSampEn2D. These algorithms were
rigorously tested on both medical and natural datasets. The study’s significance is man-
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ifold: firstly, the MCSampEn2D algorithm, an extension of the MCSampEn algorithm,
substantially improves the computational efficiency for two-dimensional sample entropy.
Further, we delve into the convergence challenges faced by the MCSampEn2D algorithm
and adopt the UCB strategy to mitigate these issues. This strategy, as applied in our study,
prioritizes the varying significance of different epochs, with its upper confidence bounds
effectively mirroring this importance. The experiments detailed in Section 3 validate the
efficacy of both the MCSampEn2D and UCBMCSampEn2D algorithms.

Overall, due to the UCBMCSampEn2D algorithm’s impressive performance in com-
puting sample entropy, it demonstrates considerable promise for analyzing diverse images
while minimizing computational time and error.
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