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Abstract: In the literature, estimation of weighted extropy is infrequently considered. In this paper,
some non-parametric estimators of weighted extropy are given. The validation and comparison of the
estimators are implemented with the help of simulation study and data illustration. The usefulness
of the estimators is demonstrated using real data sets.
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1. Introduction

The concept of extropy and its use has been explored rapidly in the recent years. It
measures the uncertainty contained in the probability distributions and is considered as the
complimentary dual of entropy introduced in [1]. The entropy measure is shift-independent,
that is, it is the same for both X and X + b and it cannot be applied in some fields such
as neurology. Thus, in [2], the notion of weighted entropy measure was introduced. The
authors pointed out that occurrence of an event has an impact on uncertainty in two ways.
It presents both quantitative and qualitative information. That is, it initially reveals the
probability of an event occurring and later demonstrates its efficacy in achieving qualitative
features of a goal. It is important to note that the information obtained when a device fails
to operate or a neuron fails to release spikes in a specific time interval differs significantly
from the information obtained when such events occur in other equally wide intervals. This
is why there is a need, in some cases, to employ a shift-dependent information measure
that assigns varying measures to these distributions.The importance of the presence of
weighted measures of uncertainty was exhibited in [3].

The concept of extropy for a continuous rv X has been presented and discussed across
numerous works in the literature. The differential extropy defined by [4] is

J(X) = −1
2

∫ +∞

0
f 2
X(x)dx. (1)

One can refer to [5] for the extropy properties of order statistics and record values. The
applications of extropy in automatic speech recognition can be found in [6]. Various litera-
ture sources have presented a range of extropy measures and their extensions. Analogous
to weighted entropy, in [7], the concept of weighted extropy was introduced (WE) in the
literature. It is given as

Jw(X) = −1
2

∫ +∞

0
x f 2

X(x)dx. (2)

Variable x in the integral emphasizes the weight related to the occurrence of event
X = x. Here, it assigns more significance to large values of X. In the literature, extropy,
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its different versions and their applications have been studied by several authors (see,
for instance, [8–10]). In particular, a unified version of extropy in classical theory and in
Dempster–Shafer theory was studied in [11].

There are several papers available in the literature that delve into the estimation
of extropy and its various versions. Kernel estimation on the functionals of the density
function was proposed in [12]. The optimal bandwidth for kernel density functionals
is provided in [13]. In [14], a brief explanation was established on optimal bandwidth
estimators of kernel density functionals for contaminated data. In [15], estimators of extropy
were proposed, and also its application was worked on by testing uniformity. In [16], the
concept of length biased sampling in estimating extropy was approached. Research on non-
parametric estimation using dependent data is also well-explored in the literature. Work
by [17] explained the recursive and non-recursive kernel estimation of negative cumulative
extropy under the α-mixing dependence condition. Recently, in [18], the kernel estimation
of the extropy function was discussed using α-mixing-dependent data. Moreover, in [19],
the log kernel estimation of extropy was introduced.

Even if there are several works available in the literature related to the estimation of
extropy, little has been published on WE and its estimation until now. There are situations
in which we are forced to use WE instead of extropy. Unlike extropy, the qualitative charac-
teristics of information are also represented here. In [20], the significance of employing WE
as opposed to regular extropy in certain scenarios was demonstrated. There are instances
where certain distributions possess identical extropy values but exhibit distinct WE values.
In such situations, it becomes necessary to opt for WE. The estimators of WE can also
be used in the selection of models in the reliability analysis. Here, we tried to find some
estimators for WE and validated it using simulation study and data analysis.

The paper is organized as follows: In Section 2, we introduce the log kernel estimation
of WE. In Section 3, an empirical kernel smoothed estimator of WE is given. A simulation
study is conducted to evaluate the estimators, and we also compare log kernel to kernel
estimators of WE in Section 4. Section 5 is devoted to the real data analysis to examine the
proposed estimators. Finally, we conclude the study in Section 6.

2. Log Kernel Estimation of Weighted Extropy

In this section, we introduce the concept of log kernel-based estimation of WE.
Let us define an rv X with unknown pd f fX(x). We assume that X is defined on

R and fX(x) is continuously differentiable. We suppose {Xi; 1 ≤ i ≤ n} is a sequence of
identically distributed rvs. The most commonly used estimator of fX(x) is the kernel
density estimator (KDE), given by [21,22] as

f̂X(x) =
1

nh

n

∑
i=1

K

(
x − Xi

h

)
, (3)

where K(x) is the kernel function which satisfies the following conditions:

•
∫

R K(x)dx = 1,
•

∫
R xK(x)dx = 0,

•
∫

R x2K(x)dx = 1,
•

∫
R K2(x)dx < +∞.

Here, bandwidth parameter h → 0 and nh → +∞ as n → +∞.
When probability density functions are estimated in a non-parametric way, standard

KDE is frequently used. However, when we deal with data that fit distributions with heavy
tails, multiple modes, or skewness, particularly those with positive values these estimators
may lose their effectiveness. In all of these scenarios, applying a transformation, we can
yield more consistent results. Such transformation involves a logarithmic transformation
to create a non-parametric KDE. An important aspect of the logarithmic transformation
is its ability to compress the right tail of the distribution. The obtained KDE are called
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logarithmic KDE (denoted as L − KDE) (refer to [23]). Let us define Y = log(X), Yi =
log(Xi); i = 1, 2, . . . , n and let fY(y) be the pd f of Y. The L − KDE is defined as

f̂log(x) =
1

nh

n

∑
i=1

1
x
K

(
logx − logXi

h

)
=

1
n

n

∑
i=1

L(x, Xi, h),
(4)

where L(x, z, h) = 1
xhK(log( x

z )
1
n ) is the log kernel function with bandwidth h > 0 at

location parameter z. For any z, h ∈ (0,+∞), L(x, z, h) satisfies conditions L(x, z, h) ≥ 0 for
all x ∈ (0,+∞) and

∫ +∞
0 L(x, z, h)dx = 1.

For any X ∈ (0,+∞),

Bias( f̂log(x)) =
h2

2

[
fX(x) + 3x f (1)X (x) + x2 f (2)X (x)

]
+ o(h2), (5)

Var( f̂log(x)) =
Ck
nh

fX(x)
x

+ o
(

1
nh

)
, (6)

where Ck =
∫

R K2(z)dz.
We let (X1, X2, . . . , Xn) be a sample of identically distributed observations. We obtain

the L − KDE for WE by using the estimator defined in Equation (4).
The L − KDE for the WE function is

Ĵw
n (X) = −1

2

∫ +∞

0
x f̂ 2

log(x)dx, (7)

which again can be alternatively expressed as

= −1
2

∫ +∞

0
dy
∫ +∞

y
f̂ 2
log(x)dx. (8)

The following theorem gives the expression for bias and variance of the L − KDE of WE.

Theorem 1. Assume that the conditions given in Section 2 are satisfied in the case of log kernel
function L(x) and bandwidth h. Then, the bias and variance of L − KDE Ĵw

n (X) are given,
respectively, as

Bias(Ĵw
n (X)) ⋍ −

∫ +∞

0
dy
∫ +∞

y

h2

2

[
fX(x) + 3x f (1)X (x) + x2 f (2)X (x)

]
fX(x)dx + o(h2), (9)

Var(Ĵw
n (X)) ⋍

Ck
nh

∫ +∞

0
dy
∫ +∞

y

f 3
X(x)

x
dx + o

(
1

nh

)
, (10)

where Ck =
∫

R K2(z)dz.

Proof. The proof is omitted as it is similar to [19].

The following theorem shows that the proposed estimator is consistent.

Theorem 2. Ĵw
n (X) is a consistent estimator of Jw(X), where Ĵw

n (X) and Jw(X) are defined in
Equations (2) and (7). Also, let L(x) be the log kernel function and h be the bandwidth which
satisfies the conditions given in Section 2. Then, we can say that, as n tends to +∞,

Ĵw
n (X) = −1

2

∫ +∞

0
dy
∫ +∞

y
f̂ 2
log(x)

p→−1
2

∫ +∞

0
dy
∫ +∞

y
f 2
X(x)dx = Jw(X). (11)
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Proof. Since the proof is similar to that of [19], it is omitted.

The below theorem shows that the L−KDE of WE is integratedly uniformly consistent
in the quadratic mean estimator of Jw(X).

Theorem 3. Consider log kernel function L(x) and bandwidth parameter h that fulfills the con-
ditions outlined in Section 2. If Ĵw

n (X) is L − KDE according to Equation (7), then Ĵw
n (X) is

integratedly uniformly consistent in the quadratic mean estimator of Jw(X).

Proof. As the proof resembles that of [19], it is omitted here.

Here, we provide the expression for the optimal bandwidth of Ĵw
n (X).

Optimal Bandwidth

Here, we offer the expression for the optimal bandwidth using mean integrated square
error (MISE). The MISE of Ĵw

n (X) is given as

MISE(Ĵw
n (X)) = E

 +∞∫
0

(
Ĵw

n (X)− Jw(X)
)2

dx. (12)

Using the expression for bias and variance given in Equations (9) and (10), the MISE of
Ĵw

n (X) is given as

MISE(Ĵw
n (X)) ⋍

∫ +∞

0

[(
−h2

2

∫ +∞

0
dy
∫ +∞

y

[
fX(x) + 3x f (1)X (x) + x2 f (2)X (x)

]
fX(x)dx

)2

+
Ck
nh

∫ +∞

0
dy
∫ +∞

y

f 3
X(x)

x
dx

]
dx + o

(
h4
)
+ o
(

1
nh

)
.

(13)

The asymptotic MISE (AMISE) can be obtained by ignoring the higher-order terms and is
given as

AMISE =
h4

4

∫ +∞

0

[(∫ +∞

0
dy
∫ +∞

y

[
fX(x) + 3x f (1)X (x) + x2 f (2)X (x)

]
fX(x)dx

)2
]

dx

+
1

nh

∫ ∞

0

[
Ck

∫ +∞

0
dy
∫ +∞

y

f 3
X(x)

x
dx
]
dx.

(14)

The optimal bandwidth is then attained after minimizing AMISE with respect to h,
and it is given by

h =

( ∫ +∞
0

[
Ck
∫ +∞

0 dy
∫ +∞

y
f 3
X(x)

x dx
]
dx∫ +∞

0

[(∫ +∞
0 dy

∫ +∞
y

[
fX(x) + 3x f (1)X (x) + x2 f (2)X (x)

]
fX(x)dx

)2]
dx

) 1
5

n− 1
5

= o(n− 1
5 ).

3. Empirical Estimation of Weighted Extropy

Non-parametric estimation is a widely employed technique in various research papers
for estimating extropy and its associated measures. One common approach within non-
parametric estimation is the use of kernel density estimation, which is a popular method in
the literature used in order to obtain smoothed estimates.
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In this section, we introduce the empirical method for estimating pd f to assess WE.
This estimation is achieved through the utilization of a non-parametric KDE (see [24,25]).
The empirical kernel smoothed estimator for WE is

Ĵw
n1(X) = −1

2

∫ +∞

0
x f̂ 2

X(x)dx

= −1
2

n−1

∑
i=1

∫ Xi+1:n

Xi:n

x f̂ 2
X(x)dx

= −1
2

n−1

∑
i=1

X2
i:n − X2

i+1:n
2

f̂ 2
X(Xi:n)

= −1
4

n−1

∑
i=1

(
X2

i:n − X2
i+1:n

)
f̂ 2
X(Xi:n),

where fX(.) is the KDE given by [21] and Xi:n is the ith order statistic of the random sample.

Example 1. Let samples X′
i s be from the distribution with pd f = 2x, 0 < x < 1. Then, X2 follows

standard uniform distribution. Moreover, Zi+1 =
X2

i:n−X2
i+1:n

2 is a beta distribution with mean and
variance, respectively, as 1

2(n+1) and n
4(n+1)2(n+2) . Then, the mean and variance of Ĵw

n1(X) are
given by

E
(
Ĵw

n1(X)
)
= − 1

4(n + 1)

n−1

∑
i=1

f̂ 2
X(Xi:n), (15)

and

V
(
Ĵw

n1(X)
)
=

n
16(n + 1)2(n + 2)

n−1

∑
i=1

f̂ 4
X(Xi:n),

where f̂X(.) is defined in Equation (3).
Table 1 shows the values of mean and variance of the samples of Example 1. Hence, it is

clear that the values of mean is changing and the variance is tending to zero when the sample size
increases. It is therefore clear that the mean and variance of empirical estimators are influenced by
the size of the sample.

Table 1. Mean and Variance of Ĵw
n1(X) for the distribution with pd f = 2x, 0 < x < 1.

n Mean Variance

10 −0.58602 0.03039
20 −0.57820 0.02182
30 −0.55622 0.01888
40 −0.56181 0.01083
50 −0.52369 0.00777

100 −0.52269 0.00697
500 −0.49937 0.00347

Example 2. Suppose X follows Rayleigh distribution with parameter 1. Then, X2 follows expo-

nential distribution and Zi+1 =
X2

i:n−X2
i+1:n

2 is distributed as exponential distribution with mean =
1

2(n−i) , for i = 1, 2, . . . , n − 1. The mean and variance of Ĵw
n1(X) are

E
(
Ĵw

n1(X)
)
= −1

4

n−1

∑
i=1

f̂ 2
X(Xi:n)

n − i
, (16)

V
(
Ĵw

n1(X)
)
=

1
16

n−1

∑
i=1

f̂ 4
X(Xi:n)

(n − i)2 . (17)
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From Table 2, it is clear that the variance is decreasing to zero and the mean is increasing in
the case of Rayleigh distribution with parameter one, which indicates the dependence of empirical
estimators on sample size.

Table 2. Mean and Variance of Ĵw
n1(X) for Rayleigh distribution with parameter = 1.

n Mean Variance

10 −0.46220 0.02453
20 −0.33956 0.01626
30 −0.29213 0.00173
40 −0.28919 0.00121
50 −0.26677 0.00094

100 −0.25975 0.00024
500 −0.22331 0.00008

4. Simulation Study

We manage a simulation study to evaluate the performance of the presented estima-
tors. Random samples are generated corresponding to different sample sizes from some
standard distributions, and then both bias and root mean square (RMSE) are calculated
for 10,000 samples. Bandwidth parameter h is determined using the plug-in method as
proposed in [26].

To enable a comparison between L − KDE and KDE of WE, we again propose a KDE
for WE using Equation (3). The estimator is given by

Ĵw
nk(X) = −1

2

∫ +∞

0
x f̂ 2

X(x)dx

= −1
2

∫ +∞

0
dy
∫ +∞

y
f̂ 2
X(x)dx,

(18)

where f̂X(x) is the KDE given in [21]. Using the consistency property of the KDE, it is
clear that the proposed estimator in Equation (18) for WE is also consistent. To lay the
ground work for comparison, we generate samples from exponential distribution, log
normal distribution, a heavy-tailed distribution and uniform distribution. The Gaussian log
transformed kernel and the Gaussian kernel are the kernel functions used for simulation.

From the above Tables 3–5, it is clear that the RMSE and bias of both estimators are
decreasing with sample size. The decreasing RMSE indicates that estimator predictions are
approaching the true values with larger sample sizes, demonstrating enhanced accuracy
and efficiency in estimation. The decreasing bias also shows the accuracy of the estimators.

Table 3. Estimated value (H), |bias| and RMSE of Ĵw
n (X), Ĵw

nk(X), and Ĵw
n1(X) from standard expo-

nential distribution with Jw(X) = −0.125.

Ĵw
n (X)

n 50 100 150 200 250

H −0.1183 −0.11886 −0.11904 −0.11909 −0.11978

|bias| 0.00670 0.00614 0.00596 0.00596 0.00591

RMSE 0.01760 0.01303 0.01048 0.00948 0.00836

n 300 350 400 450 500

H −0.11952 −0.11975 −0.12025 −0.12028 −0.12061

|bias| 0.00548 0.00525 0.00475 0.00472 0.00439

RMSE 0.00836 0.00774 0.00707 0.00707 0.00632
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Table 3. Cont.

Ĵw
nk(X)

n 50 100 150 200 250

H −0.13364 −0.13254 −0.13088 −0.13002 −0.12998

|bias| 0.00864 0.00754 0.00588 0.00502 0.00498

RMSE 0.01732 0.01140 0.00948 0.00874 0.00855

n 300 350 400 450 500

H −0.12989 −0.12976 −0.12965 −0.12946 −0.12955

|bias| 0.00489 0.00476 0.00465 0.00446 0.00455

RMSE 0.00852 0.00832 0.00827 0.00817 0.00807

Ĵw
n1(X)

n 50 100 150 200 250

H −0.16379 −0.14418 −0.13857 −0.13496 −0.13285

|bias| 0.03879 0.01918 0.01357 0.00996 0.00785

RMSE 0.05059 0.02280 0.01643 0.01224 0.01

n 300 350 400 450 500

H −0.13234 −0.13111 −0.13043 −0.13005 −0.12976

|bias| 0.00734 0.00611 0.00543 0.00505 0.00476

RMSE 0.00948 0.00836 0.00824 0.00807 0.00807

Table 4. Estimated value (H), |bias| and RMSE of Ĵw
n (X), Ĵw

nk(X), and Ĵw
n1(X) from lognormal

distribution with Jw(X) = −0.14105.

Ĵw
n (X)

n 50 100 150 200 250

H −0.1437 −0.14243 −0.14199 −0.14199 −0.14189

|bias| 0.00265 0.00139 0.00095 0.00095 0.00084

RMSE 0.01581 0.01095 0.00894 0.00894 0.00707

n 300 350 400 450 500

H −0.14175 −0.14121 −0.14127 −0.14155 −0.1414

|bias| 0.0007 0.00016 0.00012 0.00011 0.00006

RMSE 0.00632 0.00450 0.00447 0.00423 0.00411

Ĵw
nk(X)

n 50 100 150 200 250

H −0.14621 −0.14375 −0.14241 −0.14207 −0.14144

|bias| 0.00517 0.00271 0.00136 0.00103 0.00039

RMSE 0.01612 0.01140 0.00836 0.00707 0.00632

n 300 350 400 450 500

H −0.14139 −0.14138 −0.14127 −0.14126 −0.14093

|bias| 0.00037 0.00034 0.00023 0.00022 0.00012

RMSE 0.00632 0.00547 0.00547 0.00547 0.00547

Ĵw
n1(X)

n 50 100 150 200 250

H −0.223 −0.17574 −0.16491 −0.15942 −0.15744

|bias| 0.08195 0.03469 0.02386 0.01837 0.01639

RMSE 0.06103 0.05049 0.03286 0.02738 0.02645

n 300 350 400 450 500

H −0.15401 −0.15218 −0.15072 −0.15015 −0.14888

|bias| 0.01296 0.01113 0.00967 0.00911 0.00783

RMSE 0.02000 0.01581 0.01414 0.01449 0.01183
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Table 5. Estimated value (H), |bias| and RMSE of Ĵw
n (X), Ĵw

nk(X), and Ĵw
n1(X) from standard uniform

distribution with Jw(X) = −0.25.

n 50 100 150 200 250

Ĵw
n (X)

H −0.2097 −0.21562 −0.21826 −0.22059 −0.22285

|bias| 0.04030 0.03438 0.03174 0.02941 0.02715

RMSE 0.05347 0.04289 0.03781 0.03464 0.03146

n 300 350 400 450 500

H −0.22277 −0.22426 −0.22511 −0.22575 −0.22668

|bias| 0.02723 0.02574 0.02489 0.02425 0.02332

RMSE 0.03114 0.02966 0.02810 0.02756 0.02607

Ĵw
nk(X)

n 50 100 150 200 250

H −0.22576 −0.22786 −0.22829 −0.23056 −0.23045

|bias| 0.02424 0.02214 0.02171 0.01955 0.01944

RMSE 0.04123 0.03162 0.02828 0.02588 0.02569

n 300 350 400 450 500

H −0.23201 −0.23276 −0.23325 −0.23399 −0.23379

|bias| 0.01799 0.01724 0.01675 0.01621 0.01601

RMSE 0.02302 0.02167 0.02097 0.01974 0.01974

Ĵw
n1(X)

n 50 100 150 200 250

H −0.22669 −0.22713 −0.22892 −0.23084 −0.23194

|bias| 0.02331 0.02287 0.02108 0.01916 0.01806

RMSE 0.04147 0.03271 0.02915 0.02569 0.02366

n 300 350 400 450 500

H −0.23168 −0.23195 −0.23317 −0.23335 −0.23361

|bias| 0.01832 0.01805 0.01683 0.01665 0.01639

RMSE 0.02345 0.02213 0.02121 0.02024 0.01974

The comparison of bias and RMSE between the presented estimators in the simulation
for WE reveals that L − KDE slightly outperforms KDE in certain scenarios, particularly
when dealing with heavy-tailed distribution and skewed distributions.

5. Data Analysis

In this section, we performed a comparison study and validated the accuracy of the
proposed estimators using real data analysis. In each of the three scenarios, the bandwidth
parameter employed for estimation was derived from the bandwidth proposed in [26].

5.1. Data 1

The comparison between L − KDE and KDE of WE was demonstrated using the
data given in [27]. The data demonstrate the quantity of thousands of cycles to failure for
electrical appliances in a life test.

The graphical representation in Figure 1 indicates the presence of slight skewness
in the dataset. We fit exponential distribution with parameter 0.640 to the data. Upon
analyzing the Q-Q plot in Figure 2, it becomes evident that the exponential distribution is a
suitable model for the observed data. The p-value obtained for the Kolmogorov–Smirnov
test (0.124) is 0.390, which reveals that exponential distribution is a good fit to the data. The
estimate obtained using maximum likelihood estimation is −0.125.
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Figure 1. Histogram for “Failure time of Electrical Appliances” data.
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Figure 2. The Q-Q plot depicting the goodness of fit for an exponential distribution.

The estimate of WE earned using log kernel and kernel estimation are Ĵw
n (X) = −0.127,

Ĵw
nk(X) = −0.144 and Ĵw

n1(X) = −0.148. Hence, from the closeness of estimates to the
maximum likelihood estimate of WE, it is clear that estimator Ĵw

n (X) performs better than
the other two estimators.

5.2. Data 2 (Heavy-Tailed Data)

Again, we illustrate the comparison between the three estimators using the data
from [28]. The data represent the remission times (months) of 137 cancer patients. A
kurtosis value of 15.195 is obtained. It is exceptionally high and suggests a very heavy-
tailed or leptokurtic distribution. Hence, log normal distribution is fitted to the data and
the parameters obtained are

µ̂ = 1.756, σ̂ = 1.066.

Figure 3 indicates the presence of rightly skewed heavy-tailed data. Upon examination
of the Q-Q plot presented in Figure 4, it is clear that the data align well with the characteris-
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tics of log normal distribution, indicating that the log normal model is an appropriate fit
for the observed dataset. Using the Kolmogorov–Smirnov test with a statistic of 0.06 and a
p-value of 0.591, it is clear that log normal distribution is the best fit here.
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Figure 3. Histogram for “Remission time of cancer patients” data.
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Figure 4. The Q-Q plot depicting the goodness of fit for log normal distribution.

The estimates of WE using the proposed estimators and by maximum likelihood
estimation are calculated for these data. We obtain Ĵw

n (X) = −0.1346, Ĵw
nk(X) = −0.1418,

and Ĵw
nk(X) = −18.952. The estimate of WE using maximum likelihood estimation is

secured as −0.1323, which signifies that the L − KDE of WE performs better than the WE
estimated with standard kernel estimation methods when dealing with heavy-tailed data.

5.3. Data 3 (The Time until Failure of the Three Systems)

The data are obtained from [29]. The observations represent three reparable systems
observed until the time of their 12th failure. They clarify that the three identically designed
systems exhibit distinct behaviors, with their repair rates demonstrating a decreasing trend
indicative of improvement in one system, a stable linear trend in another system, and an
increasing trend signifying deterioration in the third system. Figure 5 shows the density
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plot of the three systems. Table 6 shows the value of suggested estimators of WE for
these systems.
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Figure 5. Density plot of “Failure time of three systems”.

Table 6. Values of Ĵw
n (X), Ĵw

nk(X) and Ĵw
n1(X) for the three systems.

Ĵw
n (X) Ĵw

nk(X) Ĵw
n1(X)

System 1 −0.09638 −0.12426 −0.14345

System 2 −0.19953 −0.20431 −0.19666

System 3 −0.39227 −0.41138 −0.30690

According to [30], the system or component which is said to have high uncertainty is
less reliable. In accordance with this concept, we can infer that System 3 is less reliable than
System 1 and System 2 with regard to the three proposed estimators. Using repair rates,
in [29], System 3 was also mentioned as the deteriorating system. This example vividly
demonstrates how the estimation of WE is useful in choosing a reliable system among the
several available competing models.

6. Conclusions

In this article, we considered non-parametric estimation of WE. L − KDE and the
empirical kernel smoothed estimator for WE were depicted. The bias, variance, optimal
bandwidth and some properties of the L − KDE of the extropy function were also estab-
lished here. KDE was also proposed to enable a comparison with the proposed L − KDE.
We ensured the accuracy of the three estimators by evaluating their performance using mea-
sures such as bias and RMSE. We determined that in some situations, for example, when
dealing with heavy tailed or skewed data sets, the L − KDE of WE performs slightly better
than the other two estimators. The real data analyses also involved an assessment of the
performance of the estimator and its utility in reliability modeling. We also demonstrated
how WE is beneficial when choosing a reliable system from various competing models,
highlighting its practicality in the selection process.
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