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Abstract: Joint entity and relation extraction methods have attracted an increasing amount of attention
recently due to their capacity to extract relational triples from intricate texts. However, most of the
existing methods ignore the association and difference between the Named Entity Recognition (NER)
subtask features and the Relation Extraction (RE) subtask features, which leads to an imbalance in
the interaction between these two subtasks. To solve the above problems, we propose a new joint
entity and relation extraction method, FSN. It contains a Filter Separator Network (FSN) module
that employs a two-direction LSTM to filter and separate the information contained in a sentence
and merges similar features through a splicing operation, thus solving the problem of the interaction
imbalance between subtasks. In order to better extract the local feature information for each subtask,
we designed a Named Entity Recognition Generation (NERG) module and a Relation Extraction
Generation (REG) module by adopting the design idea of the decoder in Transformer and average
pooling operations to better capture the entity boundary information in the sentence and the entity
pair boundary information for each relation in the relational triple, respectively. Additionally, we
propose a dynamic loss function that dynamically adjusts the learning weights of each subtask in each
epoch according to the proportionality between each subtask, thus narrowing down the difference
between the ideal and realistic results. We thoroughly evaluated our model on the SciERC dataset
and the ACE2005 dataset. The experimental results demonstrate that our model achieves satisfactory
results compared to the baseline model.

Keywords: subtask interaction balance; local feature extraction; dynamic loss function; BERT

1. Introduction

Joint entity and relation extraction aims at extracting both entities and relations from
a given text and finally connecting the semantic links between entities through relations,
presenting the relation triples in the text in the form of (s, r, o). As subtasks of information
extraction, joint entity and relation extraction provide theoretical and technical support for
many research areas, such as knowledge graph construction [1], text summarization [2],
and question answering [3].

The majority of the early research on Named Entity Recognition (NER) and Relation
Extraction (RE) was realized through pipeline-based methods, such as the models proposed
by Zelenko et al. [4] in 2002, Zhou et al. [5] in 2005, and Chan and Roth et al. [6] in 2011.
However, this approach has two fatal drawbacks. First, it separates the two subtasks
of NER and RE without taking into account the interaction between these two subtasks.
Second, this method generally performs the NER task before the RE task, so it is susceptible
to receiving the effect of error propagation [7].

In order to address problems that are difficult to solve with conventional pipeline-
based methods, researchers have begun to explore joint entity and relation extraction
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methods, such as the models proposed by Yan et al. [8] in 2021, Ma et al. [9] in 2022,
and Ma et al. [10] in 2022. Although these methods have made much progress in joint
entity and relation extraction, they ignore the association and difference between the NER
subtask features and the RE subtask features, which leads to an imbalance in the interaction
between these two subtasks. As shown in Figure 1, the NER subtask features and RE
subtask features have partial overlap in the input features. If these two features are not
effectively separated, it can lead to the over-training of one subtask and the inadequate
extraction of features for the other subtask.

NER INPUT RE

Figure 1. Subtask feature distribution. Pink represents the distribution of Named Entity Recognition
(NER) features in the input features. Green represents the distribution of Relation Extraction (RE)
features in the input features.

Therefore, in order to address the above issues, we propose a new joint entity and
relation extraction method, FSN. In order to balance the subtask interactions, we set up a
Filter Separation Network (FSN) module, which first filters out the hidden state information
and the memory state information in the sentence through the LSTM in both directions,
and then separates the fused state information of the sentence into the features that are only
related to the NER, the features shared by the two subtasks, and the features that are only
related to the RE through the separation operation. Finally, the features related to the NER
task and the features related to the RE task are obtained through the stitching operation. In
order to be able to better extract the local feature information of the two subtasks separately,
by adopting the idea of decoder construction in Transformer and pooling operations, we
designed a Named Entity Recognition Generation (NERG) module to capture the boundary
information of all entities in a sentence as well as a Relation Extraction Generation (REG)
module to capture the entity pair boundary information corresponding to each relation
in a sentence. We evaluated our model on the ACE2005 and SciERC datasets. Numerous
experiments demonstrate that our model outperforms other models.

In summary, our contribution is as follows:

(1) We propose a FSN module that employs a two-directional LSTM to filter and separate
the information contained in sentences as well as a splicing operation to merge similar
features, thus solving the problem of interaction imbalance between subtasks in joint
entity and relation extraction.

(2) We propose a NERG module and a REG module, which better capture the boundary
information of all entities in a sentence and the entity pair boundary information cor-
responding to each relation in a sentence, respectively, by adopting pooling operations
and the design ideas of the decoder in Transformer, thus enabling better extraction of
local feature information for each subtask.
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(3) We propose a dynamic loss function that dynamically adjusts the learning weights of
each subtask in each epoch according to the proportionality of losses between each
subtask, thus narrowing down the difference between the ideal and realistic results.

(4) We conducted extensive experiments on the ACE2005 and SciERC datasets, which
demonstrated that our method achieves better results compared to the baseline model.
Further ablation studies and analyses confirm the validity of each module construct
in our model.

2. Related Work

The majority of the early research used a pipeline-based method before exploring
joint entity and relation extraction methods, such as those utilized by Zelenko et al. [4]
in 2002, Zhou et al. [5] in 2005, and Chan and Roth et al. [6] in 2011. This method can
be separated into two different tasks: NER and RE. It initially extracts every entity from
the input text before predicting the relations between every pair of entities. Nevertheless,
this method suffers from two significant flaws. First, it divides the two tasks of NER and
RE without taking into account their interaction, and second, it is susceptible to mistake
propagation [7].

In order to address the issues of conventional pipeline-based methods, researchers have
begun to explore joint entity and relation extraction methods. These can be divided into two
main categories: feature engineering-based methods and neural network-based methods.

The feature engineering-based method first transforms the raw data into features
that express the essence of the problem and then applies these features to the model to
improve the model performance, such as in the models proposed by Kate et al. [11] in 2010,
Yu et al. [12] in 2010, Miwa et al. [13] in 2014, and so on. However, this method relies heavily
on Natural Language Processing (NLP) tools in the process of acquiring features, requires a
large amount of manpower and specialized domain knowledge, and suffers from the same
problem of error propagation, which ultimately affects the results of joint extraction.

Due to the excellent feature learning ability of neural networks [14], neural network-
based methods are gradually applied to joint entity and relation extraction. We categorize
these methods into two primary categories based on the research lines adopted by the
current neural network-based methods.

Shared parameters-based methods. These methods allow each subtask to have an
independent decoder, and information interaction is achieved by letting subtasks
share sequence-encoding information among themselves, such as the models proposed
by Miwa et al. [15] in 2016, Dai et al. [16] in 2019, Yuan et al. [17] in 2020, Shen et al. [18]
in 2021, Xiong et al. [19] in 2022, and so on. However, it is exceptionally difficult for such
methods to explore the interaction between two subtasks in depth.

Joint decoding-based method. This method usually superimposes a unified decoder
on the sequence coding layer, which is directly decoded to obtain the relational triple infor-
mation. Examples include the models proposed by Wang et al. [20] in 2020, Ren et al. [21] in
2021, Yan et al. [8] in 2021, Ma et al. [9] in 2022, Ma et al. [10] in 2022, and so on. However,
this method requires the design of complex decoding architectures, which prevents each
subtask from adequately extracting local features.

It can be seen that both of the above methods have fatal flaws and cannot effectively
solve the problem proposed in this paper. Therefore, in order to solve the above problem,
we designed a filter separation network. It first filters the hidden state information as
well as the memory state information from each word to the next word in the forward
and reverse directions of the sentence, then adopts the idea of partitioning to classify the
fusion state information into features related to NER only, features shared by the two
subtasks, and features related to RE only, and finally realizes the interaction balance of
the two subtasks through the splicing operation. In addition, we designed the NERG and
REG modules to further capture the local feature information in the NER and RE tasks,
respectively. We conducted extensive experiments on the ACE2005 and SciERC datasets,
and the experimental results demonstrate the validity of our model design.
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3. Methodology

We will describe our model design in this section. The general structure of our model is
shown in Figure 2, which consists of an Encoder module, a Filter Separator Network (FSN)
module, a Named Entity Recognition Generation (NERG) module, and a Relation Extraction
Generation (REG) module. For each given sentence S = ω1ω2 . . . ωn, we first generate the
sentence representation through the Encoder module, then feed the sentence representation
to the FSN module to obtain the information related to NER and the information related to
RE, and then finally feed these two kinds of information into the NERG module and the
REG module, respectively, so as to complete the extraction of the entities in the sentence as
well as the relation triples.

Figure 2. General model architecture.

3.1. Encoder Module

Here, we use the pre-trained model BERT-Base-Cased [22] as an encoder for our
model. For each given sentence, the module first encodes the sentence into a sequence
of token representations (notated as H ∈ Rn×dn ). For the NERG module, we transmit
the token representation sequence H generated by the encoder to two independent FFNs
(Feed-Forward Networks) to generate the feature He1 representing the start boundary of
the entity and the feature He2 representing the end boundary of the entity, respectively, as
expressed in Equation (1).

He1 = We1H + be1

He2 = We2H + be2
(1)

where We1/e2 ∈ Rdh×dh and be1/e2 ∈ Rdh are trainable weights and biases, respectively.
For the REG module, we send the token representation sequence H generated by the

encoder to two independent FFNs (Feed-Forward Networks) to generate the feature Hr1
representing the start boundary of the entity pair and the feature Hr2 representing the end
boundary of the entity pair, respectively, as expressed in Equation (2).

Hr1 = Wr1H + br1

Hr2 = Wr2H + br2
(2)

where Wr1/r2 ∈ Rdh×dh and br1/r2 ∈ Rdh are trainable weights and biases, respectively.
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3.2. Filter Separator Network (FSN) Module

The structure of the FSN module is shown in Figure 3. The FSN module first utilizes
the properties of LSTM to extract the hidden state information and memory state infor-
mation from each word to the next word in the sentence using LSTM in both directions.
Then, the hidden state information and memorized state information obtained by inputting
the same word into the LSTM in both directions are fused, thereby obtaining the fused-state
feature X = x1x2 . . . xn for the sentence. The separation operation is then used to separate
the fusion state into features related only to NER, shared features, and features related only
to RE. Finally, we splice the shared features with the features related to NER only and RE
only to obtain the features related to NER in the sentence and the features related to RE in
the sentence, respectively.

Figure 3. Filter Separator Network (FSN) module.

3.2.1. Filter

Since the hidden state information in LSTM captures the information of the current
time step and passes this information to the next time step, it enables continuous modeling
of sequence data; and the memory state information controls the flow and retention of
information, which allows the model to selectively forget and retain the information, thus
enabling the capture of long-term dependencies as well as a better prediction of future
sequences. Therefore, we use two-direction ground LSTM to capture sentence bi-directional
hidden state information as well as memorized state information. The specific formula is
shown in Equation (3).

H1t+1, C1t+1 = LSTM(ωt, H1t, C1t)

H2n−t, C2n−t = LSTM(ωn−t−1, H2n−t−1, C2n−t−1)
(3)

where ωt denotes the i-th word in the sentence S. H1t+1 and C1t+1 denote the hidden state
information and memorized state information from ωt to ωt+1, respectively. H2n−t and
C2n−t denote the hidden state information and memorized state information from ωn−t−1
to ωn−t, respectively.

In order to extract all the information in the sentence related to the NER task and the RE
task, we fuse H1t+1, C1t+1, H2n−t, and C2n−t, thus obtaining the fusion state information
of the sentence xt. The specific formula is shown in Equation (4).
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xt = H1t+1 + C1t+1 + H2n−t + C2n−t (4)

3.2.2. Separator

Since the fusion state information X = x1x2 . . . xn contains information related both to
the NER task and the RE task, which in most cases will contain each other, it is difficult
to extract these two types of information independently. Therefore, we adopt the idea of
separation to separate the fusion state information into three types of features, namely
features related only to NER, µe, shared features, µs, and features related only to RE, µr.
The exact formula is shown in Equation (5).

µe = X[0, 1/3]

µs = X[1/3, 2/3]

µr = X[2/3, n]

(5)

where X[0,1/3] denotes the features in the first one-third of the fused state information;
X[1/3, 2/3] denotes the features in the middle one-third of the fused state information; and
X[2/3, n] denotes the features in the last one-third of the fused state information.

Since the features associated with the NER task contain both µe and µs, and the features
associated with the RE task include both µr and µs, for each sub-task, we use a splicing
operation. The two features are spliced and finally the features Hner related to the NER task
and Hre related to the RE task are obtained. The exact formula is shown in Equation (6).

Hner = Wes(µe : µs) + bes

Hre = Wsr(µs : µr) + bsr
(6)

3.3. Named Entity Recognition Generation (NERG) Module

The NERG module is shown in Figure 4. In order to better extract all entities in a
sentence, we use a feature He1 associated with the start boundary of the entity and a feature
He2 associated with the end boundary of the entity to represent the boundary information
of all entities in the sentence. In order to target the boundary information of entities more
accurately, we adopt the design idea of the decoder in the Transformer [23] model to
capture the maximum features of entity boundary information, He1_ and He2_, as well as to
allow them to be associated with the features Hner that are relevant to the task of NER. The
specific flow of the module is as follows.

First, in order to interact the feature He1 associated with the start boundary of the
entity and the feature He2 associated with the end boundary of the entity, we apply the
Hadamard product operation to He1 as well as He2 to generate a unified table feature of
entity boundary information UFner. The exact formula is shown in Equation (7).

UFner(i, j) = Wner(He1,i • He2,j) + bner (7)

where • represents the Hadamard product, and He1,i and He2,j are the feature representa-
tions of the tokens ωi and ωj, respectively.

Then, in order to capture the maximum association of the entity boundary information
with the NER features, we use the maximum pooling operation to extract the maximum
entity boundary features from the unified table features. The exact formula is shown in
Equation (8).

He1_ = We1_maxpoole1(UFner) + be1_

He2_ = We2_maxpoole2(UFner) + be2_
(8)
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Figure 4. Named Entity Recognition Generation (NERG) module.

Next, we adopted a design idea based on the decoder in Transformer [23]. Multi-
head self-attention is first used to capture the maximum intrinsic association of entity
boundaries between entities in a sentence. Then, we use the multi-head attention method
to allow the maximum entity boundary information in the sentence to fully interact with
the features Hner that are relevant to the task of NER to mine the information that can
target the entity boundary in the NER task. Finally, we fuse the obtained information with
the original entity boundary information to obtain the new entity boundary information.
The specific formula is shown in Equation (9).

He1_/e2_ = MultiHeadSel f Att(UFner)

He1_/e2_ = MultiHeadAtt(He1_/e2_, Hner, Hner)

He1/e2 = He1/e2 + He1_/e2_

(9)

Finally, we again use the Hadamard product operation to obtain the unified table
features UFner_ of the entity boundary information and perform table filling to generate
the NER task. The specific formula is shown in Equation (10).
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UFner_(i, j) = Wner_(He1,i • He2,j) + bner_

̂tablener(i, j) = so f tmax(ReLU(UFner_))

tablener(i, j) = argmaxl∈Lner
( ̂tablener(i, j))

(10)

where ̂tablener(i, j) denotes the initial table features for the named body recognition task,
and tablener(i, j) denotes the labeling results of the entities ωi···j.

3.4. Relation Extraction Generation (REG) Module

The REG module is shown in Figure 5. We use the features Hr1 and Hr2 to represent
the entity pair start boundary and entity pair end boundary for each relation in the sentence.
In order to be able to target the entity pair boundary information corresponding to each
relation more accurately, we adopt the design idea of the decoder in the Transformer [23]
model to capture the association of the entity pair boundary information maximal features
Hr1_ and Hr2_ of each relation with the sequence of sentence token representations H. In
addition, in order to fuse the features associated with the RE task Hre, we use an average
pooling operation to fuse Hre into each table entry in the RE task. The specific flow of the
module is as follows.

Figure 5. Relation Extraction Generation (REG) module.
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First, in order to correlate the entity-pair start boundary information and entity-pair
end boundary information with each other, we perform a Hadamard product operation
on Hr1 and Hr2 to generate a table of entity-pair boundary information (i.e., a unified
table feature) UFre for each relation in the sentence. The specific formula is shown in
Equation (11).

UFre(i, j, r) = Wre(Hr1,i,r • Hr2,j,r) + bre (11)

where • represents the Hadamard product, and Hr1,i,r and Hr2,j,r denote the feature repre-
sentations of tokens ωi and ωj of relation r, respectively.

Then, since the determination of the boundary information of subject and object in the
relational triple is closely related to the semantic information of the sentence, we adopt the
maximum pooling operation here to extract the maximum boundary information from the
entity hidden in UFre. The specific formula is shown in Equation (12).

Hr1_ = Wr1_maxpoolr1(UFre) + br1_

Hr2_ = Wr2_maxpoolr2(UFre) + br2_
(12)

Next, we use the same idea based on the decoder in Transformer [23]. Multi-head
self-attention is first used to capture the interconnection of entity pair boundary information
between relational triples in a sentence. Then, we use a multi-head attention method to
allow the maximum entity pair boundary information in the sentence to interact sufficiently
with the sequence of sentence token representations H to more accurately target the entity
pair boundaries of each relational triple in the sentence. Finally, we fuse the obtained
information with the original entity pair boundary information to become the new entity
pair boundary information. The specific formula is shown in Equation (13).

Hr1_/r2_ = MultiHeadSel f Att(UFre)

Hr1_/r2_ = MultiHeadAtt(Hr1_/r2_, H, H)

Hr1/r2 = Hr1/r2 + Hr1_/r2_

(13)

Finally, since the new entity pair boundary information does not fuse the feature Hre,
which is relevant to the RE task, we apply an average pooling operation to Hre to compress
its embedded feature information into a single word. Finally, it is fused into each table
entry in the new unified table feature UFre_, and table filling is performed for each table
entry to generate the RE task. The specific formula is shown in Equation (14).

Havg = Wavgavgpoolre(Hre) + bavg

UFavg_(i, j, r) = Wavg_(Havg_,i,r • Havg_,j,r) + bavg_

UFre_(i, j, r) = Wre_(Hr1_,i,r • Hr2_,j,r) + bre_

t̂ablere(i, j, r) = so f tmax(ReLU(UFre_ + UFavg_))

tablere(i, j, r) = argmaxl∈Lre
(t̂ablere(i, j, r))

(14)

where t̂ablere(i, j, r) denotes the initial table features for the relation extraction task, and
tablere(i, j, r) denotes the labeling results of token pairs (ωi,ωj) for relation r.

3.5. Loss Function

The loss function of our model is as follows. For each given training set, the loss
function L that guides the model during training consists of two parts: Lner denotes the
loss function for the NER task and Lre denotes the loss function for the RE task. In addition,
we perform a Sigmoid operation on the values of Lner and Lre to dynamically control the
learning weights of the NER task and the RE task.
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Lner = −
n

∑
i=1

n

∑
j=1

yi,jlogPi,j

Lre = −
n

∑
i=1

n

∑
j=1

|R|

∑
r=1

yi,j,rlogPi,j,r

L =
exp(Lner)

exp(Lner) + exp(Lre)
L

ner
+

exp(Lre)

exp(Lner) + exp(Lre)
L

re

(15)

where (i, j) denotes the index of (ωi, ωj) labels in the NER task; (i, j, r) denotes the index of
(ωi,ωj) labels with relation r in the RE task; and both Lner and Lre use the cross-entropy
loss function.

4. Experiments
4.1. Experimental Settings
4.1.1. Datasets

We evaluated our model on the ACE2005 [24] dataset as well as the SciERC [25]
dataset. The ACE2005 dataset was collected from a variety of sources, including news
articles and online forums. This dataset was built on top of the ACE2004 dataset and is
often used as a benchmark test for NER and RE methods. In the ACE2005 dataset, seven
entity categories were defined and six relation categories were defined for each pair of
entities. The SciERC dataset is derived from 500 abstracts taken from papers in the field
of artificial intelligence, which include annotations on scientific entities, their relations,
and co-reference clusters. The dataset is predefined with six scientific entity types and
seven relation types. The purpose of this dataset is to provide a benchmark test dataset for
evaluating the performance of NER and RE tasks. The specific content distribution of these
two datasets is shown in Table 1.

Table 1. Statistics of datasets. |E| and |R| denote the number of entity types and the number of
relation types, respectively.

Dataset
Sentences

Entities Relations |E| |R|
Train Dev Test

ACE2005 10,051 2424 2050 38,287 7070 7 6
SciERC 1861 275 551 8094 4684 6 7

4.1.2. Evaluation Metrics

We use precision, recall, and micro-F1 as our evaluation metrics. For NER, a prediction
is considered correct only if the predicted entity boundaries as well as types match the
ground truth exactly; for RE, a prediction is considered correct only if the predicted entity
boundaries as well as relation types in the relational triple match the ground truth exactly;
and for RE+, a prediction is considered correct only if the predicted entity boundaries and
entity types as well as relation types in the relational triple match the ground truth exactly.
In addition, for a fair model comparison, we discuss only the case where the encoder is
BERT-Base-Cased [22] on the ACE2005 dataset, and only the case where the encoder is
SciBERT [26] on the SciERC dataset.

4.1.3. Baselines

We compare the model with the following joint entity and relation extraction models:
SPE [27], MRC4ERE++ [28], TRIMF [18], UNIRE [29], PURE [30], PFN [8], TablERT [9],
TablERT-CNN [10], MGE [19], and PL-Marker [31].

Most of the experimental results of these baseline models were copied directly from
their original papers.
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4.1.4. Implementation Details

Our experiments were carried out on an Ubuntu 18.04.6 LTS workstation with a
single A40. We used the Adam [32] optimizer for model training. The learning rate was
1 × 10−5 on the ACE2005 dataset and 3 × 10−5 on the SciERC dataset. The number of
training epoch was 100. The batch size of the training set was set to 4. The batch size of the
validation and test sets was set to 6. We set the maximum length of the input sentence to
100. The other parameters were randomly initialized.

4.2. Main Experimental Results

Table 2 demonstrates the performance comparison of our model with other benchmark
models. From Table 2, it can be seen that our model NER’s F1 scores on the ACE2005
dataset and SciERC dataset are 0.4% and 0.4% lower than the F1 scores of the best model,
respectively. However, our model achieved optimality on RE and RE+. This is due to the
fact that previous models have focused more on the performance enhancement of the NER
task and have not fully explored the effect of the subtask interaction balance between the
entity and relation on the relational triple extraction. We set up the FSN module to separate
the features related only to the NER task and the features related only to the RE task, so as
to accomplish the NER task and the RE task so that they fully interact with each other, and
then to achieve the intrinsic correlation between entity and relation. This is a testament to
the strength of our FSN module design.

Table 2. Results of the main experiments on the ACE2005 and SciERC datasets. * denotes results
generated from source code. ♢ denotes that the model leverages the cross-sentence information. The
best results are shown in bold and the second-best results are underlined. BERT-Based-Cased [22]
and SciBERT [26] were used on the ACE2005 and SciERC datasets, respectively.

Dataset Model NER RE RE+

ACE2005

SPE 87.2 66.7 63.2
MRC4ERE++ 85.5 - 62.1

TriMF ♢ 87.6 66.5 62.8
PFN 85.5 * - 58.6 *

PURE 88.7 66.7 63.9
TablERT 87.6 66.2 62.6

TablERT-CNN 87.8 65.0 61.8
FSN 88.3 68.7 65.7

SciERC

SPE 68.0 47.6 34.6
UniRE ♢ 68.4 - 36.9

PURE 66.6 48.2 35.6
PFN 66.8 - 38.4
MGE 68.4 - 39.4

PL − Marker ♢ 69.9 53.2 41.6
FSN 69.5 54.2 42.3

Compared to the joint entity and relation extraction model PFN, which is also based
on table filling, our model achieved absolute performance gains on both the ACE2005
dataset and the SciERC dataset. We attribute this performance improvement to the NERG
and REG modules we set up. The NERG and REG modules can more accurately target
all entity boundaries contained in a sentence and entity pair boundaries in a relational
triple, respectively. In addition to this, we explored the performance differences between
the pipeline-based method and the joint entity and relation extraction method. Compared
to the PURE model using the pipeline-based method, our model achieved performance
improvements of 2.9%, 6.0%, and 6.7% for the F1 scores of NER, F1 scores of RE, and F1
scores of RE+ on the SciERC dataset, respectively. In addition to the reason that joint entity
and relation extraction can solve the subtask independence problem as well as the error
propagation problem, we attribute this performance improvement to the setup of the FSN
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module. The FSN module interacts with the NER task and the RE task by setting up a
shared partition, which solves the problems of difficult interaction between subtasks and
error propagation in conventional pipeline-based methods.

4.3. Ablation Study

In this section, we explore the impact of each part of our model on RE+. Some of the
parts of the model explored include the FSN module (Forward_LSTM, Backward_LSTM),
NERG module (NER_MFE), and REG module (RE_MFE, RE_AvgPooling).

We mainly explore the effect of forward LSTM filtered sentence information and
reverse LSTM filtered sentence information on balancing subtask interactions in the FSN
module. As shown in Table 3, removing the forward LSTM and backward LSTM in the
FSN module reduces the RE+ scores by 3.5% and 3.8%, respectively. This is because the
hidden state information in LSTM captures the information of the current time step and
passes this information to the next time step, and enables continuous modeling of sequence
data, whereas the memory state information controls the flow and retention of information,
which allows the model to selectively forget and retain the information, thus enabling
the capture of long-term dependencies as well as better prediction of future sequences.
Removing forward LSTM and backward LSTM will result in that word-to-word hidden
state information and word-to-word memory state information will not be captured.

Table 3. Ablation study of FSN on ACE2005. The best of these experimental results are marked
in bold.

Albation Pre. Rec. F1

FSN 70.0 61.9 65.7
w/o Forward_LSTM 67.8 57.5 62.2

w/o Backward_LSTM 66.0 58.2 61.9
w/o NER_MFE 66.4 58.3 62.1
w/o RE_MFE 65.3 58.2 61.6

w/o RE_AvgPooling 66.7 58.7 62.4

When we removed the NERG module, we found that RE+ scores dropped by 3.6%.
This huge performance gain is attributed to the NERG module’s ability to capture the
maximum correlation between sentence semantic information and entity pair boundary
information by fully utilizing Hadamard product operations and attention mechanisms,
which enables better extraction of entity pair boundary information in relational triples.

Similarly, we explored the impact of removing the local feature extraction part of the
REG module on RE task performance. As can be seen in Table 3, the performance has
decreased by 4.1%. This indicates that the local feature extraction part of the REG module
can contribute to capture the entity pair boundary information corresponding to each
relation in a sentence. In addition to this, we performed an ablation study on the maximum
pooling operation in the REG module. In Table 3, it is shown that removing the maximum
pooling operation in the REG module decreases the RE+ performance by 3.3%. The main
reason for this is that the features related to the RE task contain associations between entity
and relation in a relational triple. This association is incorporated into each table entry
of the RE task through the average pooling operation, which improves the performance
of RE+.

4.4. Robustness Test on Named Entity Recognition

We use robustness tests to evaluate the stability of our model in the face of various special
cases. The performance of our model as well as the baseline model in the face of a NER-facing
dataset domain transformation method proposed by Wang et al. [33] is demonstrated in
Table 4, and the specific transformation method is shown at https://www.textflint.io/. We
compare our model with several unrelated models, including the BiLSTM-CRF model [34],
the BERT model [22], the TENER model [35], and the Flair Embeddings model [36].

https://www.textflint.io/
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Based on the observations in Table 4, we can find that our model exhibits greater
robustness in the face of input perturbations compared to other baseline models, especially
in the case of cross-categories. This increase in robustness may be attributed to the fact
that we use relational signaling of type-constrained entities in our training. In our model,
reasoning about entity types is not only influenced by the semantic meaning of the target
entity itself, but also by the (relation) context around the entity. This means that our
model takes into account the contextual information around the entity when reasoning
about entity types, rather than relying only on the characteristics of the entity itself. This
type-constrained training approach allows our model to better understand the relationship
between an entity and its surroundings, which improves its robustness in the presence of
input perturbations. When confronted with cross-category situations, where the type of an
entity does not exactly match the type of other entities in its surroundings, our model is
better able to adapt to and deal with this complexity.

Table 4. Robustness test of NER against input perturbation in ACE2005; baseline results and test files
are copied from https://www.textflint.io/ (accessed on 30 December 2023).

Model
ConcatSent CrossCategory EntTypos OOV SwapLonger Average

Ori→Aug Decline Ori→Aug Decline Ori→Aug Decline Ori→Aug Decline Ori→Aug Decline Decline

BiLSTM-
CRF 83.0→82.2 0.8 82.9→43.5 39.4 82.5→73.5 9.0 82.9→64.2 18.7 82.9→67.7 15.2 16.6

BERT-based
(cased) 87.3→86.2 1.1 87.4→48.1 39.3 87.5→83.1 4.1 87.4→79.0 8.4 87.4→82.1 5.3 11.6

BERT-based
(uncased) 88.8→88.7 0.1 88.7→46.0 42.7 89.1→83.0 6.1 88.7→74.6 14.1 88.7→78.5 10.2 14.6

TENER 84.2→83.4 0.8 84.7→39.6 45.1 84.5→76.6 7.9 84.7→51.5 33.2 84.7→31.1 53.6 28.1
Flair 85.5→85.2 0.3 84.6→44.9 39.7 86.1→81.5 4.6 84.6→81.3 3.3 84.6→73.1 11.5 11.9
PFN 89.1→87.9 1.2 89.0→80.5 8.5 89.6→86.9 2.7 89.0→80.4 8.6 89.0→84.3 4.7 5.1

FSN 88.3→86.4 1.9 88.3→82.7 5.6 88.8→86.2 2.7 88.3→81.1 7.2 88.3→85.6 2.7 4.0

4.5. Model Efficiency

We evaluate the training time as well as the inference time for the efficiency of our
model mainly with PFN, a joint entity and relation extraction model that also employs a
table-filling method. The results in Table 5 demonstrate that while both our model and
the PFN model are theoretically O(NL2), our model took less time to train on the ACE2005
dataset as well as the SciERC dataset. We attribute this improvement in model training
efficiency to the FSN module in our model. Compared to the previous joint entity and
relation extraction models, the FSN module makes it simpler to perform feature extraction
for all subtasks, as well as making it simpler to accomplish subtask interactions through
partitioning operations by extracting the hidden state information and memory state
information from each word to the next in a sentence. Although the model required similar
model inference time on both datasets, our model achieved 7.1% and 3.9% performance
improvement over the PFN model on the ACE2005 dataset as well as the SciERC dataset,
respectively, which is sufficient to demonstrate the advantages of our model design.

Table 5. Comparison of the model efficiency. Training time (s) refers to the amount of time needed to
train one epoch.; inference time (ms) is the amount of time it takes to predict relational triples of a
single sentence. * denotes results acquired from the source code.

Dataset Model Training Time Inference Time F1

ACE2005 PFN 361 17 58.6 *
FSN 319 16 65.7

SciERC PFN 74 6 38.4
SOIRP 65 3 42.3

https://www.textflint.io/
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5. Conclusions

In this paper, we mainly analyze the advantages and disadvantages of joint learning
methods based on shared parameters and joint learning methods based on joint decoding
and propose a new joint entity and relation extraction method, which sets up a FSN module
to solve the problem of interaction imbalance among subtasks by adopting the filter and
separator as well as splicing operation. We also set up a NERG module and a REG module
to solve the problem of insufficient extraction of local features from subtasks by adopting
the design idea of the decoder in Transformer and a pooling operation. In addition, we
propose a dynamic loss function for model optimization. We conducted comprehensive
experiments on two public datasets, demonstrating that our model yields more desirable
outcomes compared to the baseline model. Further analyses and ablation studies validate
the significance of every modular component in our model.
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