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Abstract: Vectorial Boolean functions and codes are closely related and interconnected. On the one
hand, various requirements of binary linear codes are needed for their theoretical interests but, more
importantly, for their practical applications (such as few-weight codes or minimal codes for secret
sharing, locally recoverable codes for storage, etc.). On the other hand, various criteria and tables
have been introduced to analyse the security of S-boxes that are related to vectorial Boolean functions,
such as the Differential Distribution Table (DDT), the Boomerang Connectivity Table (BCT), and the
Differential-Linear Connectivity Table (DLCT). In previous years, two new tables have been proposed
for which the literature was pretty abundant: the c-DDT to extend the DDT and the c-BCT to extend
the BCT. In the same vein, we propose extended concepts to study further the security of vectorial
Boolean functions, especially the c-Walsh transform, the c-autocorrelation, and the c-differential-linear
uniformity and its accompanying table, the c-Differential-Linear Connectivity Table (c-DLCT). We
study the properties of these novel functions at their optimal level concerning these concepts and
describe the c-DLCT of the crucial inverse vectorial (Boolean) function case. Finally, we draw new
ideas for future research toward linear code designs.
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1. Introduction

Vectorial Boolean functions are intensively used to produce S-boxes in block ciphers
such as DES [1], Rinjdael or AES [2], Blowfish [3], GOST [4], and Serpent [5]. Various
criteria have been proposed to test the resistance of S-boxes and the corresponding vectorial
Boolean functions to known cryptanalytical attacks, such as the differential attack [6], the
linear attack [7], and some of their variants.

Let F : F2n → F2m be a (n, m)-vectorial Boolean function. The derivative of F in the
direction of a ∈ F2n is the function Da(F)(x) = F(x) + F(x + a). The derivative is used
to analyse the resistance of a vectorial Boolean function to the differential attack [6] and
serves to build the Differential Distribution Table (DDT). The derivative is also used in the
Boomerang Connectivity Table (BCT) [8] and in the Differential-Linear Connectivity Table
(DLCT) [9,10]. The entry at (a, b) ∈ F2n × F2m of the DDT is defined by

DDTF(a, b) = #{x ∈ F2n : F(x) + F(x + a) = b}.

To measure the resistance of a vectorial Boolean function, Nyberg [11] introduced the
differential uniformity as

δF = max{DDTF(a, b) | (a, b) ∈ F2n × F2m , and a ̸= 0}.
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The most resistant vectorial Boolean functions have small differential uniformities. The
reader can consult the [12] for a complete background on vectorial Boolean functions with
a deep analysis of their cryptographic aspects.

At FSE 2002, Borisov et al. [13] proposed a variant of the differential attack to study
ciphers’ resistance based on using modular multiplication as a primitive operation. This mo-
tivated Ellingsen et al. [14] to introduce the concept of c-differentials to study the resistance
of a vectorial Boolean function to multiplicative variants of the differential attack. For a vec-
torial Boolean function F : F2n → F2m and c ∈ F2m , the c-derivative F with respect to a ∈ F2n

is the (n, m)-vectorial Boolean function cDaF defined by cDaF(x) = F(x + a) + cF(x) for
all x ∈ F2n . The c-derivative is used to study the resistance of ciphers based on popular
vectorial Boolean functions such as the inverse function [15], the Gold function [16], and
various other functions [17–21]. As for the DDT, a c-differential table was proposed in [14],
where the entry at (a, b) ∈ F2n × F2m is defined by

cDDTF(a, b) = #{x ∈ F2n | F(x + a) + cF(x) = b}.

Also, a c-differential uniformity was proposed in [14] by

cδF = max{cDDTF(a, b) | (a, b) ∈ F2n × F2m , and a ̸= 0 if c = 1}.

The construction of functions, particularly permutations, with low c-differential uni-
formity is an interesting problem, and recent work has focused heavily on this direction.
Likewise, regarding the original notion of differential uniformity leading to optimal func-
tions Perfect Nonlinear (PN) and Almost Perfect Nonlinear (APN) over finite fields in odd
and even characteristics, respectively, optimal functions having the lowest possible values
of a c-differential uniformity have also been introduced. One can refer to [19,22–27] and the
references therein. Some of those functions with low c-differential uniformity have been
investigated. There are relatively few known (non-trivial, nonlinear) optimal classes of PcN
and APcN functions over finite fields with an even characteristic (see, e.g., [18,28–31] and
the references therein).

Another popular cryptanalysis attack on S-boxes derived from Boolean functions is
the boomerang attack, proposed by Wagner [32] in 1999. In connection with the boomerang
attack, Cid et al. [8] proposed the Boomerang Connectivity Table (BCT) for a vectorial
Boolean function where the entry at (a, b) ∈ F2n × F2m is defined by

BCTF(a, b) = #{x ∈ F2n : F−1(F(x) + b) + F−1(F(x + a) + b) = a}.

Based on the BCT, Boura and Canteaut [33] introduced the boomerang uniformity of
a vectorial Boolean function to measure its resistance against boomerang attack. The
boomerang uniformity of F is defined by

βF = max
a∈F∗

2n ,b∈F∗
2m

BCTF(a, b).

To extend the BCT and the boomerang uniformity of a vectorial Boolean function,
Stǎnicǎ [34] introduced the concept of the c-Boomerang Connectivity Table (c-BCT). For
c ∈ F∗

2m , the c-BCT is defined at the entry (a, b) ∈ F2n × F2m by

cBCTF(a, b) = #{x ∈ F2n : F−1(cF(x) + b) + F−1
(

c−1F(x + a) + b
)
= a}.

The corresponding c-boomerang uniformity is defined by

cβF = max
a∈F∗

2n ,b∈F∗
2m

cBCTF(a, b).

More generalizations of the differential and boomerang uniformities can be found in [35].
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In 2019, Bar-On et al. [10] (see also [9]) introduced the Differential-Linear Connectivity
Table (DLCT) of a vectorial Boolean function where the entry at (a, b) ∈ F2n ×F2m is defined by

DLCTF(a, b) = #{x ∈ F2n | b · (F(x + a) + F(x)) = 0} − 2n−1,

where x · y is the inner product of x and y on F2m . To measure the resistance of an S-box
connected to a vectorial Boolean function, the differential-linear uniformity of F can be
used, as defined by Li et al. in [36],

γF = max
a∈F∗

2n ,b∈F∗
2m
|DLCTF(a, b)|.

Various links exist between the DLCT and the Autocorrelation Table (ACT) of a vectorial
Boolean function F. The ACT is defined at (a, b) ∈ F2n × F2m by

ACTF(a, b) = ∑
x∈F2n

(−1)b·(F(x)+F(x+a)).

The corresponding absolute indicator is defined as

∆F = max
u∈F2n ,u ̸=0,

b∈F∗
2m

|ACTF(a, b)|.

In [37], Canteaut et al. showed that the DLCT and the ACT of a vectorial Boolean function
satisfy γF = 1

2 ∆F and DLCTF(a, b) = 1
2ACTF(a, b) for all (a, b) ∈ F2n × F2m .

One can observe that the derivative Da(F)(x) = F(x) + F(x + a) of a Boolean function
F is used in various tables, such as the DDT, the BCT, and the DLCT. Motivated by the
crucial role of the derivative in the former tables and the attacks related to them, we propose
three new concepts towards the c-derivative cDa(F)(x) = F(x + a) + cF(x):

• The c-Walsh transform of a vectorial Boolean function F: For c ∈ F∗
2m , it is defined for

a ∈ F2n and b ∈ F2m by

cWF(a, b) = ∑
x∈F2n

(−1)a·x+b·cF(x).

• The c-autocorrelation of a vectorial Boolean function: Let c ∈ F2m , c ̸= 0. The
c-autocorrelation of F at (a, b) ∈ F2n × F2m is the integer

cACF(a, b) = ∑
x∈F2n

(−1)b·(F(x+a)+cF(x)).

The absolute indicator is

c∆F = max
u∈F2n ,u ̸=0 if c=1,

b∈F∗
2m

|cACF(a, b)|,

and the autocorrelation spectrum is

cΛF = {cACF(a, b), a ∈ F∗
2n , b ∈ F∗

2m}.

• The c-Differential-Linear Connectivity Table (c-DLCT) where we use the c-derivative:
Let c ∈ F∗

2m . The c-DLCT of F is a 2n × 2m table where the entry at (a, b) ∈ F2n × F2m

is defined by

cDLCTF(a, b) = #{x ∈ F2n | b · (F(x + a) + cF(x)) = 0} − 2n−1.
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We also define the c-differential-linear uniformity of F as

cγF = max
u∈F2n ,u ̸=0 if c=1,

b∈F∗
2m

|cDLCTF(a, b)|,

and, also, we define the c-DLCT spectrum of F by

cΓF = {cDLCTF(a, b), a ∈ F2n , b ∈ F2m}.

We show that there are numerous relationships between the three new concepts. Typi-
cally, we show that cDLCTF(a, b) = 1

2 cACF(a, b) for all (a, b) ∈ F2n × F2m and cγF = 1
2 c∆F.

Moreover, we focus on the inverse function defined on F2n by F(x) = 1
x if x ̸= 0,

and F(0) = 0. We study its c-DLCT and give an explicit value for the entries, including
when c = 1.

We mention that there is an interesting connection between c differential uniformity
and combinatorial designs, which has been highlighted in [38] by showing that the graph of
a perfect c-nonlinear function (an optimal function concerning the c differential uniformity)
is a set of differences in a quasigroup. Difference sets give rise to symmetric designs, which
are known to build optimal self-complementary codes. Some types of designs also have
concrete applications such as secret sharing and visual cryptography.

Finally, we emphasise that one of our practical applications in brother research lines
is to use the derived (optimal) functions (see, e.g., [12]) to derive minimal binary linear
codes (see, e.g., [39]) that are needed for their theatrical interests but, more importantly, for
their practical applicants such as few-weight codes or minimal codes for secret sharing and
securing two-party computation.

The rest of this paper is organized as follows. Section 2 presents some known results
that will be used in this paper. In Section 3, we define the c-Walsh and the c-autocorrelation
of a vectorial Boolean function and study some of their properties. In Section 4, we present
the concept of the c-DLCT and study its properties. We investigate the c-DLCT of the
inverse function in Section 5. Finally, Section 6 concludes the paper and presents new ideas
for future research toward linear code designs along the same lines as designing (minimal)
codes from Almost Perfect Nonlinear (APN) and recent achievements [40] on minimal
codes from low differential uniformity.

2. Preliminaries

In this section, we present some results and definitions that will be used in the
next sections, including the c-derivative and the c-differential uniformity of a vectorial
Boolean function.

For b ∈ F2n , we define the orthogonal space b⊥ of b as follows.

Definition 1. For b ∈ F2n , the orthogonal space b⊥ of b is defined by

b⊥ = {x ∈ F2n | b · x = 0},

where b · x is the inner product of b and x on F2n .

The following result gives an explicit value for #b⊥.

Proposition 1. For b ∈ F2n , the orthogonal space b⊥ of b satisfies

#b⊥ =

{
2n if b = 0,

2n−1 if b ̸= 0.
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Proof. It is obvious that #0⊥ = 2n. Suppose that b ̸= 0. Then, the binary expansion of b is
in the following form.

b = (bn−1, bn−2, . . . , bj, . . . , b0).

Suppose that bj = 1 for some j with 0 ≤ j ≤ n − 1. Let x ∈ F2n such that x ̸∈ b⊥, that is
b · x = 1, with the binary expansion

x = (xn−1, xn−2, . . . , xj, . . . , x0).

Let y ∈ F2n with the binary expansion

y = (yn−1, yn−2, . . . , xj + 1 (mod 2), . . . , x0).

Then,

b · y = b · x + bj ≡ 1 + 1 ≡ 0 (mod 2).

Hence, y ∈ b⊥. It follows that for b ̸= 0, each element x of F2n satisfying b · x = 1 is in
correspondence with one element y of F2n satisfying b · y = 0. As a consequence, we have
#b⊥ = 2n−1.

For n ≥ 1, let F2n be the finite field with 2n elements. The trace of an element x ∈ F2n

is given by

Tr(x) = x + x2 + · · ·+ x2n−1
,

and satisfies Tr(x) ∈ {0, 1}. The trace function satisfies Tr(x2) = Tr(x) for all x ∈ F2n .
The following lemma is well known and is useful for our work.

Lemma 1. Let n and k be positive integers and e = gcd(k, n). Then,

gcd
(

2k + 1, 2n − 1
)
=


1 if

n
e

is odd,

2e + 1 if
n
e

is even.

Some specific equations on F2n may be involved. The following result deals with the
quadratic equation.

Lemma 2. (Proposition 1 of [41]) Let a, b, c ∈ F2n . The equation ax2 + bx + c = 0 has

(i) One root if and only if b = 0.

(ii) Two roots if and only if b ̸= 0 and Tr
(

ac
b2

)
= 0.

(iii) No root if and only if b ̸= 0 and Tr
(

ac
b2

)
= 1.

The following lemma concerns another equation on F2n .

Lemma 3. Let k and n be positive integers such that k < n. Let d = gcd(k, n), m = n
d > 1,

and βm−1 = Trn
d(B). Then, the trinomial f (X) = X2k

+ X + B has no root if βm−1 ̸= 0 and
has 2d roots x + δτ in F2n if βm−1 = 0, where δ ∈ F2d , τ ∈ F2n is any element satisfying
τ2k−1 = 1, and

x =
1

Trn
d(c)

m−1

∑
i=0

(
i

∑
j=0

c2kj

)
B2ki

,

with any c ∈ F∗
2n satisfying Trn

d(c) ∈ F∗
2d .
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In [14], Ellingsen et al. proposed the concept of c-differentials. The following defini-
tions are valid for binary finite fields.

Definition 2. Let F : F2n → F2m be an (n, m)-vectorial Boolean function and c ∈ F2m . The
c-derivative F with respect to a ∈ F2n is the (n, m)-vectorial function cDaF satisfying t px

cDaF(x) = F(x + a) + cF(x)

for all x ∈ F2n .

Definition 3. Let F : F2n → F2m be a (n, m)-vectorial Boolean function, and c ∈ F2m . The c-
differential table of F is an 2n × 2m table whose components are defined for a ∈ F2n and b ∈ F2m

by
c∆F(a, b) = #{x ∈ F2n | F(x + a) + cF(x) = b}.

Definition 4. Let F : F2n → F2m be a (n, m)-vectorial Boolean function, and c ∈ F2m . The
c-differential uniformity of F is

c∆F =


max

a∈F2n ,b∈F2m
c∆F(a, b) if c ̸= 1,

max
a∈F2n\{0},b∈F2m

c∆F(a, b) if c = 1.

3. The c-Walsh and c-Autocorrelation of a Vectorial Boolean Function

The Walsh transform of a Boolean function f : F2n → F2 is defined at u ∈ F2n by

W f (u) = ∑
x∈F2n

(−1)u·x+ f (x),

where u · x is the inner product of u and x. The Walsh transform serves to compute the
linearity of f as

L( f ) = max
u∈F2n

|W f (u)|.

For a vectorial Boolean function F : F2n → F2m , the Walsh transform of F is defined for
u ∈ F2n and v ∈ F2m by

WF(u, v) = ∑
x∈F2n

(−1)u·x+v·F(x),

and is used to compute the linearity of F by

L(F) = max
u∈F2n ,v∈F2n\{0}

|WF(u, v)|.

We extend the Walsh transform of a vectorial Boolean function to the c-Walsh transform
as follows.

Definition 5. Let F be an (n, m)-vectorial Boolean function, and c ∈ F∗
2m . The c-Walsh transform

of F is defined for u ∈ F2n and v ∈ F2m by

cWF(u, v) = ∑
x∈F2n

(−1)u·x+v·cF(x).

The autocorrelation function is used to study various properties of the Boolean func-
tions (see [42]).

Definition 6. Let f be Boolean function defined on F2n . The autocorrelation of f at u ∈ F2n is
the integer
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AC f (u) = ∑
x∈F2n

(−1) f (x)+ f (x+u),

and its absolute indicator is ∆ f = maxu∈F2n ,u ̸=0

∣∣∣AC f (u)
∣∣∣.

We notice that u = 0 is excluded in the definition of the absolute indicator since
AC f (0) = ∑x∈F2n (−1) f (x)+ f (x) = 2n. The generalization of the autocorrelation to vectorial
Boolean functions can be then defined as follows.

Definition 7. Let F be an (n, m)-vectorial Boolean function defined on F2n . The autocorrelation of
F at (u, v) ∈ F2n × F2m is the integer

ACF(u, v) = ∑
x∈F2n

(−1)v·(F(x)+F(x+u)).

The absolute indicator is

∆F = max
u∈F2n ,u ̸=0,
v∈F2m ,v ̸=0

|ACF(u, v)|,

and the autocorrelation spectrum is

ΛF = {ACF(u, v), u ∈ F2n , u ̸= 0, v ∈ F2m , v ̸= 0}.

The trivial values are not considered in the definition of the absolute indicator since
ACF(0, v) = ACF(u, 0) = 2n.

Inspired by Definition 6, we introduce the notion of c-autocorrelation of a Boolean function.

Definition 8. Let f be the Boolean function defined on F2n , and c ∈ F2m , c ̸= 0. The c-autocorrelation
of f at u ∈ F2n is the integer

cAC f (u) = ∑
x∈F2n

(−1) f (x+u)+c f (x),

and the c-absolute indicator is c∆ f = maxu∈F2n

∣∣∣AC f (u)
∣∣∣.

Similarly, to generalize Definition 7, we define the c-autocorrelation of a vectorial
Boolean function.

Definition 9. Let F be an (n, m)-vectorial Boolean function defined on F2n , and c ∈ F2m , c ̸= 0.
The c-autocorrelation of F at (u, v) ∈ F2n × F2m is the integer

cACF(u, v) = ∑
x∈F2n

(−1)v·(F(x+u)+cF(x)).

The absolute indicator is

c∆F = max
u∈F2n ,u ̸=0 if c=1,

v∈F2m ,v ̸=0

|cACF(u, v)|,

and the autocorrelation spectrum is

cΛF = {cACF(u, v), u ∈ F2n , v ∈ F2m , }.

To ease the study of the c-autocorrelation of a vectorial Boolean function F, we present
its c-autocorrelation table defined at (u, v) ∈ F2n × F2m by

cACTF(u, v) = ∑
x∈F2n

(−1)v·(F(x+u)+cF(x)).
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The following result links the c-autocorrelation of a vectorial Boolean function and its
c-Walsh transform.

Proposition 2. Let F be an (n, m) Boolean function. Then, for any u ∈ F2n and any v ∈ F2n ,

WF(u, v)cWF(u, v) = ∑
z∈F2n

(−1)u·z
cACF(z, v).

Proof. We have

WF(u, v)cWF(u, v) = ∑
x∈F2n

(−1)u·x+v·F(x) ∑
y∈F2n

(−1)u·y+v·cF(y)

= ∑
x,y∈F2n

(−1)u·(x+y)+v·(F(x)+cF(y)

= ∑
y,z∈F2n

(−1)u·z+v·(F(y+z)+cF(y))

= ∑
z∈F2n

(−1)u·z ∑
y∈F2n

(−1)v·(F(y+z)+cF(y))

= ∑
z∈F2n

(−1)u·z
cACF(z, v).

This finishes the proof.

4. The c-Differential-Linear Connectivity Table of a Vectorial Boolean Function

In this section, we present a new concept, called the c-Differential-Linear Connectivity
Table (c-DLCT), which generalizes the standard DLCT, independently defined in 2018 by
Kim et al. [9] and Bar-On et al. [10]

We start by defining the standard Differential-Linear Connectivity Table (DLCT).

Definition 10. Let F be an (n, m)-vectorial Boolean function. The DLCT of F is an 2n × 2m table
where the entry at (u, v) ∈ F2n × F2m is

DLCTF(u, v) = #{x ∈ F2n | v · (F(x + u) + F(x)) = 0} − 2n−1.

The DLCT is a tool that could analyse the relationships between differential and linear
parts of a block cipher. One can observe that if x ∈ F2n is such that v · (F(x+ u)+ F(x)) = 0,
then v · (F((x + u) + u) + F(x + u)) = 0. Consequently, DLCTF(u, v) is always even.
Moreover, if u = 0, or if v = 0, then DLCTF(u, v) = 2n−1. This induces the following
definition for differential-linear connectivity uniformity.

Definition 11. Let F be an (n, m)-vectorial Boolean function. The differential-linear connectivity
uniformity of F is

γF = max
u∈F∗

2n ,v∈F∗
2m
|DLCTF(u, v)|.

The DLCT of a vectorial Boolean function is related to the autocorrelation function by
the following relation.

ACF(u, v) = #{x ∈ F2n | v · (F(x) + F(x + u)) = 0)}
− #{x ∈ F2n | v · (F(x) + F(x + u)) = 1}
= 2#{x ∈ F2n | v · (F(x) + F(x + u)) = 0} − 2n

= 2DLCTF(u, v).

The DLCT is a tool to study the relationships between the linear and the differential
properties of a block cipher. For (u, v) ∈ F2n × F2m , it counts the number of elements
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x ∈ F2n such that v · (F(x + u) + F(x)) = 0. Let a ∈ F2m , a ̸= 0, and b ∈ F2m , b ̸= 0, be two
fixed non-zero elements. It is possible to study the relationships between the linear and the
differential properties of a block cipher by studying the number of solutions of the equation
v · (aF(x + u) + bF(x)) = 0 or equivalently v · (F(x + u) + cF(x)) = 0, where c = a

b . This
leads us to define a function’s c-Differential-Linear Connectivity Table (c-DLCT).

Definition 12. Let F be an (n, m)-vectorial Boolean function, and c ∈ F2m , c ̸= 0. The c-DLCT of
F is an 2n × 2m table where the entry at (u, v) ∈ F2n × F2m is

cDLCTF(u, v) = #{x ∈ F2n | v · (F(x + u) + cF(x)) = 0} − 2n−1.

Moreover, the c-differential-linear connectivity uniformity of F is

cγF = max
u∈F2n ,u ̸=0 if c=1,

v∈F2m ,v ̸=0

|cDLCTF(u, v)|,

and the c-DLCT spectrum of F is defined for (u, v) ∈ F2n × F2m by

cΓF = {cDLCTF(u, v), u ∈ F2n , v ∈ F2m}.

From Definitions 9 and 12, we obtain the following connection between the cACT and
the cDLCT of a vectorial Boolean function.

Proposition 3. Let F be (n, m)-vectorial Boolean function. Then, for all u ∈ F2n and v ∈ F2m ,

cDLCTF(u, v) =
1
2 cACF(u, v), and cγF =

1
2 c∆F.

Proof. We have

cACF(u, v) = #{x ∈ F2n | v · (F(x + u) + cF(x)) = 0)}
− #{x ∈ F2n | v · (F(x + u) + cF(x)) = 1}
= 2#{x ∈ F2n | v · (F(x + u) + cF(x)) = 0} − 2n

= 2cDLCTF(u, v).

which gives cDLCTF(u, v) = 1
2 cACF(u, v). On the other hand, we have

c∆F = max
u∈F2n ,u ̸=0 if c=1,

v∈F2m ,v ̸=0

|cACF(u, v)| = 2 max
u∈F2n ,u ̸=0 if c=1,

v∈F2m ,v ̸=0

cDLCTF(u, v) = 2cγF,

and cγF = 1
2 c∆F. This finishes the proof.

As a consequence of the former proposition, the following result connects the c-DLCT
and the c-derivative of a vectorial Boolean function via the Walsh transform.

Proposition 4. Let F be an (n, m)-vectorial Boolean function, and c ∈ F2m , c ̸= 0. Then, for any
(u, v) ∈ F2n × F2m ,

cDLCTF(u, v) =
1
2

W(cDu F)(0, v).

Proof. Combining Definition 2 and the definition of the Walsh transform, we obtain

W(cDu F)(0, v) = ∑
x∈F2n

(−1)v·(F(x+u)+cF(x)) = cACF(u, v).
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Then, using Proposition 3, we have

WcDu F(0, v) = cACF(u, v) = 2cDLCTF(u, v),

and cDLCTF(u, v) = 1
2 W(cDu F)(0, v).

The following result shows a connection between the c-DLCT and the c-derivative of
a vectorial Boolean function via the Walsh transform.

Proposition 5. Let F be an (n, m)-vectorial Boolean function, and c ∈ F2m , c ̸= 0. Then, for any
(u, v) ∈ F2n × F2m ,

WF(u, v)cWF(u, v) = 2 ∑
ω∈F2n

(−1)u·ω
cDLCTF(ω, v).

Proof. Combining Proposition 2 and Proposition 5, we obtain

WF(u, v)cWF(u, v) = ∑
z∈F2n

(−1)u·z
cACF(z, v)

= 2 ∑
ω∈F2n

(−1)u·ω
cDLCTF(ω, v),

as claimed.

The following result gives a link between cDLCTF and c∆F(a, b).

Proposition 6. Let F be an (n, m)-vectorial Boolean function, and c ∈ F2m , c ̸= 0. Then, for any
(u, v) ∈ F2n × F2m ,

cDLCTF(u, v) =
1
2 ∑

ω∈F2n

(−1)ω·v
c∆F(u, ω).

Proof. By Proposition 3, we have

2cDLCTF(u, v) = cACF(u, v)

= #{x ∈ F2n | v · (F(x + u) + cF(x)) = 0)}
− #{x ∈ F2n | v · (F(x + u) + cF(x)) = 1}
= ∑

ω∈F2n ,ω·v=0
#{x ∈ F2n | F(x + u) + cF(x) = ω}

− ∑
ω∈F2n ,ω·v=1

#{x ∈ F2n | F(x + u) + cF(x) = ω}

= ∑
ω∈F2n

(−1)ω·v#{x ∈ F2n | F(x + u) + cF(x) = ω}

= ∑
ω∈F2n

(−1)ω·v
c∆F(u, ω).

This leads to

cDLCTF(u, v) =
1
2 ∑

ω∈F2n

(−1)ω·v
c∆F(u, ω),

which finishes the proof.

5. The c-DLCT of the Inverse Function

In this section, we give the explicit values of the entries of the c-DLCT, including the
case c = 1, and give some numerical results on F2n with 3 ≤ n ≤ 8.
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5.1. The 1-DLCT of the Inverse Function

For c = 1, the 1-DLCT satisfies the following result.

Theorem 1. Let F : F2n → F2n be the inverse function defined by F(0) = 0, and F(x) = x2n−2

for x ̸= 0. For a, b ∈ F2n , define the set

E0(a, b) =
{

z ∈ b⊥ | z ̸= 0, Tr
(

1
az

)
= 0

}
,

where b⊥ is the orthogonal space of b. Then,

1DLCTF(a, b) =


2n−1 if a = 0, or b = 0,

2#E0(a, b) + 2 − 2n−1 if
1
a
∈ b⊥,

2#E0(a, b)− 2n−1 if
1
a
̸∈ b⊥.

Proof. We use the definition

1DLCTF(a, b) = #{x ∈ F2n | b · (F(x + a) + F(x)) = 0} − 2n−1.

We consider the following cases.
Case 1. Suppose that b = 0. Then, for all x ∈ F2n , b · (F(x + a) + F(x)) = 0. Hence,

1DLCTF(a, 0) = 2n − 2n−1 = 2n−1.

Case 2. Suppose that b ̸= 0 and a = 0. Then, for all x ∈ F2n , b · (F(x+ a)+ F(x)) = b · 0 = 0.
This leads to

1DLCTF(0, b) = 2n − 2n−1 = 2n−1.

Case 3. Suppose that b ̸= 0 and a ̸= 0. Consider the equation

b · (F(x + a) + F(x)) = 0. (1)

Case 3.1. If x = 0, then

b · (F(x + a) + F(x)) = b · F(a) = b · 1
a

.

Hence, x = 0 is a solution of the Equation (1) if and only if 1
a ∈ b⊥.

Case 3.2. If x = a, then

b · (F(x + a) + F(x)) = b · F(a) = b · 1
a

.

Hence, x = a is a solution of the Equation (1) if and only if 1
a ∈ b⊥.

Case 3.3. Suppose that x ̸= 0 and x ̸= a. We have

F(a + x) + F(x) =
1

a + x
+

1
x
=

a
x2 + ax

.

If b · (F(a + x) + F(x)) = 0, then F(a + x) + F(x) = z for some z ∈ b⊥, that is a
x2+ax = z, or

equivalently

zx2 + azx + a = 0. (2)

Case 3.3.1. If z = 0, then the Equation (2) reduces to a = 0, which is not possible.
Case 3.3.2. Suppose that z ̸= 0. If Tr

(
1
az

)
= 1, then, by Lemma 2, the Equation (2) has no
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solution, and if Tr
(

1
az

)
= 0, it has two solutions.

Define the set

E0(a, b) =
{

z ∈ b⊥ | z ̸= 0, Tr
(

1
az

)
= 0

}
.

The 1DLCT in Case 3 is then

1DLCTF(a, b) =


2#E0(a, b) + 2 − 2n−1 if

1
a
∈ b⊥,

2#E0(a, b)− 2n−1 if
1
a
̸∈ b⊥,

which finishes the proof.

5.2. The c-DLCT of the Inverse Function for c ̸= 1

Theorem 2. Let F : F2n → F2n be the inverse function defined by F(0) = 0, and F(x) = 1
x for

x ̸= 0. Let c ∈ F2n with c ̸= 0 and c ̸= 1. For a, b ∈ F2n , define the set

E0(a, b, c) =
{

z ∈ b⊥ | z ̸= 0, z ̸= 1 + c
a

, Tr
(

acz
(1 + c + az)2

)
= 0

}
,

where b⊥ is the orthogonal space of b. Then,

cDLCTF(a, b) =



2n−1 if b = 0,

0 if a = 0, b ̸= 0,

2#E0(a, b, c) + 2 − 2n−1 if
1
a
∈ b⊥,

c
a
̸∈ b⊥,

2#E0(a, b, c) + 2 − 2n−1 if
1
a
̸∈ b⊥,

c
a
∈ b⊥,

2#E0(a, b, c) + 4 − 2n−1 if
1
a
∈ b⊥,

c
a
∈ b⊥,

2#E0(a, b, c) + 2 − 2n−1 if
1
a
̸∈ b⊥,

c
a
̸∈ b⊥.

Proof. Suppose that c ̸= 0 and c ̸= 1. We use the definition

cDLCTF(a, b) = #{x ∈ F2n | b · (F(x + a) + cF(x)) = 0} − 2n−1.

We consider the following cases.
Case 1. Suppose that b = 0. Then, for all x ∈ F2n , b · (F(x + a) + cF(x)) = 0. Hence,

cDLCTF(a, 0) = 2n − 2n−1 = 2n−1.

Case 2. Suppose that b ̸= 0 and a = 0. If b · (F(x + a) + cF(x)) = 0, then b · (1+ c)F(x) = 0,
and (1 + c)F(x) ∈ b⊥. Observe that x = 0 is a possible solution. If x ̸= 0, then there exists
z ∈ b⊥\{0} such that (1 + c)F(x) = z, that is 1+c

x = z, and x = 1+c
z . This leads to

cDLCTF(0, b) = #b⊥ − 2n−1 = 0.

Case 3. Suppose that a ̸= 0 and b ̸= 0. Consider the equation

b · (F(x + a) + cF(x)) = 0. (3)

Case 3.1. If x = 0, then

b · (F(x + a) + cF(x)) = b · F(a) = b · 1
a

.
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Hence, x = 0 is a solution of the Equation (3) if and only if 1
a ∈ b⊥.

Case 3.2. If x = a, then

b · (F(x + a) + cF(x)) = b · cF(a) = b · c
a

.

Hence, x = a is a solution of the Equation (3) if and only if c
a ∈ b⊥.

Case 3.3. Suppose that x ̸= 0 and x ̸= a. We have

F(a + x) + cF(x) =
1

a + x
+

c
x
=

(1 + c)x + ac
x2 + ax

.

If b · (F(a + x) + cF(x)) = 0, then F(a + x) + cF(x) = z for some z ∈ b⊥, that is (1+c)x+ac
x2+ax = z,

or equivalently

zx2 + (1 + c + az)x + ac = 0. (4)

Case 3.3.1. If z = 0, then the Equation (4) reduces to (1 + c)x + ac = 0, which has one
solution x = ac

1+c .
Case 3.3.2. If z0 = 1+c

a ∈ b⊥, then for z0, the Equation (4) reduces to z0x2 + ac = 0, which,
by Lemma 2, has one solution.
Case 3.3.3. Suppose that z ̸= 0 and z ̸= 1+c

a . If Tr
(

acz
(1+c+az)2

)
= 1, then, by Lemma 2, the

Equation (4) has no solution, and if Tr
(

acz
(1+c+az)2

)
= 0, it has two solutions.

To summarize all the cases, we define the set

E0(a, b, c) =
{

z ∈ b⊥ | z ̸= 0, z ̸= 1 + c
a

, Tr
(

acz
(1 + c + az)2

)
= 0

}
.

The cDLCT in Case 3 is then

cDLCTF(a, b) =



2#E0(a, b, c) + 2 − 2n−1 if
1
a
∈ b⊥,

c
a
̸∈ b⊥,

2#E0(a, b, c) + 2 − 2n−1 if
1
a
̸∈ b⊥,

c
a
∈ b⊥,

2#E0(a, b, c) + 4 − 2n−1 if
1
a
∈ b⊥,

c
a
∈ b⊥,

2#E0(a, b, c) + 2 − 2n−1 if
1
a
̸∈ b⊥,

c
a
̸∈ b⊥,

which finishes the proof.

5.3. Numerical Results for the c-DLCT of the Inverse Function

We have computed the c-DLCT of the inverse function over F2n for 3 ≤ n ≤ 7, and
all c ∈ F∗

2n , while for n = 8, we only compute it for c = 1, 2, . . . , 10. The inversion and
multiplication in F2n are processed modulo the polynomials presented in Table 1.

In Table 2, we present the values of cDLCTF(u, v) of the inverse function over F24 with
c = 0 × 9.

For the inverse function over F2n , we present in Table 3 the c-DLCT spectrum cΓF and
c-differential-linear uniformity cγF for 3 ≤ n ≤ 8 and for small values of c. All the other
c-DLCT spectrums reduce to one of the listed ones in the table.
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Table 1. The polynomials of F2n for 3 ≤ n ≤ 8.

F2nF2nF2n Polynomial

F23 x3 + x + 1

F24 x4 + x + 1

F25 x5 + x3 + 1

F26 x6 + x3 + 1

F27 x7 + x3 + 1

F28 x8 + x4 + x3 + x2 + 1

Table 2. The values of cDLCTF(u, v) of the c-DLCT of the inverse function over F24 for c = 0 × 9.

u\v 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 8 0 2 2 0 −4 2 −2 2 −4 0 2 2 0 0 −2

2 8 2 0 −2 2 2 2 −2 0 2 −4 2 −4 0 0 0

3 8 0 2 0 −2 −4 0 0 −2 0 2 2 2 2 2 −4

4 8 −2 2 −2 0 2 −4 0 2 0 2 2 2 −4 0 0

5 8 2 0 2 0 0 −2 2 −4 0 2 2 −2 0 2 −4

6 8 0 −2 0 −2 2 2 −4 0 2 −4 0 0 2 2 2

7 8 2 −4 −4 2 −2 0 2 2 0 2 −2 0 0 2 0

8 8 −2 0 0 2 2 2 0 −2 2 2 −4 0 2 −4 0

9 8 2 −4 0 2 0 2 2 0 2 0 −4 2 0 −2 −2

a 8 2 0 2 −4 2 −2 −4 2 0 0 −2 0 2 0 2

b 8 −4 0 2 0 2 2 2 0 −2 0 0 −2 2 −4 2

c 8 0 −2 −4 0 0 0 2 0 −2 2 2 2 −4 2 2

d 8 0 2 2 −4 0 −4 0 2 2 0 0 2 −2 −2 2

e 8 −4 2 2 2 −2 0 0 2 −4 −2 0 0 2 0 2

f 8 2 2 0 2 0 0 2 −4 2 −2 0 −4 −2 2 0

Table 3. The c-DLCT spectrum and the c-differential-linear connectivity uniformity of the inverse
function over F2n for 3 ≤ n ≤ 8 and small c.

F2nF2nF2n c cΓF cγF

F23 1 {−4, 0, 4} 4

F23 2 {−2, 0, 2, 4} 2

F24 1 {−4, 0, 4, 8} 4

F24 2 {−4,−2, 0, 2, 8} 4

F24 6 {−2, 0, 2, 4, 8} 4

F25 1 {−4, 0, 4, 16} 4

F25 2 {−6,−4,−2, 0, 2, 4, 6, 16} 6

F25 3 {−6,−4,−2, 0, 2, 4, 16} 6

F25 7 {−4,−2, 0, 2, 4, 16} 4

F26 1 {−8,−4, 0, 4, 8, 32} 8

F26 2 {−8,−6,−4,−2, 0, 2, 4, 6, 8, 32} 8

F26 6 {−8,−6,−4,−2, 0, 2, 4, 6, 32} 8

F26 8 {−6,−4,−2, 0, 2, 6, 8, 32} 8

F27 1 {−12,−8,−4, 0, 4, 8, 64} 12

F27 2 {−12,−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, 64} 12

F28 1 {−16,−12,−8,−4, 0, 4, 8, 12, 16, 128} 16

F28 2 {−16,−14,−12,−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 128} 16

F28 6 {−16,−14,−12,−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 128} 16

F28 10 {−14,−12,−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 128} 16
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6. Conclusions

In this paper, we introduced and studied new cryptographic tools and parameters to
help us quantify the security of S-boxes (mathematically, vectorial Boolean functions) involving
block ciphers as main components: the c-Walsh transform, the c-autocorrelation, and the
c-differential-linear uniformity. We also introduced a new table called the c-Differential-Linear
Connectivity Table (c-DLCT) to analyse attacks related to the differential and the linear attacks.
We considered various S-box family properties associated with the above-mentioned notion
and presented the values of the c-DLCT of the particular crucial case of the inverse function.
Finally, recall that codes over finite fields have been studied extensively because of their linear
structures and practical implementations. It is the basis of the research on various kinds of
codes. One well-known construction method of linear codes is derived from special functions
(essentially from cryptographic functions which play a crucial role in symmetric cryptography)
over finite fields (see the book [12]). Cryptographic multi-output Boolean functions and codes
have essential data communication and storage applications. These two areas are closely
related and have had a fascinating interplay (see, e.g., the book chapter in [43] and the
references therein). Cryptographic functions and linear codes are closely related and have
had a fascinating interplay. Cryptographic functions (e.g., highly nonlinear functions, Perfect
Nonlinear (PN), Almost Perfect Nonlinear (APN), Bent, Almost Bent (AB), and Plateaued)
have essential applications in coding theory. For instance, Perfect Nonlinear (APN or PN)
functions have been employed to construct optimal linear codes (see, e.g., [44–48] and the
references therein). Very recently, Mesnager, Shi, and Zhu [40] proposed several constructions
of minimal (cyclic) codes from low differential uniform functions. Given these works, the
derived functions from this paper would help design new families of binary minimal codes.
We will keep an in-depth study of them in future work and cordially invite interested readers
to investigate them.
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