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Abstract: With the deepening of the diversification and openness of financial systems, financial
vulnerability, as an endogenous attribute of financial systems, becomes an important measurement of
financial security. Based on a network analysis, we introduce a network curvature indicator improved
by Copula entropy as an innovative metric of financial vulnerability. Compared with the previous
network curvature analysis method, the CE-based curvature proposed in this paper can measure
market vulnerability and systematic risk with significant advantages.
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1. Introduction

As the “blood supply station” of the modern economy, finance has become increasingly
vulnerable in the face of rising global inflationary pressure and the frequent occurrence of
related crises, which gradually endanger the security of the real economy. Many countries
are increasingly concerned about how to prevent financial risks and measure market
vulnerability. Along with the continuous progress of technological tools, new methods
of measuring financial market vulnerability are urgently needed to enable countries to
respond to and prevent crises in a timely manner and ensure smooth economic operations.

In a narrow sense, financial vulnerability is considered to be the inherent instability
caused by the high debt operation of the financial industry itself [1]. Huang put forward a
broad definition of financial vulnerability considering external shocks on this basis, thinking
that it generally refers to the accumulation of risks in all financing fields, including credit
financing and financial market financing [2]. At the same time, the author also pointed out
that the financial market’s vulnerability comes from the volatility of asset prices and the
linkage effect of volatility. Based on this general definition, different scholars have tried
to study financial vulnerability from multiple perspectives, such as the banking system,
stock market, and futures market, and think about how to use management methods and
measurement methods to deal with risks, such as portfolio investment [3–5].

Based on the goal of preventing risk accumulation and crisis occurrences, both do-
mestic and international scholars have begun researching how to measure financial market
vulnerability. However, due to the numerous factors that affect financial vulnerability and
the lack of a unified definition, the corresponding measurement methods are also diverse.
Currently, common measurement methods include (1) constructing financial crisis early
warning models, such as the signal model created by Kaminsky et al., which assesses
the crisis based on the comparison between different financial variables and their critical
values at a given moment [6], and (2) constructing measurement indicators, such as the one
created by Lin, who used an APARCH model to characterize the asymmetric volatility of
the conditional volatility of financial returns [7]. Wang attempted to measure the degree of
financial vulnerability from four dimensions: the macroeconomy, banking system, stock
market, and real estate market [8]. Spelta et al. considered the endogenous instability
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caused by the “herding effect” and positive feedback and studied financial market vulner-
ability through quantifying the intensity of self-organizing processes arising from stock
returns’ comovements and self-similarities [9].

Unfortunately, despite the increasing sophistication of models and indicator methods,
there are still problems, like the inability to dynamically demonstrate changes in market
vulnerability and characterize market risk contagion. With the rapid development of
complex network analysis methods and tools, these methods are increasingly used in
financial research, such as equity structure research [10,11], risk contagion research [12,13],
and so on. And, newer studies on financial vulnerability measures have also started to
introduce weighted undirected graphs as abstract models of the financial system [14–19].
Based on this theory, Sandhu et al. proposed using the curvature index to measure financial
vulnerability [20], but the related research is relatively preliminary and the research field
of applying various discrete curvatures to measure market vulnerability still needs to be
further studied.

An important drawback of previous network analysis methods is that they often
use linear correlation to describe the dependencies and associations between nodes while
ignoring higher-order correlations, and these approaches are often tepid in measuring
tail risk. A good example is the 2008 financial crisis, when the Gaussian Copula function,
which measures linear correlation, was widely used in derivative pricing. However, linear
correlation ignores the higher-order correlations between variables, especially tail risks.
Therefore, when a series of default events broke out collectively, it was finally found that
derivatives constructed by linear correlation lost the function of risk hedging. Compared
with using traditional methods such as the Pearson or Spearman correlation coefficient
to measure the correlation between nodes in a network, we attempt to apply the Copula
entropy (CE) proposed by Ma and Sun to network construction [21]. CE can measure
the statistical correlation of all orders, which can provide a clearer correlation pattern for
the network and show a strong correlation measurement effect, so it is suitable for this
study. At present, some scholars have used the measurement advantages of CE to conduct
network research in the field of hydrology, but economics-related research is still relatively
scarce, and this paper can provide some supplements [22–24].

The following is the arrangement of each part of this paper: Sections 2 and 3 outline
our method; Section 4 is about our empirical results and analyses; and Section 5 outlines
our conclusions.

2. Copula Entropy and Ricci Curvature
2.1. Nonlinear Causal and Information Captured with Copula Entropy

Correlation analysis is a pivotal concern in multivariate financial analysis, encompass-
ing aspects such as asset pricing, investment portfolios, the transmission and spillover
of volatility, and risk management. However, conventional linear correlation coefficients
possess certain limitations as they are more suitable for Gaussian distribution data and
typically necessitate the linearity of variables and the existence of variance. In practical
terms, numerous data observed in financial markets often exhibit peaked distributions
with heavy tails, while the presence of heteroscedasticity frequently renders variance
nonexistent. Traditional financial modeling tools fail to adequately accommodate these
modeling requirements.

The Copula theory proposed by Sklar in 1959 [25] solves the modeling problem in
traditional financial analysis while also effectively characterizing the nonlinearity, asym-
metry, and tail correlation relationships between variables and financial data. Usually, the
marginal distribution of each variable can be easily determined from the joint distribu-
tion of random variables, but it was difficult to determine the joint distribution from the
marginal distributions. The Copula theory shows that any correlation between multiple
variables corresponds to a function used to represent this relationship, called the Copula
function, which connects the joint distribution of multiple random variables with their
respective marginal distributions. It can decompose a multivariate joint distribution into
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multiple marginal distributions and a Copula product and capture the correlation between
multivariate variables through joint functions. With the continuous development of the
theory in recent years, it has become an important tool for asset correlation analysis. Li
and Shi [26] empirically showed that the tails of financial assets usually exhibit asymmetric
correlations, and the Copula function better reflects the correlation structure of such assets.
Jondeau and Rockinger [27], Wen and Feng [28], and Virbickaitė et al. [29] also fully proved
this point.

Given the joint distribution function F(X), the marginal distribution function Fi(Xi),
and the Copula function C(u) of any N-dimensional random variable X, the joint distribu-
tion function can be expressed as the form of the Copula function with the inputs being the
marginal distribution functions, as Equation (1):

F(X) = C(F1(x1), · · · , FN(xN)) (1)

Since mutual information has always been considered to measure all correlation
information, Ma and Sun proved the correlation between the Copula function and mutual
information in 2008, and thus proposed the concept of Copula entropy [21].

As we know, previous network analysis methods based on traditional correlation coef-
ficients are only able to describe linear correlations between nodes, which is not sufficient
for our study of financial markets with complex tail correlations. Therefore, we introduce
Copula entropy to improve the method.

Copula entropy was proved to be equivalent to mutual information in information
theory [30]. Essentially, it is a form of Shannon entropy, expressed as

Hc(u1, · · · , un) = −
∫ 1

0
· · ·

∫ 1

0
c(u1, · · · , un) log[c(u1, · · · , un)]du1 · · · dun (2)

Considering the case of two variables, Equation (3) is expressed as

−Hc(u1, u2) = H(X1) + H(X2)− H(X1, X2) (3)

Among them, H(Xi)(i = 1, 2) and H(X1, X2) are the uncertainty degree of the ran-
dom variable Xi obtained by Shannon information theory and the joint entropy of the
random variable X1 and X2, respectively, which are calculated by Equation (4) and
Equation (5), respectively:

H(X) = −
N

∑
i=1

p(xi)logp(xi) (4)

H(X, Y) = −
N

∑
i=1

N

∑
j=1

p(xi, yi)log p(xi, yi) (5)

In addition, mutual information can be regarded as the amount of information contained in
a random variable about another random variable or the uncertainty of a random variable
that is reduced by knowing another random variable, expressed as Equation (6):

M(X, Y) =
N

∑
i=1

N

∑
j=1

p(xi, yi)log p(xi ,yi)
p(xi)p(yi)

= H(X) + H(Y)− H(X, Y) (6)

Obviously, Hc(u1, u2) = −M(X1, X2), that is, Copula entropy, has the same value as
interaction entropy with an opposite sign [30,31]. Copula entropy is mutual information.

In the context of correlation becoming an important indicator of financial market
risk, the advantages of CE over the traditional Pearson coefficient are as follows: (1) The
Copula function value can be obtained by using a nonparametric estimation method, which
does not require random variables to conform to or be close to normal distribution, and
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works well when measuring the correlation of nonelliptic distribution families. (2) Different
Copula functions can be selected to portray the correlation between variables according
to the focus of the study, including the Gumbel Copula function, which is sensitive to the
change in the upper tail of the variable distribution; the Clayton Copula function, which
is sensitive to the change in the lower tail; and the Frank Copula function, which is not
sensitive to the change in the tail, etc. (3) It is not limited by dimensions and can measure
the correlation between multidimensional variables, including nonlinear relationships.

In fact, Copula entropy is not the first optimization of the Pearson coefficient. In 1904,
the British psychologist Spearman proposed the rank correlation coefficient [32]. In the
statistical sense, this coefficient can be regarded as a special case of the Pearson correlation
coefficient, but the main difference is that it does not require variables to be close to or
conform to a normal distribution, and it can measure the nonlinear relationship between
two variables. However, the Spearman coefficient also has the disadvantage that it cannot
reflect the correlation structure of variables and cannot calculate the correlation of multidi-
mensional variables. Therefore, this paper finally chooses Copula entropy to measure the
correlation and correlation structure between variables and compares the empirical effect
of traditional correlation coefficients and CE on the CSI 300 data in Section 4.1 to verify the
above conclusions.

2.2. Market Vulnerability Measurement with Ricci Curvature

Although graphs and networks are composed of discrete objects, they can be consid-
ered as metric spaces just like smooth manifolds, where the distance between any two
nodes can be specified by the length of the path between them. The classic Ricci curva-
ture is applicable to smooth manifolds and requires tensor and higher-order derivatives,
and thus it cannot be directly applied in discrete graphs or networks. In order to make
Ricci curvature applicable to financial vulnerability studies, it is necessary to focus on the
quantification of Ricci curvature for two basic geometric properties of manifolds, namely
the bulk growth and divergence of geodesics. In n-dimensional Riemannian manifolds,
Ricci curvature controls the n−1 dimensional volume growth of geodesics along a certain
vector direction in n-dimensional stereo angles; in addition, Ricci curvature quantifies the
dispersion of geodesics with the same initial point in a given stereo angle.

Classic Ricci curvature is related to vectors in smooth manifolds, and extended to net-
work analysis, the notion of discrete Ricci curvature is related to edges rather than vertices
or nodes. Since the discretized Ricci curvature does not have all the characteristics of the
classic Ricci curvature, different discretization methods can give different interpretations to
the graph or network and then produce different curvature concepts, such as Ollivier–Ricci
(OR), Forman–Ricci (FR), Menger–Ricci (MR), Haantjes–Ricci (HR), etc. The OR curvature
realizes discretization processing based on classic Ricci curvature by comparing the optimal
average distance and Euclidean distance between neighbor nodes, and its core process
lies in the solution of the optimal average distance; FR curvature is mainly based on the
relationship between Laplacian and Ricci curvature, which is more algebraic in nature
and can quantify the amount of information propagated by the end of the edge in the
network; the basic principles of HR curvature and MR curvature are relatively similar, both
derived from the definition of measuring triangle curvature proposed by Menger. The
main difference is that MR curvature only considers triangles or simple paths of length
two formed between two nodes of an edge, while HR curvature considers longer paths
between two nodes.

There are different curvature properties in the above four discrete Ricci curvatures
due to differences in their principles and metrics. In a discrete network, the Ollivier–Ricci
curvature can well explain the volume growth in the classic Ricci curvature, while the
Forman–Ricci, Menger–Ricci, and Haantjes–Ricci curvatures describe the divergence of
geodesics in the classic Ricci curvature characteristic. The specific introduction of the four
curvatures is available in Appendix A.
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3. The Calculation of Curvature

In general, our analysis methods are as follows: (1) We calculate the CE between assets
in the market by referring to the method of Ma and Sun [21]. In this step, we try to account
for the superiority of CE compared to the linear correlation coefficients. (2) We add CE into
the construction of the market network to obtain the curvature measure we need.

In the first step, we use the nonparametric CE estimation method [33]. The method
consists of two steps: (1) estimate the empirical Copula density function and (2) estimate
the CE with the empirical Copula density function.

Given a set of independent identically distributed samples {x1, . . . , xT} of random
variable X, the empirical Copula density function can be easily estimated by ordinal
statistics, as Equation (7):

Fi(xi) =
1
T

T

∑
t=1

1
(

xi
t < xi

)
(7)

where 1(·) represents the indicative function.
After obtaining the empirical Copula density function, we used the K-nearest neighbor

method proposed by Kraskov et al. to estimate the CE [34].
In the second step, we do not directly use the CE as the edge weight, but we treat it as

follows: We use the following processes on the calculated CE according to its distribution:
Tail the CE of the perfectly positive correlated stocks to two; then, use the linear scaling
method to transform the scale of the CE to [0, 1]. The purpose of these processes is to
enlarge the difference between the CE in the value range, thus constructing a heterogeneous
network as much as possible. On this basis, Equation (8) is used to measure the distance
between individual stocks as the weight of the edge:

w = 2 ×
√

1 − adj_CE (8)

In order to extract the main information in the network, a threshold α = 0.5 is set
according to the distribution of the CE. All edges with adj_CE below the threshold will
be deleted from the network. The setting of the threshold takes into account not only the
distribution of the CE but also the computational efficiency and effectiveness.

4. Empirical Results and Analyses
4.1. CE and Correlation Coefficient

In order to explain the role of CE in correlation measurements more deeply, in this
part, we explore the characteristics of CE based on the data of constituent stocks within
the CSI 300 index. First, we try to compare CE with two common correlation coefficients,
the Pearson correlation coefficient and the Spearman correlation coefficient. The former
is usually used to measure linear correlation, while the latter, which is a nonparametric
version of the former, can measure partial nonlinear relationships.

Therefore, we calculate the correlation coefficients and CE between every two compo-
nent stocks and output the matrix as shown in Figure 1. In order to show the correlation
between stocks more clearly in the figure, we group the stocks of the same industry together
according to Shenwan’s industry classification standard. As can be seen from the figure,
CE provides a clearer correlation pattern than these two correlation coefficients. This clarity
is reflected in the fact that the heat map based on CE exhibits deeper colors in regions
where we expect a strong correlation, while extremely light colors appear in regions where
we expect no strong correlation. We will find that the areas with deep color in the graph
are usually very concentrated, which is precisely because we grouped stocks of the same
industry together when arranging the coordinates. Unlike CE, the heat maps based on
correlation coefficients show deep colors that are irregular even in regions where a strong
correlation is not expected. That is, in the regions with a low correlation, the two correlation
coefficient measures will have more noise, resulting in the correlation of the truly correlated
region not being clear in the matrix. This is because CE measures statistical correlations
for all orders, whereas correlation coefficients only measure statistical correlations for
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second orders. In the internal comparison of the two correlation coefficients, the color
difference in the Spearman’s correlation coefficient matrix is slightly more pronounced
than that of Pearson’s, probably because it is also estimated nonparametrically. However,
there is still a big difference between the former and CE. Theoretically, they use different
Copula functions. CE can describe a statistical correlation more clearly than the Spearman
correlation coefficient.
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Figure 1. Pearson (upper left) and Spearman (upper right) correlation coefficient and CE (bottom).
The coordinate axis of the figure represents the components of the CSI 300 index, and we rearranged
these stocks according to the industry (from Shenwan) on the coordinate axis.

In Figure 1, we use the blue-border-boxed area to illustrate the superiority of CE. In
the example area, the heatmap based on the correlation coefficient shows a deep color,
suggesting a certain positive correlation. However, in the context of CE, the heatmap
shows a light color, indicating a weak correlation. The specific correlation strength is as
shown in Table 1’s Panel A, B, and C, where the correlation coefficients are around 0.4 and
the CE values are all zero (negative because of the calculation error). From an economic
perspective, the two groups of stocks with correlation noise are the metallics and basic
chemical industries, which should not have too much correlation in the market. Therefore,
the CE measure is more reasonable.

In addition, there is an obvious difference between CE and the normal correlation
coefficient; that is, CE measures the correlation strength between variables and does not
distinguish between positive and negative, while the correlation coefficient measures the
positive and negative correlation between variables and takes a value within [−1, 1].

Despite CE’s inability to distinguish the direction of the correlation, its application
to distance measurements in security market networks is reasonable because the security
market does not have a significant negative correlation. This means that the strong cor-
relations we identify through CE are positive in the vast majority of cases. Moreover, in
our treatment of the edge weights, we remove those with a smaller CE, such that the final
edges in the network represent a stronger positive correlation. Therefore, the weights of
the edges in the final network actually represent the strength of the positive correlation.
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Table 1. CE and correlation coefficient.

Panel A: Pearson Correlation Coefficient Panel B: Spearman Correlation Coefficient

600,489 601,899 603,993 600,547 601,899 603,993
600,352 0.40 0.44 0.40 600,352 0.31 0.45 0.40
600,426 0.33 0.44 0.46 600,426 0.20 0.49 0.43
600,989 0.34 0.38 0.40 600,989 0.15 0.34 0.39
601,216 0.36 0.43 0.41 601,216 0.17 0.45 0.41

Panel C: CE Panel D: Industries (from Shenwan)

600,547 601,899 603,993 Metallics:
600,352 0.04 −0.01 −0.06 600,547, 601,899, 603,993
600,426 −0.05 −0.07 0.00 Basic chemical industry:
600,989 −0.09 −0.03 −0.01 600,352, 600,426, 600,989, 601,216
601,216 −0.01 0.00 0.02

4.2. Network Analysis with CSI 300 Component Stocks

On the basis of exploring the Copula entropy of CSI 300 component stocks in the
previous section, we attempt to construct a market network composed of component
stocks in CSI 300 from April 2006 to April 2022. We adopt a similar analysis route to
Samal et al. [35], and our main contribution is the proposal of CE-based Ricci curvature.
Therefore, we calculate the changes in the following four kinds of curvature over time in
the network: Ollivier–Ricci curvature, Menger–Ricci curvature, Haantjes–Ricci curvature,
and Forman–Ricci curvature. In addition, we compared the CE-based approach with the
correlation-coefficient-based approach. The stock data used in this section and subsequent
sections are from the CSMAR database. The time windows used in the calculations are
20 trading days.

Figure 2 reports the network curvature based on CE for the period from April 2006 to
April 2022. From top to bottom is the Ollivier–Ricci curvature, Menger–Ricci curvature,
Haantjes–Ricci curvature, and Forman–Ricci curvature. The two shaded sections mark the
periods when stock market crashes occurred in 2008 and 2015. In addition, the curvature
based on Pearson’s coefficient of the network is also reported, which is identified by a light
orange curve in the figure.
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From the perspective of measuring market vulnerability and systematic risk, the
curvature measure undoubtedly fulfilled the task well: all four curvatures remained high
for a long period of time after the crisis broke out (Forman curvature is always negative,
and the greater the absolute value, the more fragile the network structure). Enduring a bear
market is often painful, so the curvature measure gives a “fragile and dangerous” signal for
a long time after the crisis. This phenomenon can be explained by the noise-trader model
that De Long et al. put forward [36]. The model said that the transaction noise brought by
extreme emotions is difficult to eliminate, so it often leads to long-term value deviation.
In addition, this phenomenon may also be closely related to the arbitrage asymmetry
proposed by Stambaugh et al. [37]. The wild fluctuations in the market lead to the increase
in arbitrage risk, so the deviation in the value is more serious. In short, the mechanism of
“vulnerability” in the security market is not exactly the same as the transmission of risk
when a banking crisis occurs. It should be noted that the measurement method proposed
in this paper itself cannot predict the arrival of the crisis in a forward-looking way. It
is not difficult to see from the figure that the curvature is essentially a signal that exists
simultaneously with the crisis, and it measures the state of the market. However, after
the crisis occurs, this index can indicate when the market comes to normal, which is also
quite important.

What is more, Figure 2 also shows the curvature sequence of the network constructed
by Pearson’s correlation coefficient, which is calculated with the same method as [35,38].
We find that it has a similar trend to the CE-based method. However, the CE-based method
provides more pronounced differences between different market environments, indicating
its superior ability to capture market vulnerability and differentiate the magnitude of
systematic risk. Visually, this feature is represented by higher curvature peaks during crisis
periods and comparatively smaller curvature measurements during other stable periods.
Additionally, during the crisis period (gray area in Figure 2), the CE-based index rises faster,
which indicates that it can better reflect the sharp release in market risk. It is notable that,
immediately after the crisis period, the Pearson-based curvature shows a brief but sharp
dip and then goes back to a relatively high position. It is a typical fake stabilization. By
contrast, the CE-based index is more robust in measuring risk by remaining at a higher
level of curvature, which provides more cautious risk monitoring after the event.

In addition to marking the special time period of 2008 and 2015, we further explore
the network structure characteristics at five key time nodes: 28 January 2008, 15 April 2011,
3 January 2014, 26 June 2015, and 17 February 2017. The community discovery algorithm is
used to realize the modularization of the network structure, as shown in Figure 3. The five
figures above the curvature diagram represent the graph network model formed by the
component stocks of CSI 300 at different time points. After modularization, the color of the
nodes represents the module (community) to which they belong.

The modularity measure Q, also known as the modularity degree, is a commonly used
method to measure the structural strength of network communities. It was first proposed
by Mark NewMan. The modularity degree Q mainly depends on the community division
in the network, so we use Q to quantitatively measure the division quality of network
communities. As Figure 3 shows, during the two stock market crash periods, with four
kinds of curvature at a high level, there are significantly more edges in the network. As a
whole, the modularity levels of networks are relatively low (the measure of the modularity
Q is between 0.1 and 0.2), and we could not distinguish different communities clearly. In
contrast, during the 13 January 2014 and 17 February 2017 periods with low curvatures, the
number of edges formed in the network is significantly less than that in other periods. At
the same time, there is a higher modularity level (the modularity degree Q is higher than
0.7), and the characteristics of community distribution morphology and scale can be clearly
observed from the network. In addition, although 15 April 2011 is not the peak of the
curvature in the interval, the curvature fluctuates greatly. With the large number of edges
and low modularity in the network, at this time, the market usually has high vulnerability
and systematic risk. According to the above results and analyses, it can be preliminarily
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inferred that in general, high curvature is accompanied by a low module degree of the
network structure, large number of edges, close connections between different nodes, and
high market risk. Low curvature corresponds to a high module degree, fewer edges, less
closeness between nodes, and less market risk and vulnerability.
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4.3. Comparison with Traditional Risk Metrics

In order to reveal the characteristics of network curvature in measuring financial risk,
we select several risk metrics commonly used in finance for comparison, which are the
volatility of the optimal portfolio of risky assets, the volatility of the index estimated by the
GARCH model, and the realized volatility of the index. It should be noted that the above
three metrics mainly indicate risk from the market. Market risk is a type of systematic risk,
and only in the framework of the CAPM does systematic risk include only the component
from the market. But to a certain degree, these metrics are closely related to systemic risk.

In this paper, the optimal risky asset portfolio is computed by using Markowitz’s
framework to maximize the expected utility of an investor with a quadratic utility function.
In Markowitz’s framework, the optimal risky asset portfolio is the market portfolio with
a β of 1, whose volatility measures the magnitude of market risk. In calculating the
optimal risky asset portfolio, this paper uses the maximization of the Sharpe ratio, which is
maximizing rp−rf

σp
. In this formula, rp and σp are the portfolio’s average daily return and

volatility (standard deviation of returns) for the year, respectively, and rf represents the
year’s risk-free rate of return.

Index volatility is a good indicator of market risk. As a commonly used regres-
sion model to analyze financial data, GARCH can more accurately simulate the volatility
changes in time series variables than ARCH. More specifically, the GARCH(1, 1) model is
the most widely used. This paper takes the daily return data of the CSI 300 index as the
research sample and establishes the GARCH(1, 1) model to analyze the return volatility.
By drawing the time series chart, as shown in Figure 4, it can be seen that the volatility of
return in this period of time is large and there is the phenomenon of “volatility aggrega-
tion”. Additionally, the ADF test and correlation test show that the return series is smooth
without significant correlation. On this basis, we use ARMA(1, 1) to fit the yield series. The
residuals passed the ARCH effect test, which is a prerequisite for GARCH modeling.
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The realized volatility, which is the historical volatility of an asset, is a commonly
used risk measure. Like the index volatility estimated by the GARCH model, the realized
volatility of an index can be used to measure the overall market risk. In this paper, we
calculate the realized volatility of the CSI 300 index for each month (20 trading days).

Figure 5 illustrates the trend of the four curvature measures and the three commonly
used risk metrics above. It shows that the seven risk metrics are extremely similar over
time. In addition, Table 2 reports the results of the Pearson correlation coefficient tests
for the seven risk metrics. From top to bottom, there are the Ollivier–Ricci, Menger–Ricci,
Haantjes–Ricci, and Forman–Ricci curvatures as well as the volatility of the optimal risk
portfolio, the volatility estimated by the GARCH(1, 1) model, and the realized volatility.
There are highly significant correlations among the seven metrics, and this result suggests
the commonality of the seven risk measures, as well as the robustness of the CE-based
network analysis approach. Furthermore, in the CE-based network analysis approach,
the amount of information is relatively large, which may identify tail risks that cannot be
identified by the other three traditional indicators. Accordingly, the superiority could be
seen in the period of 2008~2015.

Table 2. Correlation between seven risk metrics (Pearson).

OR MR HR FR ORP EVOL VOL

OR 1
MR 0.8840 1
HR 0.7445 0.9613 1
FR −0.9354 −0.9792 −0.8936 1
ORP 0.5249 0.5285 0.4579 −0.5342 1
EVOL 0.5861 0.6187 0.5477 −0.6376 0.7975 1
VOL 0.6215 0.6596 0.5939 −0.6720 0.8225 0.9089 1

All p-values are less than 0.0001.

Since the latter three risk metrics (the volatility of the optimal risk portfolio, forecasted
volatility of the index, and realized volatility) are all representative of systematic risk from
the market, it is feasible to use curvatures to measure the systematic risk empirically.
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4.4. Ability to Explain Returns

The above analysis has shown some properties of network curvature based on CE.
To more fully illustrate the superiority of the CE method compared to the correlation
coefficients, in this section, we compared the ability of the two curvature measures to
explain excess returns. According to modern asset pricing theory, if a factor has a stronger
ability to explain excess returns, it is more efficient. Additionally, the ability to explain
excess returns is the most intuitive financial meaning of this vulnerability metric. To this
end, this paper explores the ability of curvature as a macro factor to explain stock excess
returns, following the approach used by Fama and MacBeth (1973) [39]. Specifically, we add
curvature to the CAPM model and Fama–French three-factor model to reform a two-factor
model and a four-factor model, providing explanations about the variation in stock excess
returns in the corresponding intervals. In this part, all the variables used are shown in
Table 3, and all the data are from the CSMAR database.
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Table 3. Variables.

Variable Explanation Computation

R The excess return of a portfolio. The 20-day return of a portfolio minus 20-day risk-free rate.

C The curvature. Ollivier–Ricci, Menger–Ricci, Haantjes–Ricci, and Forman–Ricci.

RF Risk-free rate. 3-month time deposit rate in China (in the 20-day term).

RM Market factor.
For two-factor model: the excess return of CSI 300 index relative to the risk-free rate.
For four-factor model: download from CSMAR directly. The excess return of the
market considering reinvested cash dividends relative to risk-free rate.

SMB Market value factor. Download from CSMAR directly. The difference in return between the small-cap
portfolio and the large-cap portfolio in A-share market.

HML Book-to-market factor. Download from CSMAR directly. The difference in return between the high
book-to-market portfolio and the low book-to-market portfolio in A-share market.

In this paper, 1245 stocks listed in the A-share market before 1 January 2006 (2006-01-01)
are selected to construct an investment portfolio by using the independent double-sorting
method. The necessity of constructing the portfolio is to diversify the nonsystematic risk as
much as possible, thus enhancing the explanatory power of the factors. To be specific, we
use data from 1 January 2006 (2006-01-01) to 31 December 2010 (2010-12-31) to calculate the
factor exposure of individual stocks on market return and curvature (Ollivier–Ricci in this
part) separately, and then divide them into 20 groups according to the factor exposure in
each factor dimension independently, resulting a total of 400 portfolios. Then, we apply
Fama–MacBeth regression on the data from 1 January 2011 (2011-01-01) to 30 April 2022
(2022-04-30) to explore the explanatory power of the curvature on returns.

Fama–MacBeth regression is a cross-sectional approach, and its main process can be
divided into two steps: firstly, a rolling regression on time series is conducted to calculate
the factor exposure of the portfolio excess returns on each factor, and secondly, at each time
point, a cross-sectional regression of the factor exposure, obtained in step 1, on the excess
returns is conducted to observe their relations and examine whether there is a pricing error.
The specific models are as follows (Equations (9) and (10)):

Ri,t = α + β1,i,tCt + β2,i,tRMt + εi,t i = 1, 2, . . . , N (9)

Ri,t = α + λ1β1,i,t + λ2β2,i,t + εi,t t = 1, 2, . . . , T (10)

Regarding the time series regression, this paper takes a 60-month time window for
rolling regression according to model (9); Ct is the curvature and RMt is the market excess
returns, which is proxied by the excess return of the CSI 300 index relative to the risk-free
rate. It should be noted that, in order to be uniform with the curvature metric, 20 trading
days are seen as 1 month here. The model of cross-sectional regression is shown in (10); β1
is the factor exposure of the curvature and β2 is the factor exposure of the market return.

Table 4 reports the results of the above two-factor Fama–MacBeth regression model.
Columns 1–4 of the table report the explanatory power of the CE-based vulnerability
measure for the returns while columns 5–8 report the results based on the Pearson co-
efficient. We explore the ability of the Ollivier–Ricci, Menger–Ricci, Haantjes–Ricci, and
Forman–Ricci curvatures to explain market excess returns. It is found that when using CE,
the relationship between factor exposure and the excess returns is significant no matter
which measure of curvature is used; that is, it could explain the changes in the returns.
Moreover, the hypothesis that the constant in regression is equal to zero cannot be de-
nied, suggesting that there is no large pricing error, which strongly supports the financial
significance of the curvature.
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Table 4. Two-factor model result.

CE Pearson Coefficient

(1) (2) (3) (4) (5) (6) (7) (8)
R R R R R R R R

BO −0.03 * −0.02 *
(−1.95) (−1.83)

BM −4.34 *** −3.97 *
(−2.65) (−1.94)

BH −1358.35 *** −1121.69 **
(−2.89) (−2.00)

BF 20.19 ** 17.78 *
(2.25) (1.95)

BRM 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00
(0.24) (0.34) (0.45) (0.31) (0.74) (0.74) (0.86) (0.68)

_cons −0.00 −0.00 −0.01 −0.00 −0.01 −0.01 −0.01 −0.01
(−0.46) (−0.52) (−0.79) (−0.44) (−0.82) (−0.82) (−1.05) (−0.71)

N 29,546 29,546 29,546 29,546 28,045 28,045 28,045 28,045
adj. R2 4.43% 4.33% 4.21% 4.61% 6.41% 6.22% 5.64% 6.58%

*, **, and *** represent the significance level of 0.1, 0.05, and 0.01, respectively. The values of the associated t-test
are listed in parentheses. BO, BM, BH, BF, and BRM represent the factor exposure of stocks on the curvature of
Ollivier–Ricci, Menger–Ricci, Haantjes–Ricci, Forman–Ricci, and market return, respectively.

The CE-based method has stronger explanatory power for excess returns, which
confirms our previous discussion on CE and correlation coefficients. Specifically, in the
cross-sectional regression reported in columns 5–8, the significance of the Pearson coefficient
for the curvature factor exposures is lower than those in columns 1–4. At the same time,
the significance of the market factor exposures and constant term coefficients increased
with the correlation-based method. This indicates that the CE-based method can obtain
more effective vulnerability measures and better quantify market conditions.

For robustness, we also attempt to add the curvature measurement to the Fama–French
three-factor model to further compare the explanatory power of the two vulnerability
measurements for excess returns. Subsequently, we categorize stocks into four groups based
on their factor exposures across each dimension, resulting in a 4 × 4 × 4 × 4 classification
scheme. Finally, employing Models (9) and (10), we apply the Fama–MacBeth regression
analysis on post-2011 data.

Table 5 reports the results of the above four-factor Fama–MacBeth regression model.
Consistent with above, columns 1–4 of the table report the explanatory power of the CE-
based vulnerability measure for returns while columns 5–8 report the results based on
the Pearson coefficient. It is found that when using CE, the relationship between factor
exposure and the excess returns is significant unless the Ollivier–Ricci curvature is used.
That is, in the four-factor model, most curvature based on CE could explain the changes
in returns. There is little pricing error, which strongly supports the robustness of the
financial significance.

Additionally, the Pearson coefficient is employed to obtain results. As depicted in
columns 5–8 of Table 5, there is a substantial reduction in the explanatory power of factor
exposures toward excess returns across all four curvatures examined. Simultaneously, it is
noteworthy that the t-value associated with the constant term exhibits a significant increase,
which suggests an augmented likelihood of mispricing.

In the following part, we change the sorting method in the combination construction
process into conditional sorting; that is, after the first dimension grouping is completed,
within each group, the next dimension is sorted and grouped, and so on. We present the
results of the Fama–MacBeth regression in Table 6. The two-factor model is used in rows 1
and 2 and the four-factor model is used in rows 3 and 4. The first row is grouped according
to the curvature first and then according to the market factor; the second row is grouped
according to the market factor first and then according to the curvature; the third row is
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grouped according to the curvature, market factor, SMB, and HML at once; and the fourth
row exchanges the order of the curvature and the market factor. The results reported in
Table 6 support the ability of the vulnerability measurement to explain excess returns and
the superiority of the CE-based method over the Pearson coefficient.

Table 5. Four-factor model result.

CE Pearson Coefficient

(1) (2) (3) (4) (5) (6) (7) (8)
R R R R R R R R

BO −0.02 −0.02
(−1.46) (−1.41)

BM −5.05 *** −3.46
(−2.94) (−1.59)

BH −1661.89 *** −1314.53 **
(−3.28) (−2.10)

BF 20.10 ** 14.51
(2.26) (1.59)

BRM −0.00 −0.00 −0.00 −0.00 0.00 0.00 0.01 0.00
(−0.27) (−0.20) (−0.12) (−0.20) (0.70) (0.78) (0.83) (0.72)

BSMB −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00
(−0.97) (−1.06) (−1.07) (−1.06) (−0.65) (−0.77) (−0.81) (−0.74)

BHML −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00
(−0.40) (−0.35) (−0.29) (−0.38) (−0.14) (−0.22) (−0.24) (−0.14)

_cons −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00
(−0.01) (−0.19) (−0.27) (−0.05) (−0.53) (−0.66) (−0.77) (−0.56)

N 19,039 19,039 19,039 19,039 19,276 19,276 19,276 19,276
adj. R2 16.57% 16.76% 16.84% 16.71% 14.47% 14.46% 14.02% 14.63%

** and *** represent the significance level of 0.05 and 0.01, respectively. The values of the associated t-test are listed
in parentheses. BO, BM, BH, BF, BRM, BSMB, and BHML represent the factor exposure of stocks on Ollivier–Ricci
curvature, Menger–Ricci curvature, Haantjes–Ricci curvature, Forman–Ricci curvature, market factor, SMB, and
HML, respectively.

Table 6. Conditional sorting and grouping.

CE Pearson Coefficient

(1) (2) (3) (4) (5) (6) (7) (8)
R R R R R R R R

1 −0.03 * −4.67 *** −1446.44 *** 21.73 ** −0.02 −3.10 −859.74 * 13.74
(−1.95) (−2.85) (−3.18) (2.39) (−1.66) (−1.64) (−1.69) (1.62)

2 −0.02 −3.81 ** −1167.05 ** 18.15 * −0.01 −2.08 −455.16 10.45
(−1.57) (−2.26) (−2.53) (1.98) (−1.21) (−1.16) (−0.94) (1.31)

3 −0.02 −3.38 ** −1123.39 ** 13.98 * −0.02 −2.87 * −834.31 * 12.48 *
(−1.18) (−2.24) (−2.52) (1.73) (−1.58) (−1.78) (−1.86) (1.69)

4 −0.03 ** −5.06 *** −1691.93 *** 20.82 ** −0.02 * −3.44 * −924.49 * 14.68 *
(−2.02) (−3.19) (−3.60) (2.49) (−1.87) (−1.90) (−1.81) (1.84)

*, **, and *** represent the significance level of 0.1, 0.05, and 0.01, respectively. The values of the associated t-test
are listed in parentheses. Columns 1 and 5 use Ollivier–Ricci curvature, columns 2 and 6 use Menger–Ricci
curvature, columns 3 and 7 use Haantjes–Ricci curvature, and columns 2 and 6 use Forman–Ricci curvature.

5. Conclusions

This paper introduces Copula entropy into a curvature analysis of the network and
generates some insights into measuring the vulnerability and systematic risk of financial
markets. We find that CE provides a clearer identification of correlations than the Pear-
son and Spearman correlation coefficients, presenting less noise in the low correlation
region. CE shows a better correlation measurement performance and can effectively dis-
tinguish different financial sectors. This is due to the fact that CE measures statistical
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correlations of all orders while the correlation coefficient measures only the second-order
statistical correlations.

Based on the network analysis, the curvature trends are similar for both correlation
measurement methods, but the CE approach is relatively more distinct across market states
and has a greater ability to characterize market vulnerability and distinguish the magnitude
of systematic risk in the market. Furthermore, the CE-based approach has been proven to
have a stronger ability to explain excess returns, which verifies the superiority of the CE-
based vulnerability measurement from another perspective. The figures show that while
the curvature metric cannot predict the onset of a crisis in advance, it remains high for a long
time after the outbreak of a crisis, giving a signal of vulnerability and danger. Therefore,
it can suggest when the market will start to stabilize. In addition, high curvature is often
associated with low modularity and a high number of edges in the network structure,
with close ties among different nodes and high market risk. Accordingly, low curvature
corresponds to high modularity and a low number of edges in the network structure, with
reduced closeness among nodes, moderated market risk, and low vulnerability.
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Appendix A

Appendix A.1. Ollivier–Ricci (OR)

Ollivier’s discretization of classical Ricci curvature has been widely used in the analysis
of graphs or networks. In spaces of positive curvature, the average distance between balls
is smaller than their center distance, while in negative curvature space, the average distance
between balls is larger than their center distance. Based on the above principle, Ollivier
extends the classical Ricci curvature to graphs and networks. Taking the edge e between
nodes u and v as an example, the OR curvature is defined as

O(e) = 1 − W1(mu, mv)

d(u, v)
(A1)

In Equation (A1), mu and mv represent discrete probability distribution functions at nodes u
and v, respectively, and W1 represents the Wasserstein distance between mu and mv, which
is used to measure the transportation cost between them. The specific calculation method is
shown in Equation (A2), where d(u, v) represents the path distance (the Euclidean distance)
between nodes u and v in the graph:

W1(mu, mv) = in f
µu,v∈∏ (mu ,mv)

∑
(u′ ,v′)∈V×V

d
(
u′, v′

)
µu,v

(
u′, v′

)
(A2)

∑
v′∈V

µu,v
(
u′, v′

)
= mu

(
u′), ∑

u′∈V
µu,v

(
u′, v′

)
= mv

(
v′
)

(A3)
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Equation (A3) represents all transfer possibilities that transform the discrete probability
distribution function mu into mv, where V is the set of all nodes in the graph. For ∀ u ∈ V,
its probability distribution mu must be explicit and consistent with the neighbor nodes.

Ollivier–Ricci curvature realizes discretization based on classical Ricci curvature by
comparing the optimal average distance between the neighbor nodes of u and v (based
on edge e) and the Euclidean distance between u and v. During this process, the key is
to solve for the optimal average distance, which is regarded as an optimal transportation
problem, namely minimizing the average distance.

Appendix A.2. Forman–Ricci (FR)

Forman’s Ricci curvature discretization method is mainly based on the relationship
between the Laplacian and Ricci curvature, which is more algebraic in nature. This method
was originally used for discrete geometric objects much larger than weighted graphs and
was subsequently introduced into undirected networks by Sreejith et al. [40] and further
extended to directed networks. To calculate the Forman–Ricci curvature F(e) of edge e
in an undirected network, it is necessary to determine the weights of all the edges and
nodes related to the edge e in advance, and the specific calculation process is shown in
Equation (A4):

F(e) = we

(
wv1

we
+

wv2

we
− ∑

ev1∼e, ev2∼e

[
wv1√wewev1

+
wv2√wewev2

])
(A4)

In Equation (A4), e represents the edge connecting nodes v1 and v2; we represents the
weight of edge e; wv1 and wv2 represent the weights associated with nodes v1 and v2,
respectively; and ev1 ∼ e and ev2 ∼ e denote the set of edges incident to nodes v1 and v2,
respectively after excluding edge e.

From a geometric point of view, FR curvature can quantify the amount of information
propagated by the ends of the edges in the network. The higher the degree of information
diffusion at the end of the edge, the greater the absolute value of FR curvature. Specifically,
an edge with a high negative FR curvature may have multiple adjacent edges connected
to two nodes of the edge; that is, both ends are funnel-shaped and can be connected to a
large number of neighbor nodes. This makes it very likely that the shortest paths formed
between other nodes (including nodes that are far away in the network) pass through this
edge. Therefore, edges with high negative FR curvature have high betweenness centrality.

Appendix A.3. Menger–Ricci (MR)

Among the concepts of metric space and discrete curvature, the simplest definition was
first proposed by Menger. He defined the curvature of a metric triangle T composed of three
points in the space as the reciprocal of R(T), which is the circumcircle radius of the triangle
T; that is, 1/R(T). Saucan et al. extended Menger’s definition to the network [41,42]. Let
(M, d) be a metric space, and T = T(a, b, c) represents a triangle whose sides are a, b, c;
then, the Menger–Ricci curvature of T is KM(T):

KM(T) =
√

p(p − a)(p − b)(p − c)
a · b · c

(A5)

In Equation (A5), p = (a + b + c)/2, it can be seen from the equation that the MR curvature
value is constantly positive. According to the differential geometry method, the MR
curvature of edge e in the network can be defined as κM(e):

κM(e) = ∑
Te∼e

κM(Te) (A6)

In Equation (A6), Te ∼ e represents the triangle adjacent to side e. If an edge is part of
several triangles in the network, it will have a high positive MR curvature.
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Appendix A.4. Haantjes–Ricci (HR)

The basic principle of Haantjes–Ricci curvature is similar to that of Menger–Ricci
curvature. The main difference lies in the fact that MR curvature only considers triangles
formed by the two nodes of edge e or simple paths of length two, whereas HR curvature
takes longer paths between two nodes into account. In special cases, these two curvature
concepts can coincide through a universal constant.

Haantjes defined the curvature of a curve as the ratio of the arc length of the curve to
its corresponding chord length. Specifically, given a curve c in a metric space (M, d) and
three points p, q, r on c (with p located between q and r), the HR curvature at point p is
defined as κ2

H(p):

κ2
H(p) = 24 lim

q,r→p

l(q̂r)− d(q, r)

(d(q, r))3 (A7)

In Equation (A7), l(q̂r) represents the length of the arc q̂r. In the network, q̂r represents the
path π = v0, v1, . . . , vn, and the edge e = (v0, vn) represents the chord corresponding to q̂r.
On this basis, Saucan et al. defined the HR curvature of a simple path π as κ2

H(π) [37,38]:

κ2
H(π) =

l(π)− l(v0, vn)

(l(v0, vn))3 (A8)

Thus, the HR curvature of edge e can be defined as κH(e):

κH(e) = ∑
π∼e

κH(π) (A9)

In Equation (A9), π ∼ e represents the path connecting two nodes of edge e. Due to
calculation limitations, we only consider simple paths with a length less than or equal to
four when using this formula to calculate the HR curvature in this paper.
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