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Abstract: We investigate both theoretically and numerically the dynamics of out-of-time-ordered
correlators (OTOCs) in quantum resonance conditions for a kicked rotor model. We employ various
operators to construct OTOCs in order to thoroughly quantify their commutation relation at different
times, therefore unveiling the process of quantum scrambling. With the help of quantum resonance
condition, we have deduced the exact expressions of quantum states during both forward evolution
and time reversal, which enables us to establish the laws governing OTOCs’ time dependence. We
find interestingly that the OTOCs of different types increase in a quadratic function of time, breaking
the freezing of quantum scrambling induced by the dynamical localization under non-resonance
condition. The underlying mechanism is discovered, and the possible applications in quantum
entanglement are discussed.
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1. Introduction

Quantum scrambling, a fundamental concept elucidating the spread of information
across multiple degrees of freedom that is inaccessible via local measurements, has gar-
nered extensive attention in quantum information [1–4], quantum chaos [5–9], and con-
densed matter physics [10–13]. It is well known that the out-of-time ordered correlators
(OTOCs) can quantify the process of information scrambling with relevance to the operator
growth [14,15]. The exponential growth of OTOCs, facilitated by exponential instability of
chaos, produces the boundary of the light cone of information scrambling in many-body
systems [16,17], for which the butterfly velocity of scrambling is closely related to the quan-
tum Lyapunov exponent [18–20]. The relaxation of OTOCs can detect the character of both
the quantum thermalization and quantum entanglement in many-body systems [21,22],
providing insights into the underlying connection between quantum chaos and informa-
tion scrambling [23–25]. The dynamics of OTOCs can be used as an order parameter to
diagnose phase transitions in both Hermitian [26] and non-Hermitian chaotic systems [27].
Interestingly, genuine quantum chaos, specifically the superexponential instability induced
by delta-kicking modulation in nonlinear interactions, can cause the superexponential
growth of OTOCs [28], representing a new phenomenon of information scrambling [29,30].

The variants of the quantum kicked rotor (QKR) model under resonance conditions
serve as ideal platforms to explore fascinating physics of quantum coherence [31], which
has significant implications for the fundamental aspects of quantum transport [32,33]
and topological new phases in Floquet systems [34–37]. The existence of the flat band of
quasi-energy spectrum determines the exponential diffusion dynamics in the on-resonance
double-kicked rotor model [38]. The resonance condition yields Floquet spectrum [39–41]
analogous to Hofstadter’s butterfly of an integrable system [42–44] and topological phase
transitions reminiscent of the integer quantum Hall effect [45,46]. Moreover, a dynamical
analog of the integer quantum Hall effect emerges from an intrinsic chaos in spin-1/2 QKR
model, enriching our understanding of the quantum topological phenomena induced by
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chaos [47,48]. Interestingly, the spinor QKR model with quantum resonance condition
provides a versatile playground to realize the quantum walk in momentum space [49,50],
proposing a new protocol for the manipulation of the quantum transport with Floquet
engineering [51]. The state-of-the-art experiments in atom-optics have indeed realized the
QKR model and verified the dynamical phase transition and quantum walk therein by
precisely tailoring the resonance condition for the driven period [52]. This paves the way
for engineering exotic behavior of quantum information [53] and energy diffusion [54] in
various generalization of the QKR model.

In this context, we investigate both analytically and numerically the dynamics of
different types of OTOCs under the quantum resonance condition. The first type OTOCs Cp
involves two angular momentum operators. Furthermore, the second one CT is constructed
by the combination of the translation operator and angular momentum operator. We have
derived the exact expression of the quantum state during both forward evolution and
time reversal under quantum resonance conditions, which enables us to precisely establish
the law governing the time dependence of OTOCs. Our findings reveal that both Cp and
CT exhibit unbounded quadratic growth, indicating a power law scrambling behavior in
their long-term evolutions. The observation of similar time dependence laws for different
OTOCs suggests a universality in this power law growth for the QKR model. It is known
that the exotic physics exhibited by the QKR model under quantum resonance conditions,
such as ballistic energy diffusion and topologically protected transport in momentum space,
originates from the essential quantum coherence effects, without classical counterparts.
Our findings unveil the role of quantum coherence in facilitating quantum scrambling, a
connection of potential significance for applications in quantum information.

The paper is organized as follows. In Section 2, we describe the system and show the
quadratic growth of OTOCs. In Section 3, we show our theoretical analysis. A summary is
presented in Section 4.

2. Model and Main Results

The dimensionless Hamiltonian of the QKR model reads

H =
p2

2
+ K cos(θ)∑

n
δ(t − tn) , (1)

where p = −ih̄eff∂/∂θ is the angular momentum operator, θ is the angle coordinate, with
commutation relation [θ, p] = ih̄eff. Here, h̄eff denotes the effective planck’s constant, and
K is the kicking strength [55]. One experimental realization of the QKR model involves
ultracold atoms exposed to a pulsed laser standing field that mimics a delta-kicking poten-
tial [56]. The eigenequation of the angular momentum operator is p|φn⟩ = pn|φn⟩ with an
eigenvalue of pn = nh̄eff and eigenstate of ⟨θ|φn⟩ = einθ/

√
2π. With the complete basis of

|φn⟩, an arbitrary state can be expanded as |ψ⟩ = ∑n ψn|φn⟩. One period evolution of the
quantum state from tn to tn+1 is governed by |ψ(tn+1)⟩ = U|ψ(tn)⟩. The Floquet operator
U involves two components, i.e., U = U f UK, where the U f = exp

(
−ip2/2h̄eff

)
represents

the free evolution operator and the kicking term is denoted by UK = exp[−iK cos(θ)/h̄eff].
The OTOCs are defined using the average of the squared commutator, i.e.,

C(t) = −⟨[A(t), B]2⟩. Here, both A(t) = U†(t)AU(t) and B are evaluated in the Heisen-
berg picture. The average ⟨·⟩ refers to the operator’s expectation value concerning the
initial state ⟨ψ(t0)| · |ψ(t0)⟩ [29,57–60]. We investigate two distinct OTOCs, one denoted
as Cp = −⟨[p(t), p]2⟩, and the other as CT = −⟨[T(t), p]2⟩, where T = exp(−iϵp/h̄eff)
represents the translation operator. We focus solely on the quantum resonance condition,
i.e., h̄eff = 4π. Without loss of generality, we choose an initial state ψ(θ, t0) = cos(θ)/

√
π.

Our main findings can be summarized by the following relationships

Cp(t) = 12π2K2t2 , (2)
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and

CT(t) = sin2
( ϵ

2

)
[2 + cos(ϵ)]K2t2 . (3)

These relations clearly demonstrate the existence of the quadratic growth of different OTOCs.
In order to confirm our above theoretical predictions, we numerically calculate both

the Cp and CT for different Ks. Our results demonstrate that for a specific K (e.g., K = 1 in
Figure 1), both Cp and CT increase unboundedly with time. Furthermore, the larger the K, the
faster they increase, following perfectly with the relations described in Equations (2) and (3).
The continuous, unsaturated growth of OTOCs is attributed to the delocalization mecha-
nism under quantum resonance conditions. When the delocalization mechanism is absent,
the process of dynamical localization in quantum non-resonance conditions leads to the
saturation of OTOCs, which has been reported in our previous investigation in Ref. [27]. It
is noteworthy that the dependency of CT on the parameter ϵ offers a means of manipulating
quantum scrambling by adjusting the translation operator, shedding light on the quantum
control of non-Hermitian Floquet systems.
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Figure 1. Time dependence of the Cp (a) and CT (b) for K = 1 (squares), 2 (diamonds), 3 (circles), and
5 (triangles). Red lines in (a,b) indicate our theoretical prediction in Equations (2) and (3), respectively.
In (b), the value of the translation parameter is ϵ = π.

The quadratic growth in OTOCs also emerges when we use the translation operator
T = exp(−iϵp/h̄eff) and a projection operator onto an initial state B = |ψ(t0)⟩⟨ψ(t0)|
for OTOCs. In this situation, one can obtain the relation C(t) = 1 − FO, with
FO = |⟨ψ(t0)|T|ψ(t0)⟩|2 being named as fidelity out-of-time-ordered correlators (FOTOCs).
Under the condition ϵ/h̄eff ≪ 1, straightforward derivation yields the approximation
C(t) ≈ (ϵ/h̄eff)

2[⟨p2(t)⟩ − ⟨p(t)⟩2], by neglecting the terms in the Taylor expansion of
T = exp(−iϵp/h̄) of orders larger than two. The mean momentum is zero, i.e., ⟨p(t)⟩ = 0
due to the symmetry of both the specific initial state ψ(θ, t0) = cos(θ)/

√
π and the

kicking potential. Therefore, the OTOCs is proportional to the mean energy, i.e.,
C(t) ≈ (ϵ/h̄eff)

2⟨p2(t)⟩ ≈ (ϵKt/2h̄eff)
2, indicating clearly the quadratic growth. Note

that the Fourier spectrum of the FOTOCs FO can be utilized in constructing the Rényi en-
tropy [61–63]. In fact, FOTOCs have been used to characterize the multiple entanglements
among different degrees of freedom in the kicked top model, which can be regarded as a
collective of many spins [64]. It is known that the QKR model is a limit of the kicked top
model with angular momentum being infinity [65]. This provides the theoretical foundation
for the significant implications of the quadratic growth of OTOCs in measuring the buildup
of quantum entanglement.

In the atom-optics realization of the QKR model, the experimental constraints in prac-
tice often introduce very small detuning from the exact quantum resonance condition [66].
We further consider the effects of the slight variation in the value of h̄eff from quantum
resonance condition, i.e., h̄eff = 4π + ∆ on the quantum scrambling. In this situation, there
is a fictitious classical limit in which the parameter ∆ plays the role of the effective Planck’s
constant [66,67]. We should note that traditional definition of the semiclassical limit with
h̄eff tending to zero does not make sense for the resonance case as h̄eff = 4π. Our numerical
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results show that for a specific ∆ (e.g., ∆ = 0.0025 in Figure 2a), the Cp follows the quadratic
growth of ∆ = 0 for finite time duration, i.e., t < tc, after which it fluctuates around a satu-
ration level. Interestingly, the saturate level decreases with the increase in ∆. For sufficiently
large ∆ (e.g., ∆ = 0.1), the Cp remains almost at its initial value and does not increases with
time. We further investigate the Cp at a specific time for different ∆. The inset in Figure 2a
shows that the Cp(t = 500) decreases with some fluctuations as the absolute value of ∆
departs from zero, which demonstrates the suppression of OTOCs by the variation of h̄eff
from quantum resonance condition. The time evolution of CT also exhibits the reduction
from the quadratic growth in ∆ = 0 with the increase in ∆ (see Figure 2b). When the |∆|
increases from zero, the QKR transitions to the quantum non-resonance regime, where the
mechanism of dynamical localization suppresses the growth of OTOCs [27].
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Figure 2. Time dependence of the Cp (a) and CT (b) for K = 1. In (a), ∆ = 0 (squares), 0.0025 (circles),
0.005 (triangles), and 0.1 (diamonds). Inset: The Cp at time t = 500 versus ∆. In (b), ∆ = 0 (squares),
5 × 10−5 (circles), 1 × 10−4 (triangles), and 0.1 (diamonds). Inset: The CT at time t = 500 versus ∆.
Red lines in (a,b) indicate our theoretical prediction in Equations (2) and (3), respectively. In (b), the
value of the translation parameter is ϵ = π.

3. Theoretical Analysis

It is straightforward to derive the relation

C(t) = C1(t) + C2(t)− 2Re[C3(t)] , (4)

where the first two terms on the right side, i.e., two-points correlator, are defined as

C1(t) := ⟨A†(t)B2 A(t)⟩ = ⟨ψR(t0)|B2|ψR(t0)⟩ , (5)

C2(t) := ⟨B† A†(t)A(t)B⟩ = ⟨φR(t0)|φR(t0)⟩ , (6)

and the four-point correlator is given by

C3(t) := ⟨A†(t)BA(t)B⟩ = ⟨ψR(t0)|B|φR(t0)⟩ , (7)

with |ψR(t0)⟩ = U†(t)AU(t)|ψ(t0)⟩ and |φR(t0)⟩ = U†(t)AU(t)B|ψ(t0)⟩. Here, Re[· · · ]
denotes the real part of the complex variable [29].

The derivation of C1 at a specific time t = tn involves three sequential steps [68]. Firstly,
evolving the initial state |ψ(t0)⟩ from t0 to tn yields |ψ(tn)⟩ = U(tn, t0)|ψ(t0)⟩. Secondly,
applying operator A to |ψ(tn)⟩ produces |ψ̃(tn)⟩ = A|ψ(tn)⟩. Finally, the time reversal
from tn to t0 for |ψ̃(tn)⟩ results in |ψR(t0)⟩ = U†(tn, t0)|ψ̃(tn)⟩. Equation (5) indicates that
C1 is the expectation value of operator B2 for |ψR(t0)⟩. The process to derive C2 at time
t = tn involves four steps. Firstly, applying the operator B to the initial state |ψ(t0)⟩ yields
the state |φ(t0)⟩ = B|ψ(t0)⟩. Secondly, the forward evolution for the state |φ(t0)⟩ results
in a state |φ(tn)⟩ = U(tn, t0)|φ(t0)⟩. In the third step, we apply the operator A to the state
|φ(tn)⟩, which creates a new state |φ̃(tn)⟩ = A|φ(tn)⟩. The fourth step involves a time
reversal for the state |φ̃(tn)⟩, giving |φR(t0)⟩ = U†(tn, t0)|φ̃(tn)⟩. The norm of |φR(t0)⟩
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defines C2 as shown in Equation (6). With the two states |ψR(t0)⟩ and |φR(t0)⟩, we can
calculate the C3 based on Equation (7).

Under the quantum resonance condition h̄eff = 4π, each matrix element of the free evolu-
tion operator U f in angular momentum space equals to unity, i.e., U f (n) = exp(−i2πn2) = 1.
Consequently, the operator has no impact on the time evolution of quantum states. For
one period evolution from t = tn to t = tn+1, we only need to use the kicking evolu-
tion operator to act on the quantum state, i.e., |ψ(tn+1)⟩ = UK|ψ(tn)⟩. This leads to an
exact expression of a quantum state at arbitrary time t = tn in angle coordinate space,
i.e., ψ(θ, tn) = UK(θ, tn)ψ(θ, t0) = exp[−iKtn cos(θ)/h̄eff]ψ(θ, t0). Based on this, we can
derive analytical expressions for both |ψR(t0)⟩ and |φR(t0)⟩, which yields the theoretical
predictions for the OTOCs C(t).

3.1. Derivation of the Cp

Given the operators (A = p, B = p) and the quantum resonance condition, the
three components of the OTOCs Cp are denoted as Cp,1(t) = ⟨ψR(t0)|p2|ψR(t0)⟩, Cp,2(t) =
⟨φR(t0)|φR(t0)⟩, and Cp,3(t) = ⟨ψR(t0)|p|φR(t0)⟩, with |ψR(t0)⟩ = U†

K(t)pUK(t)|ψ(t0)⟩ and
|φR(t0)⟩ = U†

K(t)pUK(t)p|ψ(t0)⟩. At the time t = tn, the action the operator p to the state
ψ(θ, tn) = UK(θ, tn)ψ(θ, t0) yields a new state ψ̃(θ, tn) = pψ(θ, tn) = sin(θ)ψ(θ, tn)Ktn −
i4πψ(1)(θ, t0) exp[−iKtn cos(θ)/4π], where superscript (n) (n = 1, 2 . . .) denotes the n-th
order derivative of the functions. We then perform the time reversal from tn to t0 starting
from ψ̃(θ, tn) and obtain

ψR(θ, t0) = [UK(θ, tn)]
†ψ̃(θ, tn)

= Ktn sin(θ)ψ(θ, t0)− i4πψ(1)(θ, t0) .
(8)

With this state, one can obtain the analytical expression of Cp,1(tn)

Cp,1(tn) = 16π2K2t2
n

∫ 2π

0
|Ψ(θ)|2dθ

+ 256π4
∫ 2π

0
|ψ(2)(θ, t0)|2dθ ,

(9)

where the function Ψ(θ) takes the forms Ψ(θ) = ψ(θ, t0) cos(θ) + ψ(1)(θ, t0) sin(θ).
For the derivation of Cp,2(tn), we apply the operator p to acting on the initial state,

which yields φ(θ, t0) = pψ(θ, t0) = −i4πψ(1)(θ, t0). Then, forward evolution from
t0 to tn creates the state φ(θ, tn) = −i4πψ(1)(θ, t0) exp[−iKtn cos(θ)/4π], along with
φ̃(θ, tn) = pφ(θ, tn) = Ktn sin(θ)φ(θ, tn) − i4πφ(1)(θ, t0) exp

[
− i

4π Ktn cos(θ)
]
. Conduct-

ing the backward evolution from tn to t0 for the state φ̃(θ, tn), we obtain

φR(θ, t0) = Ktn sin(θ)φ(θ, t0)− i4πφ(1)(θ, t0) . (10)

With the assistance of the two states, we establish the following relations

Cp,2(tn) = 16π2K2t2
n

∫ 2π

0
|ψ(1)(θ, t0)|2 sin2(θ)dθ+

256π4
∫ 2π

0
|ψ(2)(θ, t0)|2dθ ,

(11)

and

Cp,3(tn) = −16π2K2t2
n

∫ 2π

0
Γ(θ)dθ + i64π3Ktn

∫ 2π

0
Υ(θ)dθ

− 256π4
∫ 2π

0

[
ψ(1)(θ, t0)

]∗
ψ(3)(θ, t0)dθ .

(12)
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Here, the superscript ∗ indicates the complex conjugate of the variable. The functions
Γ(θ) and Υ(θ) take the forms Γ(θ) = ψ∗(θ, t0)

[
sin2(θ)ψ(2)(θ, t0) +

1
2 sin(2θ)ψ(1)(θ, t0)

]
and

Υ(θ) = sin(θ)
[
ψ∗(θ, t0)ψ

(3)(θ, t0)−
[
ψ(1)(θ, t0)

]∗
ψ(2)(θ, t0)

]
− cos(θ)|ψ(1)(θ, t0)|2. There-

fore, we can obtain the expression of the OTOCs

Cp(tn) =Cp,1(tn) + Cp,2(tn)− 2Re[Cp,3(tn)]

=16π2K2t2
n

∫ 2π

0
{Φ(θ) + 2Re[Γ(θ)]}dθ

+ 128π3Ktn

∫ 2π

0
Im[Υ(θ)]dθ

+ 512π4
∫ 2π

0
Re

{[
ψ(1)(θ, t0)

]∗
ψ(3)(θ, t0)

}
dθ

+ 512π4
∫ 2π

0
|ψ(2)(θ, t0)|2dθ ,

(13)

with Φ(θ) = |ψ(1)(θ, t0)|2 sin2(θ) + |Ψ(θ)|2 and Im(· · · ) indicating the imaginary part of
a complex variable. It is obvious that the time dependence of Cp contains a quadratic
function, determined by the integral of the functions Φ(θ) and Γ(θ), and a linear function
related to the integral of the function Υ(θ). The exact dependence of the functions Φ(θ),
Γ(θ), and Υ(θ) on initial states, as shown above, serves as a crucial knob for controlling the
behavior of OTOCs through the preparation of different starting conditions. For example,
suppose we choose the initial state ψ(θ, t0) = cos(θ)/

√
π, resulting in the equivalence

Cp(t) = 12π2K2t2 . (14)

3.2. Derivation of the CT

The three components of CT are represented as CT,1(t) = ⟨ψR(t0)|p2|ψR(t0)⟩,
CT,2(t) = ⟨φR(t0)|φR(t0)⟩, and CT,3(t) = ⟨ψR(t0)|p|φR(t0)⟩. Here, the time-reversed
states at time t0, influenced by the operators T = exp(−iϵp/ h̄eff) and the
initial states ψ(t0), take the forms |ψR(t0)⟩ = U†

K(t) exp(−iϵp/ h̄eff)UK(t)|ψ(t0)⟩ and
|φR(t0)⟩ = U†

K(t) exp(−iϵp/ h̄eff)UK(t) exp(−iϵp/ h̄eff)|ψ(t0)⟩, respectively. By repeat-
ing the same procedure for the derivation of both |ψR(t0)⟩ and |φR(t0)⟩ of Cp, we can
obtain the exact expressions of the two states under quantum resonance condition

ψR(θ, t0) = ψ(θ + ϵ, t0) exp
[

iKt
2π

sin
( ϵ

2

)
sin

(
2θ + ϵ

2

)]
(15)

and

φR(θ, t0) = −i4πψ(1)(θ + ϵ, t0) exp
[

iKt
2π

sin
( ϵ

2

)
sin

(
2θ + ϵ

2

)]
. (16)

Consequently, one can derive analytically the three components of the CT

CT,1(t) = 4K2t2 sin2
( ϵ

2

) ∫ 2π

0
cos2

(
θ +

ϵ

2

)
|ψ(θ + ϵ, t0)|2dθ

+ 16π2
∫ 2π

0

∣∣∣ψ(1)(θ + ϵ, t0)
∣∣∣2dθ ,

(17)

CT,2(t) = 16π2
∫ 2π

0

∣∣∣ψ(1)(θ + ϵ, t0)
∣∣∣2dθ , (18)

and

CT,3(t) =−i8π sin
( ϵ

2

)
Kt

∫ 2π

0
υ(θ)dθ

− 16π2
∫ 2π

0
ψ∗(θ + ϵ, t0)ψ

(2)(θ + ϵ, t0)dθ .
(19)
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with υ(θ) = ψ∗(θ + ϵ, t0)ψ
(1)(θ + ϵ, t0) cos(θ + ϵ

2 ). Combining these three parts yields

CT(t) =CT,1(t) + CT,2(t)− 2Re[CT,3(t)]

=4K2t2 sin2
( ϵ

2

) ∫ 2π

0
cos2

(
θ +

ϵ

2

)
|ψ(θ + ϵ, t0)|2dθ

− 16π sin
( ϵ

2

)
Kt

∫ 2π

0
Im[υ(θ)]dθ ,

+ 32π2
∫ 2π

0
Re

[
ψ∗(θ + ϵ, t0)ψ

(2)(θ + ϵ, t0)
]
dθ ,

+ 32π2
∫ 2π

0

∣∣∣ψ(1)(θ + ϵ, t0)
∣∣∣2dθ .

(20)

Obviously, the term of quadratic growth in the function CT is governed by the integral
involving the modular square |ψ(θ + ϵ, t0)|2. The term of the linear growth in CT depends
on the integral of the function υ(θ), which is related to the initial state ψ(θ, t0). The close
relationship between CT and the initial state provides the unique opportunity to engineer
the OTOCs’ behavior under various initial states. For a specific form of the initial state
ψ(θ, t0) = cos(θ)/

√
π, it is straightforward to establish the relation

CT(t) = sin2
( ϵ

2

)
[2 + cos(ϵ)]K2t2 . (21)

4. Conclusions and Discussion

In this work, we thoroughly investigate the dynamics of OTOCs, employing Cp and
CT under quantum resonance conditions. The Cp quantifies the commutation relation of
two angular momentum operators at different times, while the CT measures that between
the translation operator and angular momentum operator at different times. Our exact
deductions of the quantum states during forward evolution and time reversal under
quantum resonance allow us to establish the laws governing the time dependence of
OTOCs. Our findings demonstrate that both Cp and CT exhibit quadratic growth with time
evolution, revealing an intrinsic power-law scrambling in their late-time behavior. Note
that the mechanism of dynamical localization under non-resonant conditions suppresses
quantum scrambling [27]. Therefore, the observed quadratic growth of OTOCs finds its
origin in essential quantum coherence effects arising from quantum resonance, without
classical analogs. We expect that the identification of similar power laws for different types
of OTOCs reveals the universality in the power-law growth within the QKR model. It has
been found that the delocalization effects with unique quantum coherence leads to the
quadratic growth of OTOCs in the QKR model with quantum non-resonance condition [7].
Therefore, our discovery of the crucial role played by quantum coherence in facilitating
quantum scrambling has significant implications in the fields of quantum information and
quantum chaos [6,8,63].
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