Tsallis Distribution as a Λ-Deformation of the Maxwell–Jüttner Distribution
Abstract
:1. Preamble: Temperature, Heat, and Entropy, That Obscure Objects of Desire
It is well known that entropy, alongside the space-time interval, electric charge, and mechanical action, is one of the fundamental “invariants” of the theory of relativity. To convince oneself of this, it is enough to recall that, according to Boltzmann, the entropy of a macroscopic state is proportional to the logarithm of the number of microstates that realize that state. To strengthen this reasoning, one can argue that, on the one hand, the definition of entropy involves a integer number of microstates, and, on the other hand, the transformation of entropy during a Galilean reference frame change must be expressed as a continuous function of the relative velocity of the reference frames. Consequently, this continuous function is necessarily constant and equal to unity, which means that entropy is constant.
- (a)
- (b)
- (c)
2. Relativistic Covariance of Temperature According to de Broglie (1948)
3. Maxwell–Jüttner Distribution
Inverse Temperature Four-Vector
4. de Sitter Material
4.1. de Sitter Geometry
4.2. Flat Minkowskian Limit of de Sitter Geometry
4.3. de Sitter Plane Waves as Binomial Deformations of Minkowskian Plane Waves
- (i)
- First, one has the Garidi [22] relation between proper mass m (curvature independent) of the spinless particle and the parameter :The quantity is a kind of at rest de Sitterian energy, which is distinct of the proper mass energy if .
- (ii)
- Then, with the mass shell parameterization , one obtains at the limit :
4.4. Analytic Extension of dS Plane Waves for dS QFT
4.5. KMS Interpretation of Analyticity
5. de Sitterian Tsallis Distribution
5.1. Tsallis Entropy and Distribution: A Short Reminder
5.2. Coldness in de Sitter
5.3. A de Sitterian Tsallis Distribution
6. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- de Broglie, L. Sur la variance relativiste de la température. Cah. Phys. 1948, 31, 1–11. [Google Scholar]
- Wu, Z.C. Inverse Temperature 4-vector in Special Relativity. Eur. Phys. Lett. 2009, 88, 20005. [Google Scholar] [CrossRef]
- Einstein, A. Ueber das Relativitaetsprinzip und die aus demselben gezogenen Folgerungen. Jahrb. Rad. Elektr. 1907, 4, 411. [Google Scholar]
- Planck, M. Zur Dynamik bewegter Systeme. Ann. Phys. 1908, 26, 1–35. [Google Scholar] [CrossRef]
- Ott, H. Lorentz-Transformation der Wärme und der Temperatur. Zeitschr. Phys. 1963, 175, 70–104. [Google Scholar] [CrossRef]
- Arzeliès, H. Transformation relativiste de la température et de quelques autres grandeurs thermodynamiques. Nuov. Cim. 1965, 35, 792–804. [Google Scholar] [CrossRef]
- Landsberg, P.T. Does a Moving Body Appear Cool? Nature 1966, 212, 571–572. [Google Scholar] [CrossRef]
- Landsberg, P.T. Does a Moving Body Appear Cool? Nature 1967, 214, 903–904. [Google Scholar] [CrossRef]
- Landsberg, P.T.; Matsas, G.E.A. Laying the ghost of the relativistic temperature transformation. Phys. Lett. A 1996, 223, 401–403. [Google Scholar] [CrossRef]
- Sewell, G.L. On the question of temperature transformations under Lorentz and Galilei boosts. J. Phys. A Math. Theor. 2008, 41, 382003. [Google Scholar] [CrossRef]
- Bíró, T.S.; Ván, P. About the temperature of moving bodies. EPL 2010, 89, 30001. [Google Scholar] [CrossRef]
- Synge, J.L. The Relativistic Gas; North-Holland Publishing Company: Amsterdam, The Netherlands, 1957. [Google Scholar]
- Jüttner, F. Das maxwellsche gesetz der geschwindigkeitsverteilung in der relativtheorie. Ann. Phys. 1911, 339, 856–882. [Google Scholar] [CrossRef]
- van Dantzig, D. On the phenomenological thermodynamics of moving matter. Physica 1939, 6, 673–704. [Google Scholar] [CrossRef]
- Taub, A.H. Relativistic Ranirine-Hugoniot Equations. Phys. Rev. 1948, 74, 328–334. [Google Scholar] [CrossRef]
- Gazeau, J.-P.; Graffi, S. Quantum Harmonic Oscillator: A Relativistic and Statistical Point of View. Boll. Della Unione Mat. Ital. A 1997, 3, 815–839. [Google Scholar]
- Chacón-Acosta, G.; Dagdug Hugo, L.; Morales-Técotl, A. Manifestly covariant Jüttner distribution and equipartition theorem. Phys. Rev. E 2010, 81, 021126. [Google Scholar] [CrossRef] [PubMed]
- Curado, E.M.F.; Cedeño, C.E.; Soares, I.D.; Tsallis, C. Relativistic gas: Lorentz-invariant distribution for the velocities. Chaos 2022, 32, 103110. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1980; Volume 2. [Google Scholar]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
- Bros, J.; Gazeau, J.-P.; Moschella, U. Quantum Field Theory in the de Sitter Universe. Phys. Rev. Lett. 1994, 73, 1746–1749. [Google Scholar] [CrossRef] [PubMed]
- Garidi, T. What is mass in desitterian physics? arXiv 2003, arXiv:hep-th/0309104. [Google Scholar]
- Enayati, M.; Gazeau, J.-P.; Pejhan, H.; Wang, A. The de Sitter (dS) Group and Its Representations, an Introduction to Elementary Systems and Modeling the Dark Energy Universe; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 2009, 39, 337–356. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards: Gaithersburg, MD, USA, 1964.
- Bíró, T.S.; Gyulassy, M.; Schram, Z. Unruh gamma radiation at RHIC. Phys. Lett. B 2012, 708, 276–279. [Google Scholar] [CrossRef]
- Bíró, T.S.; Czinner, V.G. A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy. Phys. Lett. B 2013, 726, 861–865. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazeau, J.-P. Tsallis Distribution as a Λ-Deformation of the Maxwell–Jüttner Distribution. Entropy 2024, 26, 273. https://doi.org/10.3390/e26030273
Gazeau J-P. Tsallis Distribution as a Λ-Deformation of the Maxwell–Jüttner Distribution. Entropy. 2024; 26(3):273. https://doi.org/10.3390/e26030273
Chicago/Turabian StyleGazeau, Jean-Pierre. 2024. "Tsallis Distribution as a Λ-Deformation of the Maxwell–Jüttner Distribution" Entropy 26, no. 3: 273. https://doi.org/10.3390/e26030273
APA StyleGazeau, J. -P. (2024). Tsallis Distribution as a Λ-Deformation of the Maxwell–Jüttner Distribution. Entropy, 26(3), 273. https://doi.org/10.3390/e26030273