Chaos in Opinion-Driven Disease Dynamics
Abstract
:1. Introduction
2. Materials and Methods—Model Description
2.1. Epidemiological System
2.2. Opinion Formation System
2.3. Opinion–Epidemic Model
2.4. Discretization of the Opinion Space
2.5. Some Analytic Results for a Simplified Setting
2.6. Simulation Setup
2.6.1. Software
2.6.2. Hardware
2.6.3. Simulations
2.6.4. Analysis Methods
- autocorrelation;
- standard Shannon entropy [46];
- Poincaré maps;
- Fourier Transform.
3. Results and Discussion
Discussion
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BC | Bounded Confidence |
FFT | Fast Fourier Transform |
MLE | Maximum Lyapunov Exponent |
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of Open Access Journals |
TLA | Three-Letter Acronym |
LD | Linear Dichroism |
Appendix A
Appendix B
References
- Galam, S. Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena; Understanding Complex Systems; Springer: Boston, MA, USA, 2012. [Google Scholar] [CrossRef]
- Galam, S. Sociophysics: A Review of Galam models. Int. J. Mod. Phys. C 2008, 19, 409–440. [Google Scholar] [CrossRef]
- Castellano, C.; Muñoz, M.A.; Pastor-Satorras, R. Nonlinear q-voter model. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2009, 80, 041129. [Google Scholar] [CrossRef]
- Sznajd-Weron, K.; Sznajd, J. Opinion evolution in closed community. Int. J. Mod. Phys. C 2000, 11, 1157–1165. [Google Scholar] [CrossRef]
- Granovetter, M. Threshold Models of Collective Behavior. Am. J. Sociol. 1978, 83, 1420–1443. [Google Scholar] [CrossRef]
- Hegselmann, R.; Krause, U. Opinion dynamics and bounded confidence: Models, analysis and simulation. J. Artif. Soc. Soc. Simul. 2002, 5, 1–33. [Google Scholar]
- Dietz, K.; Heesterbeek, J.A.P. Bernoulli was ahead of modern epidemiology. Nature 2000, 408, 513–514. [Google Scholar] [CrossRef]
- Ross, R.; Hudson, H.P. An application of the theory of probabilities to the study of a priori pathometry—Part III. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Charact. 1917, 93, 225–240. [Google Scholar] [CrossRef]
- Epstein, J.M.; Parker, J.; Cummings, D.; Hammond, R.A. Coupled Contagion Dynamics of Fear and Disease: Mathematical and Computational Explorations. PLoS ONE 2008, 3, e3955. [Google Scholar] [CrossRef]
- Wu, Y.; Li, M.; Xiao, J.; Orgun, M.A.; Xue, L. The Impact of Discrimination on the Spread of Infectious Diseases in Complex Networks. New Gener. Comput. 2014, 32, 193–211. [Google Scholar] [CrossRef]
- Wu, J.; Ni, S.; Shen, S. Dynamics of public opinion under the influence of epidemic spreading. Int. J. Mod. Phys. C 2016, 27, 1650079. [Google Scholar] [CrossRef]
- Pires, M.A.; Crokidakis, N. Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement. Phys. A Stat. Mech. Appl. 2017, 467, 167–179. [Google Scholar] [CrossRef]
- Ni, S.; Weng, W.; Zhang, H. Modeling the effects of social impact on epidemic spreading in complex networks. Phys. A Stat. Mech. Appl. 2011, 390, 4528–4534. [Google Scholar] [CrossRef]
- Durham, D.P.; Casman, E.A.; Albert, S.M. Deriving Behavior Model Parameters from Survey Data: Self-Protective Behavior Adoption During the 2009–2010 Influenza A(H1N1) Pandemic. Risk Anal. 2012, 32, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- d’Onofrio, A.; Manfredi, P. Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases. J. Theor. Biol. 2009, 256, 473–478. [Google Scholar] [CrossRef]
- Greenhalgh, D.; Rana, S.; Samanta, S.; Sardar, T.; Bhattacharya, S.; Chattopadhyay, J. Awareness programs control infectious disease—Multiple delay induced mathematical model. Appl. Math. Comput. 2015, 251, 539–563. [Google Scholar] [CrossRef]
- Sooknanan, J.; Comissiong, D.M.G. Trending on Social Media: Integrating Social Media into Infectious Disease Dynamics. Bull. Math. Biol. 2020, 82, 86. [Google Scholar] [CrossRef] [PubMed]
- Sooknanan, J.; Seemungal, T.A.R. FOMO (fate of online media only) in infectious disease modeling: A review of compartmental models. Int. J. Dyn. Control 2023, 11, 892–899. [Google Scholar] [CrossRef]
- Fang, F.; Ma, J.; Li, Y. The coevolution of the spread of a disease and competing opinions in multiplex networks. Chaos Solitons Fractals 2023, 170, 113376. [Google Scholar] [CrossRef]
- Ali, R.N.; Sarkar, S. Impact of opinion dynamics on the public health damage inflicted by COVID-19 in the presence of societal heterogeneities. Front. Digit. Health 2023, 5, 1146178. [Google Scholar] [CrossRef]
- Zanella, M. Kinetic Models for Epidemic Dynamics in the Presence of Opinion Polarization. Bull. Math. Biol. 2023, 85, 36. [Google Scholar] [CrossRef]
- Agusto, F.B.; Numfor, E.; Srinivasan, K.; Iboi, E.A.; Fulk, A.; Saint Onge, J.M.; Peterson, A.T. Impact of public sentiments on the transmission of COVID-19 across a geographical gradient. PeerJ 2023, 11, e14736. [Google Scholar] [CrossRef]
- Kastalskiy, I.A.; Pankratova, E.V.; Mirkes, E.M.; Kazantsev, V.B.; Gorban, A.N. Social stress drives the multi-wave dynamics of COVID-19 outbreaks. Sci. Rep. 2021, 11, 22497. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, A.T.; Ribeiro, L.C. Information, opinion and pandemic. Phys. A Stat. Mech. Appl. 2021, 565, 125586. [Google Scholar] [CrossRef] [PubMed]
- Sooknanan, J.; Mays, N. Harnessing Social Media in the Modelling of Pandemics—Challenges and Opportunities. Bull. Math. Biol. 2021, 83, 57. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, R.; Chmiel, A. Role of Time Scales in the Coupled Epidemic-Opinion Dynamics on Multiplex Networks. Entropy 2022, 24, 105. [Google Scholar] [CrossRef]
- Du, E.; Chen, E.; Liu, J.; Zheng, C. How do social media and individual behaviors affect epidemic transmission and control? Sci. Total Environ. 2021, 761, 144114. [Google Scholar] [CrossRef]
- Peng, K.; Lu, Z.; Lin, V.; Lindstrom, M.R.; Parkinson, C.; Wang, C.; Bertozzi, A.L.; Porter, M.A. A multilayer network model of the coevolution of the spread of a disease and competing opinions. Math. Model. Methods Appl. Sci. 2021, 31, 2455–2494. [Google Scholar] [CrossRef]
- Carballosa, A.; Mussa-Juane, M.; Muñuzuri, A.P. Incorporating social opinion in the evolution of an epidemic spread. Sci. Rep. 2021, 11, 1772. [Google Scholar] [CrossRef]
- Epstein, J.M.; Hatna, E.; Crodelle, J. Triple contagion: A two-fears epidemic model. J. R. Soc. Interface 2021, 18, 20210186. [Google Scholar] [CrossRef]
- Wagner, J.; Bauer, S.; Contreras, S.; Fleddermann, L.; Parlitz, U.; Priesemann, V. Societal feedback induces complex and chaotic dynamics in endemic infectious diseases. arXiv 2023, arXiv:2305.15427. [Google Scholar] [CrossRef]
- Lim, C.; Zhang, W. Social opinion dynamics is not chaotic. Int. J. Mod. Phys. B 2016, 30, 1541006. [Google Scholar] [CrossRef]
- Borghesi, C.; Galam, S. Chaotic, staggered, and polarized dynamics in opinion forming: The contrarian effect. Phys. Rev. E 2006, 73, 066118. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. Contributions to the mathematical theory of epidemics—I. Bull. Math. Biol. 1991, 53, 33–55. [Google Scholar] [CrossRef]
- Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 2017, 59, 65–98. [Google Scholar] [CrossRef]
- Datseris, G. DynamicalSystems.jl: A Julia software library for chaos and nonlinear dynamics. J. Open Source Softw. 2018, 3, 598. [Google Scholar] [CrossRef]
- Datseris, G.; Parlitz, U. Nonlinear Dynamics: A Concise Introduction Interlaced with Code; Undergraduate Lecture Notes in Physics; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Rackauckas, C.; Nie, Q. DifferentialEquations.jl—A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. J. Open Res. Softw. 2017, 5, 15. [Google Scholar] [CrossRef]
- Frigo, M.; Johnson, S. The Design and Implementation of FFTW3. Proc. IEEE 2005, 93, 216–231. [Google Scholar] [CrossRef]
- Verner, J.H. Numerically optimal Runge—Kutta pairs with interpolants. Numer. Algorithms 2010, 53, 383–396. [Google Scholar] [CrossRef]
- Lyapunov, A.M. The general problem of the stability of motion. Int. J. Control 1992, 55, 531–534. [Google Scholar] [CrossRef]
- Benettin, G.; Galgani, L.; Strelcyn, J.M. Kolmogorov entropy and numerical experiments. Phys. Rev. A 1976, 14, 2338–2345. [Google Scholar] [CrossRef]
- Haaga, K.A.; Datseris, G.; Kottlarz, I.; White, A.; Martinuzzi, F.; HeineRugland; Johnson, S.G. JuliaDynamics/ComplexityMeasures.jl: V2.8.0. Zenodo. 2023. Available online: https://zenodo.org/records/8186595 (accessed on 5 February 2024).
- Llanos, F.; Alexander, J.M.; Stilp, C.E.; Kluender, K.R. Power spectral entropy as an information-theoretic correlate of manner of articulation in American English. J. Acoust. Soc. Am. 2017, 141, EL127–EL133. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, H.; Xu, W.; Zhang, H.; Yang, L.; Zheng, S.; Shi, Y. Spectral Entropy Can Predict Changes of Working Memory Performance Reduced by Short-Time Training in the Delayed-Match-to-Sample Task. Front. Hum. Neurosci. 2017, 11, 437. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Alfaro, M.; Fuertes, G.; Vargas, M.; Sepúlveda, J.; Veloso-Poblete, M. Forecast of Chaotic Series in a Horizon Superior to the Inverse of the Maximum Lyapunov Exponent. Complexity 2018, 2018, 1452683. [Google Scholar] [CrossRef]
Parameter | a | |||
Value | 0.6 | 0.1 | 0.11 | 0.225 |
Parameter | n | ||
Initial values | 4 | 0.0 | 0.15 |
Final value | 10 1 | 0.4 | 1.05 |
Step size | 1 | 0.01 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Götz, T.; Krüger, T.; Niedzielewski, K.; Pestow, R.; Schäfer, M.; Schneider, J. Chaos in Opinion-Driven Disease Dynamics. Entropy 2024, 26, 298. https://doi.org/10.3390/e26040298
Götz T, Krüger T, Niedzielewski K, Pestow R, Schäfer M, Schneider J. Chaos in Opinion-Driven Disease Dynamics. Entropy. 2024; 26(4):298. https://doi.org/10.3390/e26040298
Chicago/Turabian StyleGötz, Thomas, Tyll Krüger, Karol Niedzielewski, Radomir Pestow, Moritz Schäfer, and Jan Schneider. 2024. "Chaos in Opinion-Driven Disease Dynamics" Entropy 26, no. 4: 298. https://doi.org/10.3390/e26040298
APA StyleGötz, T., Krüger, T., Niedzielewski, K., Pestow, R., Schäfer, M., & Schneider, J. (2024). Chaos in Opinion-Driven Disease Dynamics. Entropy, 26(4), 298. https://doi.org/10.3390/e26040298