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Abstract: JPEG Reversible Data Hiding (RDH) is a method designed to extract hidden data from a
marked image and perfectly restore the image to its original JPEG form. However, while existing
RDH methods adaptively manage the visual distortion caused by embedded data, they often neglect
the concurrent increase in file size. In rectifying this oversight, we have designed a new JPEG RDH
scheme that addresses all influential metrics during the embedding phase and a dynamic frequency
selection strategy with recoverable frequency order after data embedding. The process initiates
with a pre-processing phase of blocks and the subsequent selection of frequencies. Utilizing a two-
dimensional (2D) mapping strategy, we then compute the visual distortion and file size increment (FSI)
for each image block by examining non-zero alternating current (AC) coefficient pairs (NZACPs) and
their corresponding run lengths. Finally, we select appropriate block groups based on the influential
metrics of each block group and proceed with data embedding by 2D histogram shifting (HS).
Extensive experimentation demonstrates how our method’s efficiently and consistently outperformed
existing techniques with a superior peak signal-to-noise Ratio (PSNR) and optimized FSI.

Keywords: RDH; JPEG; 2D mapping; HS

1. Introduction

Reversible Data Hiding (RDH) involves embedding a message into a cover image
with the objective of minimizing visual distortion and enabling the lossless recovery of the
original image from the marked image. This technique is extensively utilized in domains
such as medical imaging, military imaging, and legal forensics, where the integrity of the
original digital material is paramount.

Nowadays, three major approaches concerning RDH in JPEG images have been
receiving increasing attention: (1) quantization-table-based RDH [1,2], (2) Huffman-codes-
based RDH [3–6], and (3) Discrete Cosine Transform (DCT)-coefficient-based RDH [7–16].

The first approach, predicated on the alteration of quantization tables for the embed-
ding of secret data, was introduced by [1] and subsequently refined by [2]. Although this
strategy creates space for embedding and ensures a specified level of visual quality, it has
resulted in a considerably substantial FSI.

The second approach embeds secret data by modifying or mapping the variable-length
codes (VLCs) in the JPEG bitstream, which preserves the visual quality of the image during
data embedding, albeit with a relatively limited embedding capacity (EC). In [3], a direct
mapping approach was proposed, targeting the transposition of a used VLC to an unused
VLC based on differing embedding bits. Utilizing the one-to-one relationship between the
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run/size value (RSV) and VLC, Du et al. [4] proposed an HS-based strategy that sorts RSVs
according to their frequency of occurrence. While this approach can enhance the EC, it
may also induce a notable increase in file size. In [5], a simulated embedding model was
developed by ordering RSV occurrences to find a more effective mapping relationship for
data embedding. In [6], a new VLC encoding mapping method was introduced, which
utilizes a genetic algorithm to solve the mapping method and customize the VLC encoding
accordingly. This method performs well in terms of file size increment compared to
previous methods.

The third approach accomplishes the embedding of secret data by modifying the
quantized DCT coefficients, which include alternating current (AC) and direct current
(DC). Huang et al. [7] initially introduced an HS-based RDH scheme, wherein the AC
coefficients possessing values of ±1 were employed to embed secret data. To maintain the
reversibility of the process and make room for the data, the other AC coefficients, excluding
zero-valued ones, are shifted. Hou et al. [8] formulated a new analog embedding-centric
distortion function and a block selection mechanism aimed at minimizing visual distortion.
The above two methods were optimized in [9], wherein a multi-faceted optimization ap-
proach was recommended, striving to pinpoint optimal decision variables among payload,
FSI, and visual distortion. Xiao et al. [10] optimized the embedding distortion (ED) by
choosing different embedding positions at different frequencies. Li et al. [11] proposed
a novel 2D mapping strategy that categorizes the non-zero AC coefficient pairs into four
distinct groups, enhancing the visual quality of the image. In [12–16], methods based
on 2D histogram mapping were progressively developed and augmented through the
optimization of distortion functions, the systematization of mapping methods, and the
tailoring of adaptive mapping techniques.

In the preceding RDH methodologies employing a 2D mapping strategy for the DCT
coefficients, two principal issues were discerned. The initial concern pertains to the lack of
subsequent block selection from the FSI standpoint during the embedding phase; the second
issue is the unavailability of the frequency ordering post data embedding, necessitating
the use of an additional 63 bits to document the selected frequencies. Confronted with
the challenges previously described, we were inspired to develop a new JPEG-based RDH
scheme aimed at elevating the overall performance of the system. The contributions of this
paper are delineated below.

• We implement a dynamic frequency selection method based on a recoverable fre-
quency order to ascertain the most suitable frequencies to embed data;

• We document the run length of NZACPs during their construction, facilitating the
prospective estimation of file size increment and visual distortion;

• We group image blocks based on their metrics and adaptively prioritize the appropriate
block groups for data embedding.

The remainder of this paper is structured as follows: Section 2 discusses the necessary
preliminary knowledge. Section 3 details our proposed method. Experimental results are
presented in Section 4, and Section 5 provides the concluding remarks.

2. Preliminary Knowledge
2.1. Overview of JPEG Compression

JPEG, widely utilized for the lossy compression of digital images, especially those
from digital photography, follows a sequential process for grayscale images. This process
involves three consecutive steps: Discrete Cosine Transform (DCT), quantization, and
VLC assignment.

We can use the formulas below to realize the DCT transformation and its
inverse procedure.

F(u, v) =
1
4

C(u)C(v)

[
7

∑
x=0

7

∑
y=0

f (x, y) cos
(2x + 1)uπ

16
cos

(2y + 1)vπ

16

]
(1)
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f (x, y) =
1
4

[
7

∑
u=0

7

∑
v=0

C(u)C(v)F(u, v) cos
(2x + 1)uπ

16
cos

(2y + 1)vπ

16

]
(2)

C(u) =

{
1√
2

, if u = 0
1, otherwise

(3)

where f (x, y) represents the original image, which we will also denote as I(x, y). And
F(u, v) stands for the unquantified DCT coefficients.

To diminish the quantity of information, each DCT coefficient value is divided by
a quantization step and the quotient is rounded to the nearest integer. The magnitude
of the quantization step dictates the compression ratio, with larger steps yielding more
substantial compression.

C(u, v) =
⌊

F(u, v)
Q(u, v)

⌋
(4)

where C(u, v), Q(u, v) represent the quantized DCT coefficient and quantization value at
the position of (u, v). Note that the value of Q(u, v) is related to the quality factor (QF);
the larger the QF, the smaller the Q(u, v) value and the higher the visual quality of the
JPEG image.

Finally, entropy coding, which is applied to generate the JPEG bitstream, has several
stages. It is implemented in 8 × 8 blocks, and here, we provide an encoding example for a
single block:

• Step 1: Scan the block in a zigzag pattern to obtain a coefficient sequence.
• Step 2: Convert the coefficient sequence to an RSV sequence. RSV is constructed for

non-zero coefficients in sequences. For each non-zero coefficient, it is converted to
the number of zero coefficients between the previous non-zero coefficient and current
coefficient, the length of the binary representation of the coefficient, and the binary
representation of the coefficient; note that the first element should not exceed 15. If
there are 16 consecutive zeros, construct an RSV with the values (15, 0, 0). In addition,
when encountering negative numbers, the representation method for the third element
is to invert the highest bit of its binary representation of its absolute value.

• Step 3: Merge the first two elements in RSV into a single byte, with the top 4 bits and
the bottom 4 bits representing the two elements, respectively. Due to the limitations
on element values during the RSV construction process, there will be no overflow or
other issues during merging.

• Step 4: The Huffman table in the JPEG Header contains a value table and a bit
table. The value table corresponds one-to-one with the merged byte, and the bit table
determines the length of the encoding corresponding to that byte. Based on these
two tables, the byte can be converted into a Huffman code (also known as VLC in
JPEG encoding).

• Step 5: Merge the obtained Huffman code with the third element of the RSV; at this
point, the RSV is converted into a binary sequence; After converting all RSVs within
the block, convert the entire binary sequence to hexadecimal.

The above is the entropy encoding process for a block. The complete process involves
traversing and encoding all 8 × 8 blocks.

2.2. Overview of HS-Based RDH

The 1D HS-Based RDH for JPEG images is initially proposed by Huang [7]. In this
scheme, the quantized DCT coefficients are divided into 8 × 8 blocks initially. Each block
has 1 DC coefficient and 63 AC coefficients. Then, we scan the whole image in row order
to obtain the sequence of blocks {B1, B2, · · · , BK}. Each block is then converted into a
coefficient sequence in a zigzag pattern, with the 63 AC coefficients designated as frequency
bands Fi ∈ {F1, . . . , F63}.
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Note that, in this method, we have a classification of the DCT coefficients for zero-
valued coefficients, which remain constant during both embedding and extraction; for
coefficients with an absolute value of 1, we define them as insertable coefficients, which
are used for embedding of the secret data; and for coefficients with an absolute value
greater than 1, we define them as shiftable coefficients, which are used to make space for
the embedding of the data and to ensure the reversibility of the method.

Based upon the conditions above, the data embedding process is mathematically
articulated as follows:

C′
k(i) =

{
Ck(i) + sign(Ck(i)) ∗ b, if |Ck(i)| = 1
Ck(i) + sign(Ck(i)), if |Ck(i)| > 1

(5)

where Ck(i) stands for the DCT coefficient value of the ith frequency band in the kth block.
C′

k(i) represents the Ck(i) with secret bit embedded and b ∈ {0, 1} represents the secret bit.
sign(·) is sign function.

sign(x) =


−1, if x < 0
0, if x = 0
1, if x > 0

(6)

And the extraction process is articulated as follows:

b =

{
0, if |C′

k(i)| = 1
1, if |C′

k(i)| = 2
(7)

Ck(i) =
{

sign
(
C′

k(i)
)
, if 1 ≤

∣∣C′
k(i)

∣∣ ≤ 2
C′

k(i)− sign
(
C′

k(i)
)
, if

∣∣C′
k(i)

∣∣ ≥ 3
(8)

Through Equations (7) and (8), the DCT coefficients with secret data can be recovered to
their original values and the secret data can be extracted without error.

2.3. File Size Increment Table

The table, designated as hcit in [17], encapsulates the incremental changes in the
entropy code’s length resulting from the data embedding process. This table is formulated
using the BITS and HUFFVAL lists from the AC Huffman Table, readily extractable from
the DHT segment within the JPEG Header. Consequently, the augmentation in file size for
a marked image, caused by the increase of a non-zero AC coefficient in the ith frequency of
the kth block can be represented as Sk(i) and calculated by

Sk(i) =
{

hcit[rk(i), ck(i)] + 1, if |Ck(i)| = 2z − 1
0, others

(9)

where rk(i) and ck(i) represent the run length of the coefficient (the number of zero co-
efficients in the interval between two non-zero coefficients) and the binary length of the
coefficient, respectively .

2.4. The Laplacian Cumulative Distribution Function

He [18] proposed a scheme to approximate the distribution of all AC coefficients across
frequencies using the Laplacian cumulative distribution function (CDF). This function,
denoted by Fi(x), derives from the foundational work of [19,20], and it facilitates the
estimation of the AC coefficient distribution within the ith frequency. The CDF is delineated
as follows:

Fi(x) =
1
2
+

1
2
· sign(x) ·

(
1 − eλi |x|

)
(10)

where λi(> 0) is the scale parameter.
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Considering that AC coefficients with zero value are unaffected post-embedding, their
ratio among K blocks can be represented as follows:

PZ(i) =
∑K

k=1[Ck(i) == 0]
K

(11)

And the ratio can also be represented by CDF

PZ(i) = Fi(0.5)− Fi(−0.5) (12)

Therefore, the scale parameter can be solved by combining Equations (11) and (12)

λi = −2 · ln

[
1 − 1

K

K

∑
k=1

[Ck(i) == 0]

]
(13)

Once we obtain the scale parameter, the ratio of the insertable coefficient PE(i) and the
shiftable coefficients PS(i) can be solved by

PE(i) = [Fi(−0.5)− Fi(−1.5)] + [Fi(1.5)− Fi(0.5)]

= e−
1
2 λi − e−

3
2 λi

PS(i) = 1 − PE(i)− PZ(i)

(14)

2.5. Distortion Calculation

The visual distortion caused by secret data embedding we denote by ED, whose value
can be represented by

ED ≈
M

∑
i=1

N

∑
j=1

∥∥I′(i, j)− I(i, j)
∥∥2 (15)

Based on Parseval’s Theorem, it can be concluded that

M

∑
i=1

N

∑
j=1

∥∥I′(i, j)− I(i, j)
∥∥2

=
M

∑
i=1

N

∑
j=1

∥∥F′(i, j)− F(i, j)
∥∥2 (16)

And F(i, j) = C(i, j) · Q(i, j), so we can deduce that

ED ≈
K

∑
k=1

63

∑
i=1

Q2(i) ·
∥∥C′

k(i)− Ck(i)
∥∥2 (17)

where Q(i) represents the quantization value of the ith frequency band in the quantiza-
tion table. Due to the quantization table used being 8 × 8, the summation method of
Equation (17) has changed from the perspective of the entire image to 63 AC coefficients
per block (DC coefficients do not carry secret data).

Since, during the data embedding process, for any non-zero AC coefficient that would
be used for embedding or shifting, it changes by at most 1, we can simplify the above
equation to be

ED ≈
K

∑
k=1

63

∑
i=1

Q2(i) (18)

In conclusion, as delineated in Equation (18), we have derived a method to compute
the simulated visual distortion, which is expressed as the square of the quantized value,
corresponding to the modified coefficient’s position.
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3. Proposed Method

The framework of the proposed method and its constituent processes are delineated
in this section. The methodology primarily comprises two elements: dynamic frequency
selection and block-based influential metrics analysis followed by grouping. Initially,
we iteratively select frequencies with the help of payload and offset. NZACPs are then
constructed within each block based on the frequencies identified in the initial phase.
Subsequently, we estimate the ED and FSI resulting from the alteration of these coefficients.
Blocks are grouped and sorted based on these two metrics, with suitable clusters of blocks
being earmarked for data embedding. The comprehensive method is depicted in Figure 1.

Block Sorting Frequency
Ordering

Frequency
Selection

2D Mapping
Construction

EC, ED, FSI
per block

Calculation

Group by
Metrics Above

Select
Appropriate

Groups

Simulate Data
Embedding Calculate T

cover image

stego image

MT UD T* = inf

All offsets
have been

tested
T < T*No

Yes, then T* = T

Yes

No

Embed Data

Optimal Frequency Set and
Appropriate Block Groups

Figure 1. Illustration of the proposed scheme, using the gray Lena JPEG image as an example.

3.1. Theoretical Foundation

The goal of the method is to achieve higher PSNR and lower FSI. With these objectives
in mind, firstly, in block processing, we hope that when the coefficients within the block are
modified, the distortion caused can be as small as possible, leading to Section 3.2; After
obtaining the block order, we found that the distortion caused by modifying coefficients
at different frequencies within each block is also different. Based on this, we introduce
Section 3.3; after confirming the suitable frequencies, we follow the principles in Section 3.4
to construct a 2D mapping on the blocks based on the frequencies. At the same time, we
noticed that, when processing according to block order, some blocks, although they cause
relatively less distortion when modified, will result in a greater increase in FSI. In response,
we introduce an influential model in Sections 3.5 and 3.6, which facilitates the identification
of block groups that permit data embedding with minimal distortion and FSI.

3.2. Block Pre-Processing

Taking a JPEG image with the shape of M × N as example, we assume that we divide
this image into K blocks, where K = M×N

8×8 . The prevalence of zero coefficients in a block
is indicative of its smoothness, and for a smooth block, modifying the coefficients within
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the block will cause less distortion. Therefore, we will first record the smoothness of the K
blocks and use it as one of the metrics.

MT1k =
63

∑
i=1

[Ck(i) == 0] (19)

where [·] stands for Iverson bracket, which assigns a value based on the truth of the
proposition H it encloses. If the proposition H is true, then [H] = 1; conversely, if H is false,
then [H] = 0. This bracket notation allows us to tally the non-zero AC coefficients within
a block.

Subsequently, with inspiration received from [16], we will count the non-zero AC
coefficients within each block and add or subtract one to each of their values. In this way,
for a block, we can calculate the numerical distortion caused by all the non-zero coefficients
within the block being modified by one with the Equation (18). Since we want to give
higher embedding priority to blocks with less distortion, we will take the inverse of this
numerical distortion as another metric.

MT2k =
63

∑
i=1

[Ck(i) ̸= 0] · Q2(i) (20)

Based on the above, we introduce the metric MT, defined as the sum of MT1 and
1/MT2 from Equations (19) and (20). It indicates that blocks with higher MT values are
smoother and result in less distortion during the modification of coefficients. Therefore, the
set of blocks {B1, · · · , Bk, · · · , BK} can be arranged in descending order based on MT to
yield {B̃1, · · · , B̃k, · · · , B̃K}.

MTk = MT1k +
1

MT2k
(21)

3.3. Dynamic Frequency Selection

After the completion of block pre-processing, a selection of frequencies becomes
imperative. There are two main reasons for doing so: the first is that DCT coefficients
located in the high-frequency domain correspond to larger quantization coefficients, which
can lead to a higher ED; the second is that it is possible that most of the coefficients
contained at that frequency cannot be used for data embedding, like coefficients with an
absolute value greater than 1 in the HS-based method, which can only be used to make
room for data embedding rather than embedding data.

Inspired by [8,18], we sort frequencies based on the unit distortion of different fre-
quencies, and the metric UD(i) is calculated as follows, in conjunction with Equation (18):

UD(i) =
(

1
2
+

PS(i)
PE(i)

)
· Q2(i) (22)

where PE(i) and PS(i) denote the ratio of insertable and shiftable coefficients in the ith band
of K blocks, respectively. The detailed calculation process concerning these two metrics is
shown in Section 2.4. Note that the metrics utilized to establish the frequency order remain
invariant prior to and subsequent to the data embedding process, that is, the frequency
order can be reconstructed post-data embedding without necessitating additional data.

Upon sorting the frequencies, a dynamic selection is made using an offset, which
operates under the principle that selecting a greater number of frequencies correlates
with the use of fewer blocks, and conversely. It is observed that, for certain images, a
selection of less distorted frequencies and a higher number of blocks yields improved
performance. Conversely, other images benefit from selecting more frequencies and fewer
blocks. Consequently, our selection strategy is guided by the order of frequencies, with the
requirement that the total EC must surpass the combined value of the payload P and the
offset O.
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r

∑
i=1

EC(i) ≥ P + O (23)

EC(i) =
K

∑
k=1

[|Ck(i)| == 1] (24)

from the Equations (23) and (24), we can obtain the optimal frequency set F∗ = {F∗
1 , · · · , F∗

r }
This part represents one cycle of selecting the frequencies, after simulating data

embedding, we can compute the total distortion T. And T is numerically equal to ED
from Equation (15). In the actual embedding process, we loop the offset set to obtain the
minimum total distortion T∗. The detailed process is shown in Section 3.7.

3.4. Two-Dimensional Mapping Generation

The 2D mapping uses the same strategy as Li [11], defining the NZACP within each
block into four categories, namely A, B, C, and D, respectively. Under these, the process of
modifying the coefficients in NZACPs for data embedding is 2D HS. The mapping strategy
is shown in Figure 2a, with the first quadrant serving as an example.

0 1 2 3 4

1

3

2

4

Type A

Type B

Type C

Type D

shift

5

5

shift

shift

shift

shiftshift

shift

b=0 b=0 b=0

b=0

b=0

b=0
b=1

b=1

b=1

b=1 b=1 b=1

shift

(b1, b2) = (1, 0)

(b1, b2) = (1, 1)

b=1

b=0

b=0

(a) Two-dimensional mapping strategy

0 1 2 3 4

1

3

2

4

Type A

Type B

Type C

Type D

5

5

(b) Type identification after data embedding

Figure 2. 2D mapping strategy and type identification after data embedding.

The acquired coefficient pairs are those that ultimately complete the embedding of
the secret data, each according to its specific type, whilst ensuring the image’s reversibility.
The comprehensive data embedding procedure is delineated as follows:

• Type A: They are defined by the set {(x = ±1, y = ±1)}. When embedding data, they
stay the same when they encounter a 0. If they encounter a 1, they look back one place,
and the coefficient pairs are shifted 1 place on the x-axis if the next place is a 0, and 1
place on the y-axis if the next place is a 1.

• Type B: They fall within {(x = ±1, y ̸= ±1)} or {(x ̸= ±1, y = ±1)}. When
embedding data, a 0 is shifted 1 bit on the x-axis or y-axis when encountered; if a 1 is
encountered it is shifted 1 bit along the diagonal direction.

• Type C: They are categorized as {(x = ±2, y = ±2)}. When embedding data, they
stay the same when they encounter a 0 as Type A; if a 1 is encountered it is shifted
1 bit along the diagonal direction as Type B.

• Type D: All remaining coefficient pairs are classified as Type D and are solely shifted
diagonally. This shifting is primarily utilized to maintain reversibility and does not
embed secret data.
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In the process of constructing NZACPs, we document not only the type of each
NZACP, but also the run length and the corresponding frequency associated with both
coefficients within each pair. This step helps us later to compute the ED and FSI for each
block. The restoration process can be easily accomplished through a few steps. From
Figure 2b, we can easily identify their types, extract corresponding data, and follow the
principles to shift them back to their original positions.

3.5. Influential Model Construction

Utilizing {B̃1, · · · , B̃k, · · · , B̃K}, F∗ and the mapping strategy described in Section 3.4,
we can construct an influential model for every block. This model facilitates the computa-
tion of ED and FSI caused by available coefficient pairs for each block, after embedding or
shifting. Moreover, it records the EC of each block. An example of the construction and
computational procedures is provided, with details presented in Figure 3.

(0, -5); (1, 4)

(2, 14, -2; 1, 16, 2)

(1, 10, 1; 0, 11, 7)

(0, 5, 1; 2, 8, -1)

(0, 2, -5; 1, 4, 4)110 -5 0 0 0 2 0 0
0 1 -1 -2 0 0 0 0

4 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(0, 1); (2, -1)

(1, 1); (0, 7)

(2, -2); (1, 2)

(run length, coef) (run length, freq, coef)

'0': (1, 7) -> (1,8) 
'1': (1, 7) -> (2, 8)

(1, 7)P('0')=P('1')=1/2 

Figure 3. Example of influential model with computational procedures.

Figure 3 illustrates a random 8 × 8 block for computation. Initial processing involves a
zigzag traversal of this block to distill the non-zero coefficients, concurrently documenting
their run lengths. Subsequently, we pair two adjacent non-zero coefficients. Take the third
coefficient pair as an example. This coefficient pair corresponds to Type B, i.e., it pans
one unit horizontally or vertically or one unit diagonally depending on the secret data to
be embedded. Predicated on the trajectory of the movement, we can deduce its EC, and
when amalgamated with the principles from Equations (9) and (18), we are equipped to
compute the ED and FSI. Thus, for each block B̃k, we are capable of calculating its respective
ECk, EDk, FSIk.

3.6. Adaptive Block Grouping

Guided by the model mentioned in Section 3.5, each block B̃k is characterized by
the metrics EDk, FSIk, ECk. For illustrative purposes, consider a 512 × 512 image as an
example, which yields 4096 blocks; these are then segregated into 64 groups, denoted as
groupm, m = 1, · · · , 64, based on the aforementioned metrics. This categorization results in
the parameters group_EDm, group_FSIm, and group_ECm. Subsequently, these 64 groups
are ordered in an ascending sequence according to the influence factor in f l, computed as

in f lm = normalize(group_EDm) + normalize(group_FSIm) (25)

The selection process involves iterating over all groups from the beginning, continuing
until the cumulative embedding capacity ∑M

m=1 group_ECm ≥ P. Ultimately, this yields M
block groups ready for data embedding.



Entropy 2024, 26, 301 10 of 16

3.7. Data Embedding and Extracting

The data embedding procedure is delineated with precision as follows:

• Step 1: Decode the original JPEG bitstream to obtain the quantized DCT coefficient
matrix and the quantization table. Initialize the total distortion T∗ to positive infinity.
Arrange all DCT blocks by their own MT in descending order.

• Step 2: Compute the unit distortion UD for all frequency bands, considering
Equation (22) to set their initial priorities.

• Step 3: Select F∗ = {F∗
1 , · · · , F∗

r } frequencies based on the payload P and offset O.
Apply the 2D mapping strategy to construct NZACPs on the sorted K blocks and F∗,
and compute the EDk, FSIk, ECk of each block.

• Step 4: Group the blocks by EDk, FSIk, ECk. Sort and select M block groups for
data embedding.

• Step 5: Simulate the embedding of secret data and record the total distortion T. If
T < T∗, then T∗ = T, and keep record of the auxiliary data for this case. If all the O
have been traversed, then go to Step 6, otherwise go back to Step 3.

• Step 6: Sequentially embed secret data in the optimal frequency band set F∗ and
M selected block groups. Then, encode the DCT coefficients with secret data as the
marked image.

Notably, it is imperative to document the length of the optimal frequency band set L∗,
the chosen M block groups, and the payload P, which occupy 6 bits, 64 bits, and log2 P bits,
respectively. These elements are sequentially embedded into the reserved space within the
JPEG Header as auxiliary data.

Data extraction and image restoration processes are executed with ease.

• Step 1: Extract the auxiliary data L∗, M, and P from the reserved space within the
JPEG Header.

• Step 2: Recover the optimal frequency band set F∗ with Equation (22) and L∗. The
equation can restore the order of frequencies and F∗ is the first L∗ frequencies in
the order.

• Step 3: Rearrange the block order with MT. As MT remains unchanged after data
embedding, the block order can be directly restored.

• Step 4: Reconstruct the NZACPs by utilizing F∗ in conjunction with the M block
groups. Then, from Figure 2b, we can easily identify the type of NZACP with secret
data, as well as ascertain the shifting direction for image recovery and the extraction
of the corresponding data.

• Step 5: Sequentially extract the secret data and recover DCT coefficients via an in-
verse 2D mapping shift. Then, encode the restored DCT coefficients to obtain the
original image.

4. Experimental Results

This section begins by detailing the experimental settings and the selection of image
datasets. Subsequent comparisons are drawn between our methodology and both one-
dimensional as well as two-dimensional schemes. The concluding portion assesses our
method’s comprehensive performance relative to several contemporary techniques, with
the findings systematically presented.

4.1. Experimental Setup

We conducted a series of experiments to showcase the advantages of our scheme over
USC-SIPI imageset, CVG-UGR image database , and Bossbase v1.01 image set. The first
two sets include multiple commonly used testing images such as Lena, Baboon, Goldhill,
etc. The last set consists of numerous natural images. All experimental images were resized
to 512 × 512 and re-compressed into JPEG format with different quality factors.

The overall performance is evaluated using two primary metrics: visual quality,
assessed by PSNR, and FSI. These metrics provide a comprehensive evaluation of the

https://sipi.usc.edu/database/
https://ccia.ugr.es/cvg/dbimagenes/
http://dde.binghamton.edu/download/
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experimental results. The FSI is determined by comparing the storage space occupied by a
JPEG image before and after the data embedding process. Concurrently, the PSNR metric is
utilized to appraise the visual quality of the image.

PSNR = 10 · log10(
MAX2

I
MSE

)dB (26)

where MAXI represents the maximum achievable pixel value in the image, while the mean
square error (MSE) of the spatial image is computed using the equation below:

MSE =
1

M × N

M

∑
i=1

N

∑
j=1

||I′(i, j)− I(i, j)||2 (27)

where I′ and I are the marked image and original image, respectively, and M, N denote the
shape of the JPEG image.

4.2. Assessment of Visual Quality and File Size Increment

A series of experiments were performed to assess the visual quality and file size
increment in this section. The proposed scheme demonstrates the capability to preserve
high visual imperceptibility post data embedding, applicable to images regardless of their
textured or smooth characteristics. Furthermore, the scheme was bench-marked against a
variety of JPEG RDH schemes, which are categorizable into two types: schemes based on
1D HS and those founded on 2D HS.

4.2.1. Evaluating against One-Dimensional Methodologies

We initially compared our scheme with four JPEG RDH schemes based on 1D HS,
including Huang [7], Hou [8], Yin [9], He [17]. Five quintessential test images from the
USC-SIPI image set were employed to appraise the PSNR and FSI efficacy. The resultant
experimental data are shown in Table 1. Note that the bold data in Table 1 represent the
best performance in their respective experimental settings. And this rule also applies to
Tables 2 and 3.

Table 1. One-Dimensional JPEG RDH Schemes Comparison under QF = 90.

Images Metric
Huang [7] Hou [8] Yin [9] He [17] Our

5000 10,000 5000 10,000 5000 10,000 5000 10,000 5000 10,000

Lena PSNR 54.393 50.989 54.945 51.365 55.561 51.693 55.418 51.913 55.623 52.053
FSI 7624 14,328 6560 13,464 5672 11,624 6392 12,080 5264 9992

Baboon PSNR 49.236 45.323 49.636 45.330 49.963 45.664 50.493 46.225 50.836 46.550
FSI 8360 17,008 7536 17,000 7712 16,008 7544 16,736 7328 14,416

Tiffany PSNR 52.560 49.034 53.335 49.578 53.883 50.002 54.170 50.810 54.348 51.005
FSI 7696 14,968 6328 14,032 6160 12,856 6560 11,688 5608 10,632

Peppers PSNR 52.975 49.169 54.047 50.117 54.608 50.472 54.859 51.393 55.092 51.502
FSI 8048 14,848 6872 14,376 6384 12,824 6016 12,072 5408 10,688

Couple PSNR 51.623 47.772 52.702 48.274 53.240 48.818 53.806 49.835 53.871 49.700
FSI 7328 15,208 6640 14,728 6408 13,112 6408 13,520 5928 12,736

From Table 1, the superiority of our method over the 1D approaches is evident,
achieving a higher PSNR and a smaller FSI in most scenarios. For instance, our approach
exhibits a PSNR for the Lena image at a capacity of 5000 bits capacity that is 0.11% higher
than the nearest competitor, while simultaneously reducing the FSI by 7.19% compared
to the lowest FSI reported by other methods. This marked improvement stems from our
strategic block selection, guided by ECk, EDk, and FSIk, which leads to block groups that
achieve a lower FSI and a higher PSNR. Additionally, our dynamic frequency selection
method has pinpointed a frequency set with minimized unit embedding distortion.
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Table 2. Two-Dimensional JPEG RDH Schemes PSNR Comparison under Different QFs.

Image Scheme
QF = 70 QF = 80 QF = 90

6000 9000 12,000 6000 9000 12,000 6000 9000 12,000

Lena
Li-N [11] 46.864 44.178 41.684 50.205 47.717 45.594 54.503 52.381 50.806
Li-F [12] 46.894 44.213 41.635 50.457 47.745 45.637 54.571 52.479 50.797

Our 47.281 44.311 41.743 50.633 47.977 45.758 54.806 52.646 50.933

Peppers
Li-N [11] 47.282 44.773 42.626 50.094 47.788 46.031 53.978 51.801 50.151
Li-F [12] 47.563 44.943 42.650 50.642 48.208 46.037 53.893 51.667 50.097

Our 48.030 45.262 42.832 50.683 48.354 46.428 54.219 52.100 50.446

Tiffany
Li-N [11] 47.347 44.700 42.582 49.842 47.605 45.795 53.163 51.200 49.703
Li-F [12] 47.569 44.888 42.592 50.180 47.693 45.743 53.111 51.165 49.582

Our 47.897 45.005 42.770 50.393 48.027 46.046 53.452 51.525 49.985

Goldhill
Li-N [11] 45.461 43.318 41.722 47.697 45.549 43.985 51.746 49.400 47.622
Li-F [12] 45.737 43.579 41.790 47.916 45.725 44.032 51.733 49.382 47.571

Our 46.082 43.842 42.065 48.270 46.034 44.426 52.143 49.623 47.852

Splash
Li-N [11] 47.803 45.591 43.418 50.198 48.262 46.607 53.511 51.670 50.272
Li-F [12] 47.819 45.691 43.571 50.428 48.365 46.835 53.647 51.669 50.231

Our 48.298 45.692 43.673 50.690 48.611 46.842 54.061 52.043 50.622

Table 3. Two-Dimensional JPEG RDH Schemes FSI Comparison under Different QFs.

Image Scheme
QF = 70 QF = 80 QF = 90

6000 9000 12,000 6000 9000 12,000 6000 9000 12,000

Lena
Li-N [11] 6536 10,304 14,552 6792 10,016 13,600 6688 9512 13,064
Li-F [12] 7056 10,512 14,824 6384 10,256 13,800 6536 9640 12,984

Our 6488 10,096 14,528 6376 9560 13,360 6232 8936 12,824

Peppers
Li-N [11] 6632 9864 13,312 6712 9880 12,880 6816 9944 13,152
Li-F [12] 6808 10,368 13,576 6144 8864 13,400 6784 9560 12,792

Our 6088 9160 13,240 5912 8816 12,224 6440 9328 12,224

Tiffany
Li-N [11] 6208 9624 13,464 6184 9200 12,848 7240 10,112 13,752
Li-F [12] 6696 9944 13,896 5712 9456 13,192 6952 9984 13,200

Our 5976 9552 13,288 5528 8760 11,888 6552 9776 13,176

Goldhill
Li-N [11] 7512 10,664 14,520 7808 11,544 15,192 7744 12,168 16,472
Li-F [12] 7312 10,728 14,312 8056 11,496 15,256 7976 12,352 16,424

Our 6664 9952 13,752 7368 10,856 14,480 7728 12,024 16,384

Splash
Li-N [11] 5520 8480 12,120 6232 8776 11,648 7264 10,600 13,832
Li-F [12] 6056 8904 12,488 5984 9440 12,264 6728 10,528 14,280

Our 5520 8552 12,072 5640 8648 11,456 6688 9912 12,968

4.2.2. Evaluating against Two-Dimensional Methodologies

Furthermore, to demonstrate the superiority of our scheme, comparisons were drawn
with counterparts based on 2D HS, including Li-N [11] and Li-F [12]. These comparisons
were conducted by adjusting the quality factors to 70, 80, and 90, respectively, across five
classical images sourced from the USC-SIPI image set and the CVG-UGR image database.
The outcomes are exhibited in Tables 2 and 3.

From Tables 2 and 3, it can be observed that our method is also superior to several
existing methods of the same kind in various aspects. For FSI, our method consistently
has better performances. At a QF of 80 for 6000 bits, our FSI values are 6376 bits for Lena,
5912 bits for Peppers, 5528 bits for Tiffany, 7368 bits for Goldhill, and 5640 bits for Splash.
These figures are lower when compared to the other two methods. In the context of PSNR,
our method also shows a clear advantage. At a QF of 70 for 6000 bits, our PSNR values are
47.281 dB for Lena, 48.030 dB for Peppers, 47.897 dB for Tiffany, 46.082 dB for Goldhill, and
48.298 dB for Splash, surpassing the corresponding figures from the other two methods.
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4.3. Evaluating against the State of the Arts

To furnish additional insights, we expanded our experimental regimen to encompass
the BOSSbase v1.01 database, thus affirming the wide applicability and robustness of our
proposed scheme. A set of 50 images was arbitrarily chosen from the database for testing.
All experimental images underwent conversion to JPEG format using three QFs (70, 80,
90), and eight different payloads were used to evaluate the corresponding performances.
Comparative experiments were conducted against three established schemes: Huang [7],
He [17], Li-N [11], Li-F [12], focusing on PSNR and FSI. The findings from these experiments
are exhibited in Figures 4 and 5.

1000 2000 3000 4000 5000 6000 7000 8000

2000

4000

6000

8000

10000

12000

FS
I(
Bi
ts
)

Payload(Bits)

 Huang
 He
 Li-N
 Li-F
 Our

(a) QF = 70

3000 4000 5000 6000 7000 8000 9000 10000
2000

4000

6000

8000

10000

12000

14000

16000

FS
I(
Bi
ts
)

Payload(Bits)

 Huang
 He
 Li-N
 Li-F
 Our

(b) QF = 80

5000 6000 7000 8000 9000 10000 11000 12000
4000

6000

8000

10000

12000

14000

16000

18000

20000

FS
I(
Bi
ts
)

Payload(Bits)

 Huang
 He
 Li-N
 Li-F
 Our

(c) QF = 90

Figure 4. FSI comparison for three quality factors (QF = 70, 80, 90) [7,11,12,17].

From Figures 4 and 5, it can be seen that, across all the experimental environments we
established, our method consistently outperforms others in terms of PSNR and FSI.

In addition, we will further compare the running time of different methods. We record
the experimental times in Figures 4 and 5 and calculate the average running time of each
method uniformly. The results are shown in Table 4.
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Figure 5. PSNR comparison for three quality factors (QF = 70, 80, 90) [7,11,12,17].

Table 4. Average running time comparison in BOSSbase v1.01 database under different QFs.

QF
Average Running Time/s

Huang [7] He [17] Li-N [11] Li-F [12] Our

70 0.04 28.42 3.02 12.61 3.19
80 0.05 27.20 3.06 14.21 3.42
90 0.05 23.46 3.04 16.29 3.93

Combined with the discussion above, Table 4 reveals that the Huang [7] method,
the earliest developed, is the fastest. It directly selects the embedding location for secret
data based on preliminary extensive findings; however, it lags in terms of PSNR and FSI
performance. The He [17] method demonstrates good performance in terms of PSNR;
however, when considering FSI, it falls short in comparison to methods utilizing 2D
mapping. Additionally, its average running time is higher than that of other methods.
The Li-N [11] method is marginally faster than ours, yet it under-performs in terms of
PSNR and FSI. On the other hand, the Li-F [12] method shows some improvement over the
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Li-N [11] method in terms of performance but it is almost four times slower than ours, and
its performance also lags behind our method.

5. Conclusions

Confronting the issue of balancing visual quality with file size increment in JPEG
RDH, this paper unveils a new scheme that utilizes 2D mapping. Our scheme treats blocks
as discrete units, and block groups are chosen based on the assessment of their influential
metrics. It also incorporates the Laplacian cumulative distribution function into the unit
distortion computation for frequency selection. The experimental results clearly indicate
that our proposed scheme surpasses multiple contemporary JPEG RDH methods in visual
quality and file size increment.
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