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Abstract: Heat capacity data of many crystalline solids can be described in a physically sound
manner by Debye–Einstein integrals in the temperature range from 0 K to 300 K. The parameters of
the Debye–Einstein approach are either obtained by a Markov chain Monte Carlo (MCMC) global
optimization method or by a Levenberg–Marquardt (LM) local optimization routine. In the case of
the MCMC approach the model parameters and the coefficients of a function describing the residuals
of the measurement points are simultaneously optimized. Thereby, the Bayesian credible interval
for the heat capacity function is obtained. Although both regression tools (LM and MCMC) are
completely different approaches, not only the values of the Debye–Einstein parameters, but also their
standard errors appear to be similar. The calculated model parameters and their associated standard
errors are then used to derive the enthalpy, entropy and Gibbs energy as functions of temperature. By
direct insertion of the MCMC parameters of all 4 · 105 computer runs the distributions of the integral
quantities enthalpy, entropy and Gibbs energy are determined.

Keywords: thermodynamic functions; Bayesian framework; probability density distribution; regression
analysis; Markov chain Monte Carlo (MCMC)

1. Introduction

Some sets of model parameters used to fit low temperature heat capacity measure-
ments are purely empirical (see, e.g., [1–4]), other parameters are at least partly motivated
by theory, e.g., following the Debye–Einstein approach [5–12]. A Debye–Einstein integral
to describe heat capacities of several compounds is introduced by Kelley and King [5].
They proposed a theory-based heat capacity function that contains two parts, where a
p-atomic isotropic crystal consists of one Debye term and (p − 1) Einstein terms. The value
p equals the number of atoms in a molecule or else the number of atoms in the simplest
chemical formula that may be written to represent the composition. A modification of
this heat capacity function can be found in Wu et al. [10]. It is demonstrated in [12] that
the temperature-dependent standard molar heat capacities (Co

p,m(T)) data for many crys-
talline solids can be described by means of these Debye–Einstein integrals over the low
temperature range (0–300 K).

The Debye–Einstein regression analysis only requires a small number of thermody-
namically motivated fitting parameters. Unlike using fitting polynomials or splines, it
is possible to extrapolate the Debye–Einstein model to zero Kelvin, even if experimental
Co

p,m data are lacking for ultra-low temperatures, e.g., below 50 K (details can be found
in [9]). Compared to various models (e.g., polynomial fits) that require a large number of
fit parameters over the range of 0–300 K, the Debye–Einstein approach offers the advantage
of easy tabulation of a few (four to six) fit parameters in a systematic manner for different
crystalline solids. Moreover, models with a high number of fit parameters often encounter
the issue of overfitting, which becomes evident when the uncertainties associated with
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these fit parameters are comparable to or even exceed the magnitude of the parameters
themselves. In general, Co

p,m values increase strongly, ranging from very small values close
to 0 K to increasingly high values at T = 298.15 K. In addition, the Co

p,m values increase with
the number of atoms in the formula unit. This possible wide range of variation indicates
that the standard errors associated with the residuals also change with temperature.

Thermodynamic data are often fitted by means of various simply empirical or ther-
modynamically motivated models, where the uncertainties of the fit parameters are not
provided (see, e.g., [13]). Frequently, the correlation of the fit parameters is missing too.
However, uncertainty estimation is now the focus of recently published papers, e.g., in [14],
where experimental data and atomistic experiments are included in the model develop-
ment. In general, thermodynamic modeling relies on the significance of the experimental
data, their availability and on the adequacy of the model functions. In this context, it is
pointed out in Honarmandi et al. [15] that uncertainty quantification of phase diagrams
is of paramount importance for decision making in materials design. Paulson et al. [16]
state that uncertainty quantification in combination with CALPHAD is not yet widely
adopted, and present uncertainty quantification of the properties from CALPHAD model-
ing and make their program codes available. Uncertainty quantification in thermodynamic
modeling follows either from classical (frequentist) statistics (e.g., [17]) or when Bayesian
statistics (e.g., [15,16,18]) are applied. One advantage of Bayesian interference is that prior
knowledge can be introduced into the calculations updated by the likelihood function,
which is influenced by new measurements in order to obtain the posterior probability.
A direct calculation of the posterior probability in the n-dimensional problem set (n pa-
rameters are sought) is almost impossible. However, by means of modern data sampling
techniques using the Markov chain Monte Carlo (MCMC) method the posterior probability
distribution is approximated (see, e.g., Vrugt and Ter Braak [19]). The MCMC method
leads to a comparatively fast convergence of high-dimensional problems and is, therefore,
becoming increasingly popular.

In this work, the estimated distribution of the parameters of the Debye–Einstein fit
are obtained from the local Levenberg–Marquardt least squares minimization and from
the global MCMC regression tool. In the case of MCMC regression the standard errors
of the experimental heat capacities are described as a function with parameters derived
from the residuals (i.e., the deviations of the measured values to the calculated values
at the measured heat capacities). In this way, unknown systematic errors are indirectly
introduced into the error calculations [20]. Unknown systematic errors due to a specific
model occur since all models are only a simplification of reality [21]. The parameters of the
function describing the standard errors are simultaneously optimized with the parameters
of the Debye–Einstein heat capacity function. Thereby, the Bayesian credible interval is
calculated for the temperature-dependent heat capacities Co

p,m(T). The molar enthalpy
Ho

m(T), molar entropy So
m(T) and the derived function (−Go

m/T)(T) are derived from the
Co

p,m(T) values.
The standard errors of the parameters are calculated by means of the classical least

squares method and the best estimates of the fit parameters are obtained by using the global
MCMC method. It is shown that the estimated distributions of the parameters calculated
from the MCMC regression fit well to the standard errors which follow from the classical
least squares method.

2. Literature Data and Theory

Calorimetric measurements of heat capacity data for various crystalline solids have
been extensively reported in the literature (see e.g., [2,10,22–26]). These measurements
cover a temperature range from ultra-low temperatures, such as 2 K, up to 300 K or slightly
higher temperatures. The heat capacity data are commonly obtained using the relaxation
method, e.g., provided by Quantum Design Physical Property Measurement Systems, San
Diego, CA, USA [27]. The uncertainties associated with the measurements, including
instrumental errors and statistical fluctuations, were rigorously evaluated and reported
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in [28] and usually come along with a relative uncertainty σCp /CP = 5 · 10−3 for T < 50 K
and σCp /CP = 3 · 10−3 for T > 50 K.

In the following, the Debye–Einstein integral fit of heat capacity data of SrMoO4 is pre-
sented, which is described by six parameters only in the low temperature range (0–320 K).
The underlying experimental data are published in Morishita and Houshiyama [26].

2.1. Debye–Einstein Integral

In our study, we employ the Debye–Einstein integral fit (Equation (1)) proposed
by Wu et al. [10] and extend its application to the entire measurement range (see also
Gamsjäger and Wiessner [12] and Ogris and Gamsjäger [29]):

Co
p,m = mD(TD/T) + n1E1(TE1/T) + n2E2(TE2/T) (1)

where the Debye integral D(TD/T) is given by:

D(TD/T) = 9R
(

T
TD

)3 TD/T∫
0

y4 exp(y)
[exp(y)− 1]2

dy (2)

and the two Einstein terms E1(TE1/T) and E2(TE2/T) are given by:

Ei(TEi/T) = 3R

(
TEi
T

)2
· exp(TEi/T)

[exp(TEi/T)− 1]2
(3)

These equations involve the following fit parameters: the Debye temperature TD, the
Einstein temperatures TEi with i = 1 or i = 2, and the prefactors m, n1 and n2. According
to theory, the sum of the prefactors are equal to the number of atoms in the formula unit
as can be found in [5]. Thus, the low temperature Co

p,m measurements are described by
the Debye–Einstein model. Starting from the temperature-dependent standard molar heat
capacity Co

p,m(T), the molar enthalpy Ho
m(T) and the molar entropy So

m(T) are obtained by
integration as follows:

Ho
m(T) =

∫ T

0
Co

p,m(T)dT (4)

and

So
m(T) =

∫ T

0

Co
p,m(T)

T
dT (5)

It is worth noting that the Debye–Einstein integral approach allows for extrapolation
to absolute zero in the case that ultra-low temperature data are missing; e.g., data are
compiled for T > 50 K only (see, e.g., [9,29]). The prefactors m, n1 and n2 describe the
weight of the Debye integral and the Einstein terms, respectively, where the sum is not
a priori fixed in the fitting algorithm, but appears to be close to the number of atoms in
the formula unit of the investigated compound as it should be from a theoretical point of
view (see also [12]). This is an indication that the fit parameters used in the Debye–Einstein
integral are not only of an empirical nature, but are relevant with respect to the theory
behind. In addition to the Levenberg–Marquardt least squares calculations for finding
the optimized parameters of the Debye–Einstein integral, the optimal values of these fit
parameters within their distributions are estimated by means of the MCMC method within
a Bayesian framework.

2.2. Bayesian Framework and MCMC Regression

Unlike traditional optimization methods that rely solely on minimizing the sum of
least squares of the residuals, the Bayesian approach offers a probabilistic framework for
incorporating prior knowledge, estimating model parameters and quantifying uncertainties.
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Bayes’ theorem is derived from the product rule of conditional probabilities (see, e.g., [30]).
The conditional probability P(B|A) represents the probability of event B given that event A
is true. Applying Bayes’ theorem for our case, the posterior probability P

(
ξ⃗
∣∣∣D, H

)
follows

from the following Equation (6):

P
(

ξ⃗
∣∣∣D, H

)
=

P
(

D
∣∣∣ξ⃗, H

)
· P
(

ξ⃗
∣∣∣H)

P(D|H)
(6)

The prior probability distribution P
(

ξ⃗
∣∣∣H) incorporates any existing prior knowledge about

the vector of the parameters ξ⃗ within the hypothesis space H.
The prior distribution is updated with new data D by using the likelihood function

P
(

D
∣∣∣ξ⃗, H

)
. The likelihood function evaluates how close the fit function containing the

parameters ξ⃗ approaches the experimental data. The product of the likelihood function
P
(

D
∣∣∣ξ⃗, H

)
and the prior probability P

(
ξ⃗
∣∣∣H) is then normalized by the evidence P(D|H),

resulting in the posterior probability P
(

ξ⃗
∣∣∣D, H

)
.

In our investigation, the vector ξ⃗ consists of the six parameters of the Debye–Einstein
integral, i.e., the prefactors m, n1, n2, the Debye temperature TD and the Einstein tempera-
tures TE1 and TE2, and the parameters s0 and s1 of the function of the standard errors. It is
assumed that the hypothesis space H remains constant, which implies that the distribution
P(D|H), commonly referred to as evidence, also remains constant. In our case, boundaries
are imposed on the hypothesis space H, since the model parameters have to be positive;
m ∈ R+, n1 ∈ R+, n2 ∈ R+, TD ∈ R+, TE1 ∈ R+, TE2 ∈ R+.

The Bayesian equation is often transformed into its logarithmic form due to numeric
advantages:

ln P
(

ξ⃗
D, H

)
= ln P

(
D
ξ⃗, H

)
+ ln P

(
ξ⃗
H
)
− ln P(D|H) (7)

For the likelihood function in Equation (6) or Equation (7), it is commonly used to employ
the Gaussian distribution Gauss(yi, yc,i, σi) to calculate the probability for each measure-
ment point.

Gauss(yi, yc,i, σi) =
1√
2π

· 1
σi

exp

(
− [yi − yc,i]

2

2σ2
i

)
(8)

Furthermore, in a “naive” manner, it is commonly assumed that the residuals, i.e., the
measured heat capacities minus the calculated heat capacity values (yi − yc,i) for all i data
points, are independent of each other. Therefore, the likelihood function is obtained by
multiplying the individual probabilities of each Gaussian distribution.

In this Bayesian framework, the standard errors of the residuals are estimated. To
reduce the number of fit parameters to a manageable level, we propose to apply a simple
function with the parameters ξ⃗2 that describes these standard errors. The standard errors
are influenced by the uncertainties in the measurements and unknown errors brought in
by the model. The logarithmic posterior distribution that accounts for the function of the
standard errors is written as

ln P
(
{ ξ⃗1, ξ⃗2}

{(xi, yi)}, H
)
= − ln P({(xi, yi)} | H)− n

2
ln(2π)

−
n

∑
i=1

{
ln
[
σc,i

(
yi, ξ⃗2

)]
+

[
yi − yc,i

(
ξ⃗1

)]2

2σ2
c,i

(
yi, ξ⃗2

) }
+ ln

(
P
(
{ ξ⃗1, ξ⃗2 }

) ∣∣∣H
)

(9)

Assuming a flat prior (no prior knowledge), the posterior distribution simplifies to
Equation (10):
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ln P
(
{ ξ⃗1, ξ⃗2}

{(xi, yi)}, H
)
= − ln[P({(xi, yi)} | H)]− n

2
ln(2π)

−
n

∑
i=1

{
ln
(

σc,i

(
yi, ξ⃗2

))
+

(
yi − yc,i

(
ξ⃗1

))2

2σ2
c,i

(
yi, ξ⃗2

) }
(10)

The Markov chain Monte Carlo (MCMC) sampling method can be used effectively
within the Bayesian framework. MCMC allows us to explore the parameter space with
the aim to eventually converge to the joint posterior probability. Thereby, robust estimates
of the parameters are possible and their associated standard errors are obtained from the
posterior probability density distributions.

In our study, we employ an advanced version of the Metropolis–Hastings algorithm,
known as the Differential Evolution Adaptive Metropolis (DREAM) algorithm, which was
initially developed by Braak [31] and further enhanced by Vrugt and Ter Braak [19]. The
DREAM algorithm is specifically designed for Bayesian optimization and incorporates
multiple chains with differential evolution and adaptive Metropolis–Hastings steps. This
MCMC approach substantially enhances the exploration of the parameter space by dy-
namically adjusting the step sizes, leading to improved convergence and efficiency in the
optimization process. The relative frequencies of parameter occurrences within the param-
eter range directly correspond to their probability density distribution. The standard errors
of the parameters equal the standard deviations of these parameters and are calculated by
considering all values from all Markov chains. These MCMC-based standard errors can be
compared with the standard errors obtained from the error propagation rule from classical
statistics.

In the following, the correlations between the parameters are estimated. The covari-
ance between two parameters can be calculated using the following formula:

cov(A, B) =
1
N

N

∑
i=1

(Ai − Ā)(Bi − B̄) (11)

Here, N represents the total number of samples or observations of all Markov chains,
Ai and Bi are the values of parameters A and B for the ith element of the Markov chains,
and Ā and B̄ denote the mean values of the parameters A and B of all entries in the Markov
chains, respectively.

The correlation coefficient, denoted as r, is defined as:

r =
cov(A, B)

σAσB
(12)

In this equation, σA and σB represent the standard errors of parameters A and B,
respectively.

3. Results and Discussion

The molar heat capacities Co
p,m of SrMoO4 have been measured over a temperature

range from 2 K to 320 K by Morishita and Houshiyama [26] using a relaxation method
instrument. As an example, these data, i.e., 81 Co

p,m(T) data pairs, are evaluated in this work
by means of the Debye–Einstein approach using both methods, least squares minimization
and Bayesian statistics, with the help of Monte Carlo Markov chains (MCMC). Regression
by the latter method is based on the DREAM algorithm. For the analyses, we used 10 chains,
each consisting of 5 · 104 iterations, with the initial 1 · 104 iterations per chain discarded as
burn-in. This means that a total of 4 · 105 parameter sets were available for analysis.

The probability density distributions of the simulated heat capacities follow from the
MCMC approach by fitting the experimental heat capacities. These probability density dis-
tributions are presented at selected temperatures. It is worth noting that these distributions,



Entropy 2024, 26, 452 6 of 16

that follow from the six-parameter Debye–Einstein integral, can be extrapolated to lower
temperatures in the case of lacking experimental data. The probability density distribution
of Co

p,m at T = 15.0 K is presented in Figure 1a, the probability density distribution of Co
p,m

at T = 98.1 K is shown in Figure 1b, and the probability density distributions at T = 248.6 K
and T = 298.15 K can be seen in Figure 1c,d, respectively. The probability density distribu-
tion of Co

p,m at T = 248.6 K (Figure 1c) exhibits two distinct maxima. It can be speculated
that these two maxima occur due to correlation between the parameters induced by the
non-linear behavior of the Debye–Einstein approach. In such a case, the Bayesian approach
results in more realistic error estimations compared to classical error propagation analysis.
In the case of many local minima, global regression analysis is recommended to reliably
estimate the error of the regression, as is shown for an example from X-ray diffraction data
analysis in [32].

The experimental data for Co
p,m of SrMoO4, taken from [26], are plotted versus T in

Figure 2. The solid line in Figure 2 corresponds to the least squares Levenberg–Marquardt
fit of the six-parameter Debye–Einstein integral, computed by means of Origin2022b [33].
The mean values of the Co

p,m probability distribution densities are also plotted in Figure 2.
Both, the classical least squares six-parameter (6p)-Debye–Einstein fit and the MCMC
calculation mimic the experimental data almost perfectly well.

(a) (b)

(c) (d)
Figure 1. Probability densities of the heat capacities Co

p,m for SrMoO4 at selected temperatures
T. (a) Probability density of Co

p,m at T = 15.0 K. (b) Probability density of Co
p,m at T = 98.1 K.

(c) Probability density of Co
p,m at T = 199.9 K. (d) Probability density of Co

p,m at T = 199.9 K.
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Figure 2. Experimental Co
p,m values from [26] versus T approximated by the 6p-Debye–Einstein

integral fit; the mean values of the Co
p,m values obtained by the MCMC-method are also shown.

The six parameters of the Debye–Einstein fit and their standard errors are calculated
for both methods—the classical least squares (LSQ) method and the MCMC approach—and
are listed in Table 1. In the case of the MCMC approach, the mean value of the probability
density distribution and the highest probability is calculated, as well as the standard errors
which follow from the standard deviations of all values calculated in the MCMC approach.
The parameters obtained by both, completely different, regression approaches result in
values for the parameters that are very close and even the estimated standard errors are
similar.

Table 1. Six-parameter Debye–Einstein fit by classical LSQ and by MCMC.

Method m n1 n2 TD / K TE1 / K TE2 / K

LSQ 2.65 ± 0.03 2.00 ± 0.03 1.43 ± 0.02 250 ± 2 470 ± 8 1129 ± 29

MCMC (highest prob.) 2.624 ± 0.020 1.985 ± 0.030 1.439 ± 0.003 249.5 ± 1.0 464.3 ± 6.0 1106.9 ± 28.0

MCMC (mean) 2.633 1.992 1.440 249.9 467.0 1117.3

The probability density distributions of the model parameters are calculated, and
presented in Figure 3. The probability density distribution for the Debye temperature TD is
presented in Figure 3a, for the Einstein temperatures TE1 in Figure 3b and TE2 in Figure 3c,
respectively. The probability density distributions of the prefactors m, n1 and n2 are shown
in Figure 3d, Figure 3e and Figure 3f, respectively.

In addition, the parameters of the Debye–Einstein model function, as provided in
Table 1, and the parameters of the function describing the errors of the heat capacities are
simultaneously optimized.
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(a) (b)

(c) (d)

(e) (f)
Figure 3. Probability densities of the 6 parameters of the Debye–Einstein integral. (a) Probability
density of the Debye temperature TD. (b) Probability density of the Einstein temperature TE1.
(c) Probability density of the Einstein temperature TE2. (d) Probability density of the factor m.
(e) Probability density of the factor n1. (f) Probability density of the factor n2.

3.1. Estimating the Uncertainties of Each Measurement Point

Our objective is to identify a function as simply as possible to approximate the standard
errors of the data points investigated, where the experimental data are provided in [26].
This function must obey the following two criteria:
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• The temperature dependency of the residuals should adequately describe the tem-
perature dependency of the standard errors and vice versa, e.g., as the residuals
increase with increasing heat capacities, the standard errors should also increase with
increasing heat capacities.

• The correlations between the parameters in the function for the standard errors should
not be excessively high (e.g., above 90 percent), as this indicates the potential for using
a simpler standard error function without significant data loss.

Since the distribution of the residuals is not known beforehand, the evaluation is
carried out iteratively, and in case of failure, the entire analysis must be repeated by using
another function for the standard errors. The following functions may be considered for
describing the standard errors:

s(Co
p,m) = s0 (13)

s(Co
p,m) = s0 + s1 · |Co

p,m| (14)

s(Co
p,m) = s0 + s1 ·

√
|Co

p,m| (15)

It is worth noting that the function s must remain positive over the whole range of
Co

p,m. The simplest approach is to assign an equal, i.e., constant, standard error to all
data points (Equation (13)). However, a better choice may consider the increase of the
residuals with increasing heat capacities. A high correlation between s0 and s1 is observed
when using a linearly increasing function (Equation (14)). When Equation (15) is used to
describe the standard error function, a more realistic distribution of residuals is obtained.
Figure 4 displays the residuals versus T. The residuals are calculated from the Markov
chain containing the parameters with the highest probability. The function of the standard
error s together with −s, i.e., the credible interval, is calculated from Equation (15) and
plotted versus T in Figure 4.

Figure 4. Residuals (difference between simulated and measured heat capacities, Cp,sim − Cp,meas) as
a function of temperature T. The function s of the standard errors and this function mirrored at the
abscissa, i.e., −s, are also plotted versus T.
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The parameters s0 and s1 of the function describing the standard error of Co
p,m versus

T are listed in Table 2.

Table 2. The function for the standard error of the heat capacity.

Method s0/J mol−1 K−1 s1/(J mol−1 K−1)(1/2)

MCMC (highest prob.) 0.029 ± 0.007 0.007 ± 0.002

MCMC (mean) 0.030 0.0081

3.2. Determining the Correlation between Parameters

In this section, the correlation between all parameters is determined using Equation (12). The
resulting correlation matrix, which is symmetric, is presented in Table 3.

Table 3. Correlation matrix r (symmetric matrix).

m n1 n2 TD TE1 TE2 s0 s1

m 1.0 0.31 −0.33 0.98 0.91 0.61 0.00 0.09

n1 1.0 0.09 0.19 0.67 0.9 0.04 −0.05

n2 1.0 −0.31 −0.26 0.21 −0.01 0.00

TD 1.0 0.83 0.52 −0.03 0.12

TE1 1.0 0.83 0.02 0.04

TE2 1.0 0.02 0.01

s0 1.0 −0.62

s0 1.0

The values specified in the correlation matrix can be visualized by scatter plots
(Figure 5) showing the correlation of two selected parameters. The points in these scatter
plots are color-coded. The color of the points changes with the frequency of hits (axis on
the right) in the range of the parameter space represented by the point.

As a representative example, the correlation between the Debye temperature TD and
the prefactor m is illustrated in Figure 5a, which is very high and at 0.98 close to 1. These
two parameters are almost linearly related. However, neither of these two parameters can
be omitted, since the Debye integral has to have a certain weight m not known before the
regression analysis. The parameters TD and n2 are slightly anti-correlated, with a value
of −0.31, as can be seen in Figure 5b. Whereas the Einstein temperatures are strongly
correlated at 0.83, as shown in Figure 5c, the prefactors n1 and n2 are practically not
correlated and the value of 0.09 results in a scatter plot which is symmetric to the abscissa
(Figure 5d).

In this example, the condition number of the correlation matrix r is calculated to be
5700, which indicates a high value. This high condition number suggests that the equation
system is poorly conditioned. Therefore, from this perspective, the use of a more complex
model (e.g., incorporating additional Einstein terms) is not recommended.

Based on the residuals analysis discussed in the section “Estimating the Uncertainties
of Each Measurement Point”, it can be concluded that underfitting is not observed in the
examined dataset. Moreover, the inclusion of additional Einstein terms would not lead
to a substantial reduction in the residuals. The question may arise if a four-parameter
(4p) Debye–Einstein integral with a Debye temperature TD and an Einstein temperature
TE and their prefactors m and n suffices to describe Co

p,m(T) of SrMoO4 from 0 K to 300 K.
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Thus, the residuals following from a simpler four-parameter Debye–Einstein approach are
calculated by the MCMC approach and presented in Figure 6.

(a) (b)

(c) (d)
Figure 5. Color -coded scatter plots visualizing the correlation between certain parameters.
(a) Correlation between TD and m. (b) Correlation between TD and n2. (c) Correlation between
TE1 and TE2. (d) Correlation between n1 and n2.

Figure 6. Residuals (difference between simulated and measured heat capacities, Cp,sim − Cp,meas)
in the case of a simpler 4p-Debye–Einstein fit as a function of temperature T. The function s of the
standard errors and this function mirrored at the abscissa, i.e., −s are also plotted versus T.



Entropy 2024, 26, 452 12 of 16

Compared to the residuals of the 6p-Debye–Einstein fit, shown in Figure 4, the 4p-fit
results in almost five times larger residuals (Figure 6), which are not randomly distributed
for this compound. This means that the 6p-Debye–Einstein fit seems to be the better option
for describing the heat capacities Co

p,m of SrMoO4 than the simpler 4p-fit. In addition, it
is shown in [12] that the 6p-Debye–Einstein approach leads to a heat capacity description
with small standard errors of the fit parameters for many compounds.

3.3. Thermodynamic Functions

The molar entropy So
m(T) and molar enthalpy Ho

m(T) can be determined by us-
ing Equations (16) and (17), i.e., integrating the simulated molar heat capacities Co

p,m(T)
numerically.

So
m(T) =

∫ T

0

Co
p,m(T)

T
dT (16)

Ho
m(T) =

∫ T

0
C0

p,m(T)dT (17)

The derived function −Go
m/T, with Go

m being the molar Gibbs energy, is obtained
from:

−Go
m(T)
T

= So
m(T)− Ho

m(T)
T

(18)

The values of the thermodynamic functions So
m, Ho

m and So
m(T)− Ho

m(T)/T of SrMoO4
at T = 298.15 K are presented in Table 4. The values are obtained from Levenberg–
Marquardt least squares analysis (see also [12]). These values are compared to those
of the highest probability calculated with the MCMC approach and to values from [26].

Table 4. Thermodynamic functions of SrMoO4 at T = 298.15 K derived from molar heat capacity.

Source So
m (J mol−1 K−1) Ho

m (kJ mol−1) So
m(T)− Ho

m(T)
T (J mol−1 K−1)

From [26] 136.56 21.14 65.32

LM (least squares) 136.51 21.188 65.45

MCMC (highest prob.) 136.52 ± 0.04 21.188 ± 0.003 65.46 ± 0.02

This approach allows for the evaluation of entropy as a function of temperature for
each set of fit parameters obtained from the Monte Carlo Markov chains. The individual
entropy profiles serve as the basis for generating histograms at specific temperatures.

The histogram (probability density distribution) of the molar entropy So
m at

T = 298.15 K is shown in Figure 7 providing insights into the distribution of entropy
values. The mean entropy value is determined to be 136.5196 J mol−1 K−1. Addition-
ally, the entropy value with the highest probability corresponds to 136.5195 J mol−1 K−1,
representing the most likely entropy state of the system at the given temperature.

Furthermore, the standard deviation, a measure of the uncertainty of entropy values
around the mean, can be calculated as ∆So

m = 0.033 J mol−1 K−1.
The probability density distribution of the enthalpy Ho

m at T = 298.15 K is shown
in Figure 8.

The probability density distribution of the function So
m − Ho

m/T at T = 298.15 K is
presented in Figure 9.
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Figure 7. Probability density distribution of So
m at T = 298.15 K.

Figure 8. Probability density distribution of Ho
m at T = 298.15 K.
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Figure 9. Probability density distribution of So
m − Ho

m/T at T = 298.15 K.

It is worth mentioning that in some cases the highest probability lies not exactly at the
position where the distribution evaluated by the “naked eye” expects the highest probability
to be. This point can be explained as follows: The probability density distribution is
obtained from all 4 · 105 Markov chain entries. A certain entry (six parameters of the Debye–
Einstein fit and the two parameters describing the function of the standard errors of the
heat capacities) has the highest value of (ln P), Equation (10). This maximum probability
corresponds to the minimum obtained by the Levenberg–Marquardt approach, assuming
that the same function is used for the standard errors.

In summary, determining thermodynamic functions within the Bayesian framework
does not pose any difficulties. The Bayesian approach allows for the calculation of ther-
modynamic properties as a function of temperature based on the obtained sets of fit
parameters. The resulting histograms provide insights into the distribution of values of the
thermodynamic functions at specific temperatures. The mean value, along with the value
corresponding to the highest probability, can be determined from the histograms. Addi-
tionally, the standard errors can be estimated from the probability density distributions of
the thermodynamic functions at a specific temperature.

4. Conclusions

For the example of SrMoO4, it is again demonstrated in this work that the six-
parameter Debye–Einstein fit for molar heat capacities Co

p,m(T) works very well in the
range 0–300 K, where SrMoO4 could be replaced by many crystalline solids. Two different
regression methods are applied for this task; the first is based on frequentist statistics using
classical least squares, the second is an application of Bayes’ theorem, numerically treated
by the MCMC method. It is demonstrated that both completely different approaches
not only lead to comparable results for the values of the parameters, but also to similar
uncertainties of these parameters.

In addition, this investigation showcases the efficacy of the Bayesian framework to
determine thermodynamic functions and their uncertainties. Based on the residuals, the
parameters for the temperature-dependent function of the standard errors are optimized
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together with the model parameters and the Bayesian credible interval is obtained as
the result.

From the correlation matrix of this example, it can be deduced that no more fitting
parameters should be used in this temperature range as the correlation between these
physically based parameters is partially very high. It can be seen as an advantage of the
MCMC approach that the probability density distributions of the model parameters and
of the derived quantities, such as the entropy S, enthalpy H and other thermodynamic
functions, are revealed. Based on the results of this extented regression analysis of the
molar heat capacities of SrMoO4, it can be recommended to use the 6p-Debye–Einstein
integral approach as a standard method to fit heat capacities of many crystalline solids in
the range between 0 K and 300 K.
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