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Abstract: In digital baseband processing, the forward error correction (FEC) unit belongs to the most
demanding components in terms of computational complexity and power consumption. Hence,
efficient implementation of FEC decoders is crucial for next-generation mobile broadband standards
and an ongoing research topic. Quantization has a significant impact on the decoder area, power
consumption and throughput. Thus, lower bit widths are preferred for efficient implementations but
degrade the error correction capability. To address this issue, a non-uniform quantization based on the
Information Bottleneck (IB) method is proposed that enables a low bit width while maintaining the
essential information. Many investigations on the use of the IB method for Low-density parity-check
code) LDPC decoders exist and have shown its advantages from an implementation perspective.
However, for polar code decoder implementations, there exists only one publication that is not based
on the state-of-the-art Fast Simplified Successive-Cancellation (Fast-SSC) decoding algorithm, and
only synthesis implementation results without energy estimation are shown. In contrast, our paper
presents several optimized Fast-SSC polar code decoder implementations using IB-based quantization
with placement and routing results using advanced 12 nm FinFET technology. Gains of up to 16%
in area and 13% in energy efficiency are achieved with IB-based quantization at a Frame Error Rate
(FER) of 10−7 and a polar code of N = 1024, R = 0.5 compared to state-of-the-art decoders.

Keywords: forward error correction; polar code; information bottleneck; ASIC; 12 nm; implementation

1. Introduction

Polar codes are a relatively new class of Forward Error Correction (FEC) codes, first
described by Erdal Arıkan in 2009 [1]. These codes are part of the 5G standard. They
offer low-complexity encoding and decoding algorithms, which is especially important
for high-throughput and low-latency applications in upcoming standards such as 6G [2].
The most commonly used decoding algorithms for polar codes, Successive-Cancellation
(SC) and Successive-Cancellation List (SCL), can be efficiently pipelined to achieve very high
throughput and low latency [3,4]. Quantization has a significant impact on implementation
costs. Coarse quantization improves implementation efficiency in terms of area, power and
throughput but may decrease the error correction performance. Finding a good trade-off is
therefore essential for efficient hardware implementations.

One promising technique to maintain the message information but enable a reduc-
tion in the bit width is the Information Bottleneck (IB) method [5]. Here, information
compression is achieved by maximizing the mutual information between an observed
and a compressed random variable for a given bit width. This yields a non-uniform
quantization. While IB-based quantization for Low Density Parity Check (LDPC) decoder
implementations is well investigated [6–8], the efficiency of the IB method for polar code
decoders is quite unexplored. It is an open research question whether IB-based quanti-
zation in polar decoders can yield more efficient implementations compared to standard
quantization methods.
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It was shown in [8,9] that a pure lookup table (LUT)-based application of the IB method
yields a very large LUTs, making this approach unfeasible. The Reconstruction Computa-
tion Quantization (RCQ) scheme [10] also uses a LUTs to reconstruct and, after computation,
quantize back to a smaller bit width. The resulting LUTs have much lower complexity.
Hence, the RCQ scheme is the most promising approach from an implementation perspec-
tive. To the best of our knowledge, only one publication has investigated the efficiency
of IB-based polar decoder implementation [9]. However, the investigations in [9] do not
consider the state-of-the-art Fast-SSC decoding algorithm and, even more importantly, pro-
vide only synthesis results without any power data, which are some of the most important
implementation metrics.

This work therefore makes the following new contributions:

• We present the first Fast Simplified Successive Cancellation (Fast-SSC) polar decoder
architecture using IB-based quantization with optimized LUTs to improve area and
energy efficiency;

• We compare the non-uniform, IB-based quantization scheme with uniformly quan-
tized fixed-point (FP) representations in terms of error correction performance and
implementation efficiency for code lengths of 128 bit and 1024 bit;

• We analyze the impact of the IB-based quantization on area and power consumption
with seven different designs in advanced 12 nm FinFET technology.

The remainder of this paper is structured as follows: We provide the required back-
ground of polar codes, their decoding algorithms and the IB method in Section 2. IB-based
Fast-SSC decoding and our decoder architecture are described in Section 3. Section 4
presents a detailed comparison with uniformly quantized FP decoders in terms of error
correction performance and implementation costs, and Section 5 concludes this paper.

2. Background
2.1. Polar Codes

Polar codes P(N, K) are linear block codes with code length N = 2n that encode K
information bits. Channel polarization derives N virtual channels where K reliable channels
(information set I) are used to transmit the information. The N − K remaining (unreliable)
channels are set to zero and called frozen bits (frozen set F ). The encoding includes a bit
reversal permutation [1].

2.2. Successive Cancellation Decoding

SC decoding can be described as depth-first tree traversal of the Polar Factor Tree
(PFT) [11]. The PFT has log(N) + 1 stages s and N leaf nodes at stage s = 0, representing
the frozen and information bits. Each node v receives an Log-Likelihood Ratio (LLR) vector
αv of size Ns to first calculate the Ns/2 elements of the left child message αl using the
hardware-efficient min-sum formulation of the f -function:

αl
i = f (αv

2i, αv
2i+1) = sign(αv

2i) sign
(
αv

2i+1
)

min
(
|αv

2i|,
∣∣αv

2i+1
∣∣). (1)

With the bit vector βl received from the left child, the Ns/2 elements of αr are calculated
using the g-function and sent to the child on the right:

αr
i = g

(
αv

2i, αv
2i+1, βl

i

)
=
(

1 − 2βl
i

)
· αv

2i + αv
2i+1, (2)

With the results of both children, the h-function calculates the partial sum βv with ⊕, the
binary XOR operator, as (

βv
2i, βv

2i+1
)
= h

(
βl

i, βr
i

)
=
(

βl
i ⊕ βr

i , βr
i

)
, (3)
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which is sent to the parent node. In leaf nodes, bit decisions are made. Frozen bits are 0 per
definition, and information bit nodes return the Hard Decision (HD) on the LLR:

βv = sign(αv) ≜

{
0 if αv ≥ 0
1 otherwise.

(4)

The decoder outputs the partial sum β0 of the root node.

2.3. Fast-SSC Decoding

Pruning the PFT reduces the number of operations required to decode one code
word [11]. Subtrees containing only frozen bits do not have to be traversed because their
decoding result is known to be an all-zero vector in advance. Such Rate-0 nodes are always
left children and are merged into their parent nodes. Here, the g- and h-functions are
executed with the known all-zero βl , denoted by g0 and h0, respectively. Similarly, subtrees
without any frozen bits can be decoded directly by the HD because no parity information is
contained. Merging these Rate-1 nodes results in the h1-function, which directly calculates
βr using

βr
i = sign

(
g
(

αv
2i, αv

2i+1, βl
i

))
, (5)

and combines it with βl to observe βv.
Fast-SSC decoding [12] applies further optimizations: If a subtree contains only one

information bit, it is considered an Repetition (REP) code and replaced by a specialized
REP node. All its bits are decoded by summing up the vector αv of received LLR values
and extracting the sign bit of the sum:

βv,REP
i = sign

(
Ns−1

∑
j=0

αv
j

)
. (6)

In subtrees containing only one frozen bit, this bit always acts as a parity bit. Thus,
the partial sum of this subtree represents an Single Parity-Check (SPC) code. A specialized
SPC node performs Maximum Likelihood (ML) decoding by calculating the parity γv ∈
{0, 1} of the input:

γv =
Ns−1⊕
i=0

sign(αv
i ), (7)

finding the least reliable bit
imin = arg min

i∈[0,Ns)

|αv
i | (8)

and setting βv to satisfy the single parity constraint

βv,SPC
i =

{
sign αv

i ⊕ γv if i = imin

sign αv
i otherwise.

(9)

2.4. Information Bottleneck Method

The IB method is a mathematical framework used for clustering in information theory
and machine learning [5]. In the IB setup, the target is to preserve the shared mutual infor-
mation I(X; Y) between an observed random variable Y and the relevant random variable
X while compressing Y to T, i.e., maximizing I(T; X). Different IB algorithms exist [13] to
provide the compression mapping p(t|y) derived only from the joint distribution p(x; y)
and the cardinality of the compressed event space (|T |), with x ∈ X = {0, 1}, y ∈ Y , t ∈ T
being realizations of the random variables X, Y, T, respectively, and |T | ≪ |Y|. A collection
of IB algorithms is provided by [14] and is used in this work. This compression is applied
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to the output of an Additive White Gaussian Noise (AWGN) channel to obtain a coarse,
non-uniform quantization.

In the case of our IB decoder, y ∈ Y are the received LLRs that are quantized with
a high bit width, e.g., 10 bit, which equals |Y| = 210 = 1024 bins. The IB algorithm then
iteratively tries to find pairs of bins to combine into one bin with the least loss of mutual
information I(X; Y). In that way, |Y| is reduced to |T | = 16 (4 bit), and a mapping from y
to t is derived.

3. Information Bottleneck Decoder
3.1. Numerical Representations and Lookup Table Generation

In this paper, we focus on decoders with very high throughput and low latency. These
decoders are fully unrolled and pipelined and use an SignMagnitude (SM) representation of
the quantized FP LLR values [15]. For a high Signal-to-Noise-Ratios (SNRs), saturation re-
duces signal toggling because only the sign bit changes, which reduces power consumption.
Additionally, the comparators in the f -functions (1) and SPC nodes (8) can directly operate
on the magnitude. To perform the additions in the g-functions (2) and REP nodes (6),
the SM representations are converted to Two’s-Complement (TC) to efficiently perform
the calculations.

Our IB decoder implementations exploit all these optimizations. However, because
of the non-uniform distribution characterizing the IB indices, mathematical computations
must be replaced by LUTs [9]. These LUTs can become extremely large. For example, for a
g-function (2) with one binary and two LLR inputs, the resulting LUT is of size 2 · |T |2.
From an implementation perspective, the LUTs are transformed into Boolean functions.
Despite the logic optimization executed by state-of-the-art synthesis tools, the resulting logic
costs can quickly outweigh the benefits of reduced bit widths, particularly for increasing
LUT sizes [8].

A promising approach to address this problem is the RCQ scheme [10,16]. RCQ com-
bines non-uniform quantization with the traditional node computations. Only small LUTs
are necessary and are placed in front of the computation units to upscale the reduced non-
uniform IBquantization to a uniform FP quantization (Reconstruction). Node computations
are then performed with the uniform FP quantization (Computation). After computation,
the results are downscaled back to the non-uniform IB domain with smaller bit width
(Quantization). The RCQ scheme results in much smaller LUTs because the mappings for
the conversions between IB and FP domains can be implemented as LUTs of size 2Q for
each value where Q is the bit width. We use QIB = log2(|T |) and QFP to denote the bit
widths in the IB and FP domains, respectively. For the g-function example mentioned
above, the number of entries in the LUTs shrinks from 2 · |T |2 = 21+2·QIB to 2 · 2QIB + 2QFP .

We use density evolution to generate samples. At least 100K samples are monitored at
each node in the decoder, i.e., at each edge of the PFT. These samples yield the joint distri-
butions p(x; y), which are input into the IBalgorithm [13] that calculates the compression
mappings p(t|y) for every edge. Then, the symmetric information bottleneck algorithm [7,14]
is applied, which is optimized to preserve the symmetry of the transmission channel (as-
suming an AWGN channel and Binary Phase Shift Keying (BPSK) modulation). Exploiting
this symmetry enables a bisection of the LUTs because it is sufficient to store only the
magnitudes. Accordingly, we use an SM-like representation of the IB indices, as shown in
the example in Table 1, for |T | = 8. Therefore, for both directions of conversion (IB to FP
and FP to IB), the LUTs directly map one magnitude to another, i.e., the magnitudes in both
domains also act as indices for the LUTs. Thus, the size of each LUT is 2Q−1, and the total
number of entries for the example of the g-function becomes 2 · 2QIB−1 + 2QFP−1. As shown
in Figure 1, this means a reduction from 2 ∗ 162 = 512 entries to 2 ∗ 24−1 for the upscaling
LUT and 25−1 for the downscaling LUT, making it just 32 entries.

Furthermore, this approach eliminates the need for multiple comparisons with thresh-
olds per conversion as in [16].
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Table 1. Hardware-aware representation of 3 bit IB indices.

IB Index t 0 1 2 3 4 5 6 7

SM IB −3 −2 −1 −0 0 1 2 3

Binary 1 11 1 10 1 01 1 00 0 00 0 01 0 10 0 11

αr
0(3)

αr
0(2)

αr
0(1)

αr
0(0)

α̃r
0(4)

α̃r
0(3)

α̃r
0(2)

α̃r
0(1)

α̃r
0(0)

α̈r
0(5)

α̈r
0(4)

α̈r
0(3)

α̈r
0(2)

α̈r
0(1)

α̈r
0(0)

∑

α̈v
0(4)

α̈v
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α̈v
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α̈v
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α̈v
0(0)

α̈v
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α̈v
1(3)

α̈v
1(2)

α̈v
1(1)

α̈v
1(0)

α̃v
0(4)

α̃v
0(3)

α̃v
0(2)

α̃v
0(1)

α̃v
0(0)

α̃v
1(4)

α̃v
1(3)

α̃v
1(2)

α̃v
1(1)

α̃v
1(0)

αv
0(3)

αv
0(2)

αv
0(1)

αv
0(0)

αv
1(3)

αv
1(2)

αv
1(1)

αv
1(0)βl

0

QFP = 5 bit (SM)

QIB = 4 bit (IB)

QFP = 5 bit (TC)

QFP = 6 bit (TC)

QFP = 5 bit (SM)

QIB = 4 bit (IB)

LUTup LUTup

conversion conversion

saturation &
conversion

LUTdown

Figure 1. RCQ schematic for the g-function.

Notation:

To differentiate between the numerical representations, we use α to denote values in
the IB domain and α̃ and α̈ for SM and TC FP representations, respectively. The j-th bit of
the binary expansion of αi is given by αi(j)

, and the most significant bit (MSB) Q − 1 refers
to the sign bit.

3.2. Information-Bottleneck-Based Fast-SSC Decoding
3.2.1. f -Function

With the symmetric mapping and inherent order of the IB indices (Table 1), the f -
function (1) can be directly performed in the non-uniform IB domain, and no LUTs are
necessary, which corresponds to the “re-MS-IB decoder” implementation of [9]. In contrast
to [9], we map the IB indices so that negative values also correspond to a negative LLRs
and, thus, do not need to invert the result of the XORed sign bits.

3.2.2. g-Function

As in [16], we apply an RCQ scheme, but based on our optimized up- and downscale
LUTs:

αr
i = LUTv

down

(
g
(

LUTv
up(α

v
2i), LUTv

up
(
αv

2i+1
)
, βl

i

))
. (10)

The internal separation between the different number representations is maintained for
the reasons described in Section 3.1 and shown in Figure 1. The Reconstruction with LUTv

up
maps the magnitude of the IB index αv

i to its SM representation α̃v
i with preserved sign bit.
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βl
i must be considered before conversion to the TC representation α̈v

i for the Computation
step. The result α̈r

i has a 1 bit-larger resolution, implying a saturation for the conversion
back to an SM representation with QFP bit. The Quantization step is again realized as
magnitude LUTv

down for the transformation back to the IB domain. For the special case of
merged Rate-0 nodes, i.e., the g0-function, the XOR-operation with βl

i is omitted.

3.2.3. Repetition Nodes

REP nodes calculate the sum over all input values to observe the single (repeated)
information bit by HD on the sum (6). Thus, the RCQ scheme as described for the g-function
is applied for REP nodes. An adder tree of Ns − 1 adders and a depth of s = log2 Ns operates
on the TC representations of the Ns input values. The final HD as the Quantization step
extracts the single sign bit as the bit decision of the node, for which reason no further
conversion of the sum is needed.

3.2.4. Single Parity Check Nodes

As in the f-function, due to the ordered mapping of the IB indices, the minimum search
of the SPC node (8) can be performed directly in the IB domain. Furthermore, the chosen
mapping is also suitable for the direct parity calculation (7) and the bit estimations (9)
because the sign bits are preserved in the IB domain.

3.2.5. h1-Function

The h1-function internally uses the g-function to compute βr (5). However, in this
g-function, the backward conversion is not needed because the HD is made directly in the
compute domain with TC representation, as already described for the REP nodes.

3.3. Decoder Architecture

An outline of the fully unrolled and deeply pipelined Fast-Simplified SC (SSC) decoder
architecture for a P(16, 8) is shown in Figure 2. We omit the clock signals, and the delay
lines are represented by shift registers. The pipeline consists of various building blocks
and implements the decoding functions described in the previous section. The IB, FP and
binary domains are represented by the coloring of the blocks and signals. The decoders
presented in this paper are based on the framework presented in [15], which we extended
to apply the IB method as described above.

F

G0

SPC

H0

G

F

REP

H1

H
α0

α1

α4

α2

α5β4

β1

β5

β2

β0

α0 α0 α0 α0

α2 α2

β1 β1 β1 β1

Figure 2. Unrolled and pipelined Fast-SSC decoder architecture for a P(16, 8). Colors represent
numerical domains: green for IB, red for FP and blue for binary, and dark green shows the LUTs.

4. Results

We present seven decoder designs for N=128 and N=1024, which are optimized for a
target frequency of 500 MHz and 750 MHz, respectively. Throughput is considered as coded
throughput. The designs were synthesized with Design Compiler and placed and routed
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with IC-Compiler, both from Synopsys, in 12 nm FinFET technology with a super-low Vt
transistor library from Global Foundries under worst-case Process, Voltage and Temperature
(PVT) conditions (125 °C, 0.72 V) for timing and nominal case PVT (25 °C, 0.8 V) for power.
Error correction performance was simulated for an AWGN channel and BPSK modulation
with a minimum of 100 erroneous code words.

4.1. Decoder for the P(128, 64) Code

The Frame Error Rate (FER) of the P(128, 64) is shown in Figure 3. The IB decoder
with 4 bit and the FP decoder with 5 bit show similar error correction performance, whereas
the error correction performance of the 4 bit FP decoder starts to degrade at an FER of 10−3.

0 1 2 3 4 5 6 7
Eb/N0 in dB

10−5

10−4

10−3

10−2

10−1

100

Fr
am

e
E

rr
or

R
at

e

Float
FP 4bit
FP 5bit
IB 4bit

Figure 3. FER of the P(128, 64), float vs. FP vs. IB quantization.

Table 2 presents the corresponding implementation results. Comparing the decoders
with similar FER (IB vs. 5 bit FP), we observe a similar combinatorial area (logic), whereas
the area for the memory (registers) is reduced by ~16 %. This improves the area efficiency
by ~7 % and yields power savings and energy efficiency improvements of ~13 %.

When comparing the IB decoder with the 4 bit FP decoder, the cost of the LUTs can be
directly observed in the combinatorial area (0.005 mm2 vs. 0.003 mm2), while the area for
the registers is identical. This cost can be considered as the price for the improved error
correction performance of the IBdecoder.

As already mentioned, there exits only one other publication that gives implementation
results for IB-based decoders. Since the authors of [9] only provide synthesis results for
older 28 nm technology, a fair comparison is difficult. To enable at least some comparison,
we scaled the results of [9] to 12 nm according to the equations of [17]. The scaled results
are included in Table 2. We limited the maximum frequency to 1000 MHz, which is more
reasonable since 3681 MHz (and even 1510 MHz in the original publication) is not realistic
for a design in 28 nm after placement. The reasons are, first, the power consumption and
power density become infeasible with this high frequency. Second, 3681 MHz is unfeasible
for standard placement and routing in semi-custom design flows in 28 nm technology. Even
with the scaled estimate without frequency limitation, we observed that our optimized
decoders outperform [9] in throughput, latency, area and area efficiency.



Entropy 2024, 26, 462 8 of 11

Table 2. Implementation results for P(128, 64) decoders.

IB 4 bit [9] * FP 4 bit FP 5 bit

Place and
Route Synthesis Place and

Route
Place and

Route
Technology 12 nm 28 nm→12 nm 12 nm 12 nm

Frequency [MHz] 500 1000 (3681) 500 500
Throughput [Gbps] 64 13 (47) 64 64
Latency [ns] 18 86 (23) 18 18
Latency [CC] 9 86 9 9
Area [mm2] 0.014 0.026 0.012 0.015
- Registers 0.005 — 0.005 0.006
- Combinatorial 0.005 — 0.003 0.005
Area Eff. [Gbps/mm2] 4528 502 (1847) 5384 4248
Power Total [mW] 21 — 17 24
- Clock 7 — 7 9
- Registers 3 — 3 4
- Combinatorial 10 — 7 11
Energy Eff. [pJ/bit] 0.32 — 0.27 0.37
Power Density [W/mm2] 1.46 — 1.47 1.58

* Synthesis only, scaled from 28 nm to 12 nm (numbers in brackets) with equations from [17] and maximum
frequency limited to 1000 MHz. For 28 nm and 12 nm, the scaling factors of 32 nm and 14 nm were used since they
belong to the same technology generation and give the best approximation.

4.2. Decoder for the P(1024, 512) Code

The P(1024, 512) polar code has a longer pipeline and is therefore more affected by
accumulating quantization errors. In contrast to the shorter code, 6 bit FP is necessary to
match the floating point precision. We compare the 4 bit IB decoder to the FP decoder with
the 5 bit as they show similar error correction performance (Figure 4). Here, the IB decoder
even outperforms the 5 bit FP decoder at an FER of 10−7.

0 1 2 3 4 5 6
Eb/N0 in dB

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Fr
am

e
E

rr
or

R
at

e

Float
FP 4bit
FP 5bit
FP 6bit
IB 4bit

Figure 4. FER of the P(1024, 512), float vs. FP vs. IB.

Comparing the implementation results of the IB decoder and the 5 bit FP decoder
(Table 3), the total area is reduced by ~15 %, mostly stemming from the reduction in
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registers. This leads to an improved area efficiency of ~18 %, whereas the energy efficiency
improves by ~15 %. Figure 5 shows the layouts of the 5 bit FP and the 4 bit IB decoder.

Table 3. Implementation results for P(1024, 512) decoders.

IB 4 bit FP 4 bit FP 5 bit FP 6 bit

Frequency [MHz] 750 750 750 750
Throughput [Gbps] 768 768 768 768
Latency [ns] 123 123 123 123
Latency [CC] 92 92 92 92
Area [mm2] 0.822 0.785 0.968 1.158
- Registers 0.360 0.360 0.439 0.517
- Combinatorial 0.200 0.168 0.208 0.274
Area Eff. [Gbps/mm2] 935 979 794 663
Power Total [mW] 984 866 1149 1431
- Clock 208 207 254 298
- Registers 280 263 354 404
- Combinatorial 479 381 523 706
Energy Eff. [pJ/bit] 1.28 1.13 1.50 1.86
Power Density [W/mm2] 1.20 1.10 1.19 1.24

It is also worth noting that, when compared to the close-to-float 6 bit FP decoder,
accepting a small loss of ~0.2 dB in the error correction leads to improvements of ~41 % in
area efficiency and ~31 % energy efficiency.

(a) (b)

Figure 5. Layout pictures for FP and IB polar code decoders, same scale. (a) FP 5 bit: 0.968 mm2.
(b) IB 4 bit: 0.822 mm2.

5. Conclusions

We presented fully characterized Fast-SSC polar decoders with an optimized IB-based
quantization scheme. Especially for ultra-high throughput, we outperformed decoders
with comparable bit width by 18 % in area efficiency and 15 % in energy efficiency. This
effect can be mainly explained by the savings in memory requirements of fully pipelined
and unrolled decoders, which was minimized with the IB-based quantization.
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The following abbreviations are used in this manuscript:

AWGN Additive White Gaussian Noise
BPSK Binary Phase Shift Keying
Fast-SSC Fast Simplified Successive Cancellation
FEC Forward Error Correction
FER Frame Error Rate
FP Fixed Point
HD Hard Decision
IB Information Bottleneck
LDPC Low-Density Parity Check
LLR Log-Likelihood Ratio
LUT Lookup Table
ML Maximum Likelihood
MSB Most Significant Bit
PFT Polar Factor Tree
PVT Process, Voltage and Temperature
RCQ Reconstruction Computation Quantization
REP Repetition
SC Successive Cancellation
SCL Successive Cancellation List
SM Sign Magnitude
SNR Signal-to-Noise Ratio
SPC Single Parity Check
SSC Simplified SC
TC Two’s Complement
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