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Abstract: The identification and physical interpretation of arbitrary quantum correlations are not
always effortless. Two features that can significantly influence the dispersion of the joint observable
outcomes in a quantum bipartite system composed of systems I and II are: (a) All possible pairs of
observables describing the composite are equally probable upon measurement, and (b) The absence
of concurrence (positive reinforcement) between any of the observables within a particular system;
implying that their associated operators do not commute. The so-called EPR states are known to
observe (a). Here, we demonstrate in very general (but straightforward) terms that they also satisfy
condition (b), a relevant technical fact often overlooked. As an illustration, we work out in detail the
three-level systems, i.e., qutrits. Furthermore, given the special characteristics of EPR states (such as
maximal entanglement, among others), one might intuitively expect the CHSH correlation, computed
exclusively for the observables of qubit EPR states, to yield values greater than two, thereby violating
Bell’s inequality. We show such a prediction does not hold true. In fact, the combined properties
of (a) and (b) lead to a more limited range of values for the CHSH measure, not surpassing the
nonlocality threshold of two. The present constitutes an instructive example of the subtleties of
quantum correlations.
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1. Introduction

Probability, as formally viewed in stochastic processes (see, e.g., [1]), is a fundamental
ingredient for understanding countless natural phenomena. For instance, it is ubiquitous
in the general framework of classical statistical mechanics. Probability is also a keystone in
quantum mechanics, where the concept of probability amplitudes relates to the distribution
of outcomes upon measurements. However, there are fundamental distinctions between
the concept of randomness [2] in classical and quantum physics since probability can have
a contrasting character in these two realms [3]. These differences are particularly noticeable
in the correlation functions of physical quantities, i.e., observables [2,4].

Although many restrictions apply [5], correlations can be used as measures of the
degree of determinism/randomness in a system. Moreover, certain situations might be
relatively easy to pinpoint. Indeed, on the one hand, if there is a well-behaved mapping
between a and b, with a and b possible values for bona fide observables A and B describing a
problem (we are obviously not considering logical/philosophical digressions, like A = “the
sun raises every morning” and B = “humans are mortal”, such that A and B are true,
but with no causal association between A and B), e.g., θ and r in a classical Keplerian orbit,
the correlation is “perfect”, and there should be a fully deterministic relation between them.
On the other hand, if a specific value for A determines a range of allowable values for B as
well as their frequencies of occurrence (with the same being true for A regarding B), this
would indicate a stochastic connection between A and B. So, at least in principle, one could
infer a joint probability for A and B, allowing one to define a proper correlation function
for these observables, which we represent by c(a, b).
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But as already mentioned, c will display different properties if resulting from either
classical or quantum processes. We should mention that there are some general ways to
identify between classical and quantum correlations, e.g., through the idea of distance
measures as relative entropy [6]. Other procedures may be problem-oriented, for instance,
those employed in the study of Gaussian states [7] or of system–reservoir interactions [8].
Quantum correlations are often more general than classical correlations [4,9,10], and in some
cases stronger [11–13], creating scalings (due to entanglements) in many-body systems,
which are classically absent [14,15]. Furthermore, there are distinct types of quantum
correlations [9], ranging from the most basic—associated with the quantum construction
itself, which we call “quantum”—to those exhibiting an increasing order of restrictiveness,
typically entanglement, steering, and nonlocality; see Figure 1. Although the aim here is not
to provide a general account of quantum correlations, it is useful for our later discussions
to briefly mention a few characteristics of some of them. Also, since we shall specifically
address EPR states (see Section 2), we restrict our analysis to pure states.

                 

Figure 1. Schematics of the hierarchy of quantum correlations (see, e.g., [9]). However, there
may be overlaps, which are not represented here. The basic one, simply ‘quantum’, relates to the
very construction of quantum mechanics. It arises from superposition allied to interference: the
probability density function p(q) is obtained from |⟨q|ψ⟩|2 with |ψ⟩ = ∑n cn |ϕn⟩, so that the “parts”
|ϕn⟩s, whatever they represent, generate correlations. Beyond the basics, entanglement is typically
considered the most fundamental form of quantum correlation, with nonlocality being the most
restrictive. Steering falls in between, serving as a middle ground.

The first paradigmatic quantum correlation is entanglement, which includes all possi-
ble forms of interrelations in multipartite states. Focusing on the bipartite case, consider a
composite state, |ψ⟩ ∈ H = HI ⊗HII, where HI and HII are the Hilbert spaces of systems
I and II; if this state cannot be written as the direct product |µ⟩I ⊗ |ν⟩II, for |µ⟩I ∈ HI and
|ν⟩II ∈ HII, then |ψ⟩ is entangled. From this broad definition, one can have distinct degrees
of entanglement for |ψ⟩. Nonetheless, the entanglement of |ψ⟩ is maximum if its von
Neumann (or if one prefers, Shannon) entropy is also maximum. EPR states exactly meet
this condition [16]. A second, somewhat stronger, coupling between systems I and II is
that in which the state of one (e.g., I) can be driven or steered through measurements on
the other (e.g., II); nevertheless, the contrary is not true. In such an inseparability context,
the composite system exhibits a steering correlation (reviews in [9,17,18]). All steered
systems are entangled, but not all entangled systems are steered. And third, suppose we
measure the observable A for system II and C for system I (with I and II spatially apart),
obtaining, respectively, a and c. In quantum mechanics, one finds that usually the joint prob-
ability p(a, c|A, C) ̸= p(a|A) p(c|C). The reason is that the quantum world is non-local—a
notion heavily criticized by the famous EPR (Einstein–Podolsky–Rosen) paper [19] in the
early days of the theory. An alternative interpretation would be to assume that quantum
mechanics is incomplete, i.e., there exist local hidden variables λ inaccessible through its
framework. In Bell’s groundbreaking contribution [20], it has been demonstrated that
p(a, c|A, C) =

∫
dλ p(λ) p(a|A, λ) p(c|C, λ) and some inequalities for the associated corre-

lations should be observed. Nonetheless, the local hidden variables have been ruled out
through experiments [21–30] showing violations of Bell’s inequalities. Thus, in opposition
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to EPR’s concept of local realism, nonlocality is inherent to quantum mechanics and indeed
represents its most restrictive correlation [9,31]. We finally mention that any entangled pure
state is non-local in some appropriately chosen set of observable bases, but the situation
is far more involved for mixed states [9]; see also later. This previous (rather heuristic)
hierarchical classification for quantum correlations is pictorially represented in Figure 1.

As a significant example of Bell’s inequality for two-level systems (qubits), we refer
to the CHSH inequality [32]. For an ensemble of composites formed by systems I and II,
suppose that for all copies, parts I and II are spatially separated and then placed in regions
1 and 2, respectively. This should be done without altering the original properties that we
intend to measure. So, detectors 1 and 2 in these regions can infer certain observables for
I (X′ and X′′, whose results are denoted as x′ and x′′) and II (Y′ and Y′′, of results y′ and
y′′); Figure 2. From appropriate averages, we can calculate the CHSH correlation function
cCHSH(x′, x′′, y′, y′′); for an explicit expression, see Section 5, and for an overview of the
whole procedure, refer to [16]. For arbitrary X and Y observables, local hidden variables
would necessarily lead to cCHSH ≤ 2. But quantum mechanics does allow situations where
cCHSH > 2, corresponding to Bell’s inequality violation.

Figure 2. Illustration of the setup to compute the CHSH correlation function cCHSH. By separating
systems I and II, one can perform measurements of distinct observables, e.g., X′ and X′′ for I at
detector 1 and Y′ and Y′′ for II at detector 2. From numerous realizations of the experiment, leading
to distinct outcomes, x′, x′′, y′, y′′ (assuming only the values −1 or +1, in two-level systems), one
obtains the correlation function cCHSH (the actual expression is given in Section 5).

The above considerations might give the incorrect impression that identifying and clas-
sifying the quantum correlations of any state is straightforward. Actually, from a technical
point of view this is often not true [9,33–35]. Moreover, determining all states that comply
with certain specified correlation traits can be even harder [36]. One potential issue is that
the interpretation of quantum correlations may contradict our intuitive understanding of
classical correlations [2,4].

In this contribution, we address two concrete features for the observables of a bi-
partite state. Suppose we have a collection of observables E(j) for I and F(j) for II, with
j = 1, 2, . . . , J. For any j, we assume that the allowed outcomes are always drawn from the
same set of numerical values, respectively, e(j) = {e1, e2, . . . , eN} and f (j) = { f1, f2, . . . , fN}.
Notice that this is not a too-restrictive assumption. For instance, if the observables are
the spin-1/2 components Sx, Sy, Sz, then the possible numerical values of measurements
are always the same, i.e., ±h̄/2. Also, let c be a quantum correlation function for these
possible observables, taken in pairs (en, fn)(j). With the exception of potentially overly
specific functional forms for c, typically, we can anticipate that larger (smaller) values for c
are associated with a stronger (weaker) interdependence between {E(j), F(j)}. On the other
hand, the range of variation for c should be connected to the particular relations within
{E(j)} and within {F(j)}. Thus, we consider two, in principle, independent conditions:
(a) Regardless of j, only pairs in the form (en, fn)(j) can describe the composite system state.
So, by determining the value of E(j) (F(j)), we ascertain the value of F(j) (E(j)). Furthermore,
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they are equally probable, i.e., we have a uniform distribution for these values, so that in an
ensemble description, any pair, n, would contribute with the same probability, pn = 1/N.
Hence, for S (j) = −∑n pn ln[pn], and fixed N, this premise maximizes the normalized
entropy S (j)/N = ln[N]/N (note that S (j)/N is well-defined even in the hypothetical limit
of N → ∞). This represents the maximum entanglement of the composite. (b) There is
no reinforcement dependence among e(j)s or f (j)s. On the contrary, knowing the value
of e(j′′) ( f (j′′)) precludes knowing with certainty the value of e(j′) ( f (j′)), j′′ ̸= j′. This
naturally emerges from the non-commutation, [Ê(j′′), Ê(j′)] ̸= 0 and [F̂(j′′), F̂(j′)] ̸= 0, of the
corresponding self-adjoint operators for the observables {E(j)} and {F(j)}.

Observe that (a) represents a substantial link between systems I and II. Indeed, know-
ing an observable in one system entails complete knowledge of the corresponding ob-
servable (because of the pairing (en, fn)(j)) in the other. Also, we recall that for arbitrary
entangled states, it is always possible to find suitable sets of observable bases, such that
Bell’s inequalities are violated [9,37,38]. Hence, solely assuming (a), one might be led to
conclude that {E(j)} and {F(j)} constitute these bases. Consequently, for N = 2, taking c

as cCHSH and supposing all possible combinations between {E(j′), F(j′)} and {E(j′′), F(j′′)}
(e.g., representing the different choices of X′, X′′, Y′, and Y′′ in Figure 2), we would expect
the non-observance of the Bell’s inequality, at least in some instances. On the contrary,
considered alone, the condition (b) seems to act in a different direction, tending to decrease
the quantum correlations. In this way, two pertinent queries arise: (i) Possible contexts
where (a) and (b) occur together and (ii) given so, which values c can assume.

The arguments in [19] criticizing the nonlocality of quantum mechanics were fully
based on particular pure bipartite states, the so-called EPR states |Ψ⟩ — for a very complete
and solid refutation of the EPR reasoning, demonstrating its inadequacy, see, e.g., [39] and
the refs. therein. Interestingly, these |Ψ⟩s verify the assumption (a) (as well as a second
extra feature; see the next section). The conclusions in [19], and indirectly the structures of
these |Ψ⟩s, motivated the investigations in [20] (also refer to [40,41]). But as mentioned
earlier, local realism has been overturned by testing Bell’s inequalities for arbitrary |ψ⟩s.

Here, we prove very generally—and without the need for sophisticated mathematical
techniques—that |Ψ⟩s also comply with the assumption (b), thus, providing a concrete
example of (i). In addition, as for (ii), setting N = 2 (qubits), we calculate cCHSH considering
only observables associated with EPR states. We determine that cCHSH ≤ 2; thus, not
exceeding the nonlocality threshold of 2. It is worth recalling that maximally entangled
pure states do not need to map into maximum violation of the CHSH inequality [42,43]
(a fact motivating the proposal of distinct Bell-like inequalities capable of detecting maximal
entanglement; see [44,45]). Actually, some maximally entangled pure states can adhere to
the CHSH inequality under special local measurements. So, another result in the present
contribution is that this is also always the case across all EPR bases.

This paper is organized as follows: We review important aspects of EPR states in
Section 2. We give a simple demonstration of condition (b) for EPR states in Section 3. We
exemplify our results for the three-level systems in Section 4. We show that EPR states do
not violate Bell’s inequalities for CHSH correlations in Section 5. Our final remarks and
conclusions are drawn in Section 6. For the sake of completeness, known but here very
systematized facts about the concept of observables and features of observables bases and
bases transformations are presented in the appendices.

2. Some Key Aspects in Forming and Measuring EPR States

In this Section we briefly review the basic characteristics of EPR states |Ψ⟩ [46], es-
sentially those considered in the original work by Einstein–Podolsky–Rosen [19]. A much
more general and rigorous definition of finite dimensional systems can be found in [47,48]
(for infinite-dimensional spaces, see [49,50]).

The main relevant steps in the preparation and posterior measurements of |Ψ⟩ are
schematically depicted in Figure 3. Initially (t < 0), one has two non-interacting systems
(systems I and II), with their composite state |Ψ(t < 0)⟩ simply being the direct product
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of the individual states of I and II. Then, during the time interval 0 ≤ t ≤ T, systems I
and II interact in such a way that certain physical observables of I (say C, associated with
the Hermitian operator Ĉ having eigenvalues {cn}, for n = 1, 2, . . . , N) and some of II
(say A, associated with Â of eigenvalues {an}) become entangled, resulting in the state
|Ψ(T)⟩. Next, during a time interval ∆t, I and II are sufficiently brought apart so to cease
any eventual influence of one another. Since the exact value of ∆t is not relevant to the
present discussion, for simplicity we just set ∆t = 0. Here, by influence we mean the type of
interaction described by potentials V̂I–II in the Schrödinger equation, coupling the degrees
of freedom of systems I and II. Hence, for t > T, one has that V̂I–II = 0. Moreover, one
must guarantee that regardless of the separation procedure and the subsequent dynamics
(for t > T), the entanglement attained between systems I and II (during 0 ≤ t ≤ T) is
maintained. This should hold until any eventual measurement at any t = τ > T. In this
way, for T < t < τ, the components of |Ψ⟩ corresponding to the eigenvectors {|cn⟩} of I
and {|an⟩} of II would not be altered, or

|Ψ(t)⟩ = ∑
n

|µ̃n(t), cn⟩I ⊗ |ν̃n(t), an⟩II. (1)

In Equation (1), the labels µ̃ (for I) and ν̃ (for II) denote how other observables, distinctly
from C of I and A of II, will evolve in time, given that the systems I and II no longer interact.

I System IISystem 

dn nb
I IIn

Σ
n
Σ cn na

I II
ψ ==

I
µ

II
νψ =

na  ; na
II

d  ;nD : dn
I nb  ; nb

II

C : c  ;n cn
I

 Chosen Observable(i) 

 Chosen Observable(ii)

Resulting

 interaction region
leading to an entangled state

I II

I System IISystem 

Outcome of the

measurement in       I

t < 0 (no interaction)

from  t = 0  to  t = T

t > T (no interaction) 

τ(at t =    > T)

collapse of II

Figure 3. Schematics of typical processes in forming and measuring an EPR state |Ψ⟩ (constituted
by the entanglement of two systems, I and II): the preparation of the entangled state; the spatial
separation of its two parts, I and II; and the possible measurements of an observable for system I,
allowing the inference (with 100% certainty) of an observable for system II.
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If, by means of measurements, we aim to assess only the correlated quantities C
and A, the information given by µ̃n(t) and ν̃n(t) is not fundamental. Thus, one can drop
these explicit dependencies in Equation (1), just written it as |Ψ⟩ = ∑n un |cn⟩I ⊗ |an⟩II for
∑n |un|2 = 1. It is a common practice in the analysis of EPR states [46,47]: (1) To suppose
maximally entangled states, i.e., all |cn⟩I ⊗ |an⟩II in |Ψ⟩ being equally probable, namely,
for any n to assume that un = exp[i φn]/

√
N. (2) To disregard eventual relative phases

φn by trivially reincorporating them into the state’s definition, or exp[i φn] |cn⟩I ⊗ |an⟩II →
|cn⟩I ⊗ |an⟩II. Thus, the existence (or not) of phases multiplying the eigenvectors is irrelevant
to all our general results.

A second fundamental feature of an EPR state is that |Ψ⟩ (here, for T < t < τ, i.e., prior
to any measurement) can be written in the following distinct ways:

|Ψ⟩ = 1√
N

∑
n

|cn⟩I ⊗ |an⟩II =
1√
N

∑
n

|dn⟩I ⊗ |bn⟩II, (2)

where the set {|en⟩} (e = a, b, c, d) is composed by the eigenvectors of Ê (Ê = Â, B̂, Ĉ, D̂), or

Ê|en⟩ = en|en⟩. (3)

From Equation (2), we have that from a measurement performed only on I at t = τ > T—
determining the observable C (D)—we should obtain complete knowledge about the value
of A (B) for II; Figure 3. In fact, if afterward (t > τ) we test system II for A (B), we will find
the same previously inferred value. Paramount to our analysis is the fact that Equation (2)
and, thus, the EPR state, complies with the condition (a) discussed in the introduction.

One last feature in defining an EPR state is to ascribe to the observables A and B—
associated with system II, cf. Equation (2)—operators that do not commute, i.e., [Â, B̂] ̸= 0.
In this respect, we mention that given an EPR state, one interesting and sometimes chal-
lenging issue is to determine all associated pairs of non-commuting observables [48]. We
further remark that [Â, B̂] ̸= 0 is a key assumption in [19], attempting to show that quantum
mechanics is incomplete (of course misguidedly; for a summary of many valid objections
to the EPR arguments see [39]).

Below we derive an extra general property for |Ψ⟩, arising from Equation (2) and
[Â, B̂] ̸= 0. We show that for the observables C and D: [Ĉ, D̂] ̸= 0. Considering the pairs
of observables A, B for II and C, D for I, this is precisely the condition (b) in Section 1.
Therefore, it is established that EPR states simultaneously obey (a) and (b).

3. A Necessary Condition for EPR States: The Observables Are Pair-Wisely Associated
with Non-Commuting Operators

Hereafter, we suppose the Hilbert space for the composed systems (refer to Equation (1))
HI–II = (Hµ ⊗H)I ⊗ (Hν ⊗H)II. Note that Hµ and Hν distinguish I from II. Further, we
assume that all specific aspects that we wish to determine for our individual systems, either
I or II, are described by the proper separable Hilbert space H (of dimensions N and spanned
by a countable, i.e., discrete, basis—see Equation (4)). We should observe that although EPR
states are usually addressed for finite Ns, which is also the case in this contribution, quan-
tum correlations, including CHSH, and |Ψ⟩s for countable infinite-dimensional (N → ∞)
systems are also analyzed in the literature, see, e.g., Refs. [51,52], as well as the general
considerations in [47].

Moreover, the reasons for choosing countable Hilbert spaces are twofold. First, EPR-
like states have been vital to test certain fundamental predictions of quantum mechanics,
even motivating the development of the Bell inequalities [20,40]. Albeit some theoretical
proposals [53] and devised experimental arrangements [54–56] are based on continuous
variables (for a review, see [57]), historical breakthroughs [21–26] and recent loophole-free
measurements [27–30,58] consider discrete observables. Second, the spectrum theorem
for self-adjoint operators—relevant for determining the suitable basis for |Ψ⟩—holds true
very generally [59]. However, establishing solidly grounded properties of transformations
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(similar to those presented in Section 3.1) between continuous bases may require additional
technicalities; this goes far beyond the scope of this contribution. For instance, for continu-
ous bases associated with operators such as position and momentum, one should work
with generalized eigenvectors in a rigged Hilbert space [60].

As quantum observables, we suppose linear self-adjoint—or Hermitian, the usual
jargon in physics—operators, whose domains are the whole H (eventually, one could
also consider linear subsets of H, which are dense in H if the self-adjoint operators are
unbounded [61]; see Appendix A). For our goals, it is not necessary to explicitly address
formal constructions of the join probability measures associated with any assessment
of observables, e.g., as rigorously conducted in [47]. We adopt fairly well-established
definitions (refer to [47]) that are consistent with actual procedures in concrete measurement
realizations [21–26].

For {|an⟩} and {|bn⟩}, the sets of eigenvectors of Â and B̂ forming the orthonormal
basis (ONB) of H, the basis change {|an⟩} ↔ {|bn⟩} reads as follows (which in fact is valid
for N either finite or infinite):

|an⟩ =
m=N

∑
m=1

Γmn |bm⟩, |bn⟩ =
m=N

∑
m=1

(Γ†)mn |am⟩. (4)

To derive the results of the next Sec., we will rely on some known properties of the unitary
matrix Γ, dependent on the commutation relation of Â and B̂, as discussed in Appendix A.
Considerations about appropriate self-adjoint operators Â and B̂, representing observables
for EPR states, are reviewed in Appendix A.1.

3.1. Correlations in the Observables of EPR States

From the above and the remarks in Section 2, for systems I and II described by EPR
states, as seen in Equation (2), we can focus on the “reduced” Hilbert space

(
H
)

I ⊗
(
H
)

II.
Also, for the self-adjoint operators Â, B̂, Ĉ, and D̂ (see Equation (3)), we assume that the
features described in Appendix A.2 and Ĉ and D̂ (Â and B̂) act just on I (II). Thus, the set
of eigenvectors {|cn⟩} and {|dn⟩}, respectively, of Ĉ and D̂, are suitable ONBs for HI. The
same is true for {|an⟩} and {|bn⟩}) (of Â and B̂) with respect to HII. We also recall that
[Â, B̂] ̸= 0.

By inserting the second relation in Equation (4) into the second equality in Equation (2),
we obtain the following:

|Ψ⟩ = 1√
N

m=N

∑
m=1

|dm⟩I ⊗
n=N

∑
n=1

(Γ†)nm |an⟩II =
1√
N

n=N

∑
n=1

(
m=N

∑
m=1

(Γ†)nm |dm⟩I

)
⊗ |an⟩II. (5)

Comparing Equation (5) with Equation (2), (recalling that {|an⟩} is an ONB), we must have
the following:

|cn⟩I =
m=N

∑
m=1

Γ∗
mn |dm ⟩I. (6)

Hence, from Equation (6), we see that up to the complex conjugation of the elements of Γ
(an operation that certainly does not change the matrix structural relations), the basis trans-
formation {|cn⟩} ↔ {|dn⟩} is fully akin to {|an⟩} ↔ {|bn⟩}. In other words, Equation (6)
has exactly the same functional form of the mapping between {|an⟩} and {|bn⟩}.

But the matrix Γ—hence also Γ†—represents a change of basis associated with non-
commuting operators, Â and B̂. Thence, according to Appendix A.2, Γ cannot be trans-
formed into an identity, or more generally, in a permutation Pπ , matrix. In Appendix A.3,
we illustrate such universal facts considering the bases transformations of a spin-1/2 sys-
tem in arbitrary directions. So, Ĉ, D̂ cannot commute; otherwise, it would be possible to
find a basis where they are simultaneously diagonal, leading to Γ → 1 (or Γ → Pπ), so
a contradiction.
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To summarize, if a state |Ψ⟩ can be expanded as in Equation (2)—with the different
bases related to the Hermitian operators Â, B̂, Ĉ, D̂—and [Â, B̂] ̸= 0, we conclude that
[Ĉ, D̂] ̸= 0. This is implied in our aforementioned condition (b). As far as we know, this
property of the EPR state has gone somewhat unexplored in the literature, even though it
is implicit in particular contexts, like in the Bohm construction of EPR states [62], in Bohr’s
response [63] to the EPR paper [19], and in certain constructive empiricism critics to EPR
reasoning [64].

4. An Explicit Example: Three-Level System

To illustrate the previous general result, we discuss qutrits, i.e., N = 3. In this
case, I and II can be described as three components of angular moment systems. Then,
the equivalent to the Pauli matrices are (for the usual direction association: 1 for x, 2 for y,
3 for z)

σ1 =
1√
2

 0 +1 0
+1 0 +1
0 +1 0

, σ2 =
1√
2

 0 −i 0
+i 0 −i
0 +i 0

, σ3 =

 +1 0 0
0 0 0
0 0 −1

. (7)

Note that [σu, σv] = i ∑+1
w=−1 ϵuvw σw for ϵuvw the permutation symbol of u, v, w. The

eigenvalue equation associated with σw (with w = 1, 2, 3) reads σw |w, m⟩ = m |w, m⟩,
where m = +1, 0,−1. One has

|3,+1⟩ =

 1
0
0

, |3, 0⟩ =

 0
1
0

, |3,−1⟩ =

 0
0
1

,

|2,+1⟩ = 1
2

 −1
−i

√
2

1

, |2, 0⟩ = 1
2


√

2
0√
2

, |2,−1⟩ = 1
2

 −1
i
√

2
1

, (8)

|1,+1⟩ = 1
2

 1√
2

1

, |1, 0⟩ = 1
2

 −
√

2
0√
2

, |1,−1⟩ = 1
2

 1
−
√

2
1

.

Just as a mathematical digression, we observe all the above eigenvectors can be condensed
into a single formula as follows:

|w, m⟩ =
√

2 − |m|
2


 (−1)w+m

(−i)w−1
√

2 m
1

+ δw 3 (m + δm 0)

 1√
2

−1

. (9)

From the above expressions, we can readily construct the basis transformation matrices
Γv→w, such that |w, m⟩ = ∑+1

n=−1 Γ(v→w)
n m |v, n⟩. For example, Γ3→1 is given by the following:

Γ(3→1) =
1
2

 1 −
√

2 1√
2 0 −

√
2

1
√

2 1

. (10)

Furthermore, in a compact form we can write the following:

Γ(3→w=1,2) =
1
2

 (−1)w−1 (−1)w
√

2 (−1)w−1

(−i)w−1
√

2 0 −(−i)w−1
√

2
1

√
2 1

 (11)
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and

Γ(v=1,2→w=2,1) =
1
2

 (v − w) i
√

2 (w − v) i√
2 0

√
2

(w − v) i
√

2 (v − w) i

. (12)

Also, the matrices Γ(1,2→3) and Γ(2,1→1,2) follow from Γ(w→v) = Γ(v→w)†
(obviously,

Γ(w→w) = 1).
In Table 1, we show that regardless of w, v, u, and m, we will always have the following:

+1

∑
n=−1

Γ(u→v)
nm

∗
|w, n⟩ = (i)k |t, (−1)l m⟩, (13)

where k = 0, 1, 2, 3; l = 0, 1 and t = 1, 2, 3, but with the rather important restriction, as follows:

t ̸= w. (14)

Table 1. List of all the states in the form (i)k |t, (−1)l m⟩ (with k = 0, 1, 2, 3; l = 0, 1; t = 1, 2, 3)

resulting from ∑n Γ(u→v)
nm

∗
|w, n⟩, Equation (13), as one varies m = 1, 0,−1 and w, u, v = 1, 2, 3.

w = 1, any m w = 2, any m w = 3, any m

Γ(1→2)∗ |2,−m⟩ |1, m⟩ (−i)m |2,−m⟩
Γ(2→1)∗ |2, m⟩ |1,−m⟩ im |2, m⟩
Γ(1→3)∗ |3, m⟩ (−i)m+1 |3, m⟩ (−1)m+1 |1,−m⟩
Γ(3→1)∗ (−1)m+1 |3,−m⟩ −(−i)m+1 |3,−m⟩ |1, m⟩
Γ(2→3)∗ (−i)m+1 |3, m⟩ (−1)m+1|3, m⟩ im+1 |1,−m⟩
Γ(3→2)∗ im |2,−m⟩ im |1, m⟩ |2,−m⟩

Next, by constructing EPR states for three-level systems, we show that as it should be,
obligatorily the observables need to be associated with non-commuting operators. We start
with (for w, u = 1, 2, 3 totally arbitrary), as follows:

|Φ⟩ =
1√
3

∑
n
|w, n⟩I ⊗ |u, n⟩II. (15)

For any v = 1, 2, 3, and using the properties of the transformation matrices Γ, for Equation (15)
we have the following:

|Φ⟩ = 1√
3

∑
n
|w, n⟩I ⊗

(
∑
m

Γ(v→u)
mn |v, m⟩II

)
=

1√
3

∑
m

(
∑
n

Γ(u→v)
nm

∗
|w, n⟩I

)
⊗ |v, m⟩II. (16)

For u ̸= v, the operators σu, II and σv, II for system II do not commute. We recall that this
is one of the requirements of EPR states. Moreover, in such a case, due to Equation (13)

and Table 1, we have that ∑n Γ(u→v)
nm

∗
|w, n⟩I—see the last equality in Equation (16)—is

necessarily one of the eigenvectors of the operator σt, I (eventually multiplied by a phase ik).
Also, according to the condition in Equation (14), σt, I does not commute with σw, I. So, this
is in agreement with condition (b) of the EPR states proved in the previous section. Lastly,
for f a one-to-one index function from {1, 0,−1} to {1, 0,−1} (easily inferred from Table 1)
and km integer numbers, we find very generally that (w ̸= t and u ̸= v)

|Φ⟩ = 1√
3

∑
m
|w, m⟩I ⊗ |u, m⟩II =

1√
3

∑
m

ikm |t, f (m)⟩I ⊗ |v, m⟩II. (17)

In this way, |Φ⟩ is an EPR state |Ψ⟩, displaying all the necessary properties regarding the
non-commutation of the associated observables, i.e., [σu, II, σv, II] ̸= 0 and [σw, I, σt, I] ̸= 0.
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It should not be difficult to show that, using the above results, the same holds true if
we construct EPR states from the eigenstates of the operators σα,β,γ = α σ1 + β σ2 + γ σ3.

Finally, the findings in Section 3 follow irrespective of whether the states considered
are degenerate or not. Hence, it is instructive to provide an example of the former situation.
We note that, with the help of [65], it is straightforward to engender Hermitian matrices
displaying degenerated eigenvalues. Thus, suppose the eigenvalues ζm = |1 + 2 m| (or
ζ1 = 3, ζ0 = ζ−1 = 1) of the eigenvectors and associated observable operator:

|ζm⟩ =
1√

1 + |m|

 m
1 − |m|
|m|

, σζ =

 2 0 1
0 1 0
1 0 2

. (18)

We set
|Ω⟩ = 1√

3
∑
m
|ζm⟩I ⊗ |1, m⟩II. (19)

Repeating the transformations implemented in Equation (16), i.e., changing the basis
from |1, m⟩II to |2, m⟩II and considering the explicit form of Γ(1→2)∗, we obtain (for f :
{1, 0,−1} 7→ {1,−1, 0}, with f (m) = −(m + 1)/(−2)m)

|Ω⟩ = 1√
3

∑
m
|η f (m)⟩I ⊗ |2, m⟩II. (20)

Here, ση |ηm⟩ = ηm |ηm⟩ with ηm = |1 + 2 m| (so η1 = 3, η0 = η−1 = 1) and

|ηm⟩ =
1√

1 + (m + 1)/2m

 −i (m + 1)/(−2)m

(m + 1)/2m

m(m − 1)/2

, ση =

 2 +i 0
−i 2 0
0 0 1

. (21)

Then, from the matrices for σζ and ση , it reads that [σζ, I , ση, I] ̸= 0 and given the exact form
of Equations (19) and (20), as well as [σ1, II, σ2, II] ̸= 0, we conclude that |Ω⟩ is an EPR state,
thus satisfying (b).

5. Observables Exclusively Involving Qubits in EPR States Do Not Violate Bell Inequalities

As already mentioned, in principle, it is possible to find appropriate bases for an
entangled state, such that cCHSH violates Bell’s inequality [9,37,38]. But referring to Figure 2,
this implies properly choosing X′, X′′, and Y′, Y′′ to be measured, respectively, in detectors
1 and 2. A traditional example is that of entangled photons [16], where one can have the
CHSH correlation cCHSH > 2 by adjusting the relative angles of the polarizers employed
as detectors.

However, EPR states display a rather special link between their observables, adhering
to conditions (a) and (b). Indeed, when considering Equation (2), on the one hand, if we
know an observable value for system I (II), this fully determines the value of the associated
observable for system II (I). On the other hand, observables in each system are pair-wisely
incompatible, namely, we cannot simultaneously determine A and B for II and C and D for
I. Conceivably, this must strongly affect the state’s correlation features. Hence, a pertinent
question regards the possible range for cCHSH if computed only from EPR states. This seems
to be a simple and direct way to characterize correlations for such a particular class of states.

Assuming the EPR-like state in Equation (2), let N = 2 with the possible eigenvalues
of Ê (=Â, B̂, Ĉ, D̂) being ±1 (so Ê |en⟩ = ±|en⟩, n = 1, 2). For simplicity, we disregard the
eventual relative phases between the states, thus, we have the following:

|Ψ⟩ = 1√
2

(
|c1⟩I ⊗ |a1⟩II + |c2⟩I ⊗ |a2⟩II

)
=

1√
2

(
|d1⟩I ⊗ |b1⟩II + |d2⟩I ⊗ |b2⟩II

)
. (22)

Nonetheless, we emphasize that writing |c2⟩I ⊗ |a2⟩II → exp[iµ] |c2⟩I ⊗ |a2⟩II and |d2⟩I ⊗
|b2⟩II → exp[iν] |d2⟩I ⊗ |b2⟩II does not change the following results.
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The transformation from the basis {|bn⟩} to {|an⟩} is given by an arbitrary unitary
matrix ΓB→A, whereas from {|dn⟩} to {|cn⟩} is given by the complex conjugate of ΓB→A

(cf., Equations (5) and (6)), or ΓD→C = ΓB→A†. Using an appropriate parameterization for
U(2) matrices (see, e.g., [66]), we generally have

ΓB→A =

(
α β

−β∗ exp[iθ] α∗ exp[iθ]

)
, (23)

with α, β complex numbers such that |α|2 + |β|2 = 1 and 0 ≤ θ < 2π. Moreover, we
suppose α, β ̸= 0, so that [Â, B̂] ̸= 0 (see Appendix A.3). Thus,

|a1⟩ = α |b1⟩ − β∗ exp[iθ] |b2⟩,

|a2⟩ = β |b1⟩+ α∗ exp[iθ] |b2⟩,

|b1⟩ = α∗ |a1⟩+ β∗ |a2⟩,

|b2⟩ = −β exp[−iθ] |a1⟩+ α exp[−iθ] |a2⟩.

(24)

Therefore, for the observables A, B, C, D, the CHSH correlation function cCHSH [32] reads
as follows:

cCHSH = |ϵCA − ϵCB + ϵDA + ϵDB|, (25)

with (see Figure 2)
ϵXY = ⟨Ψ|X̂I ⊗ ŶII|Ψ⟩. (26)

To obtain ϵCA (as well as ϵCB) and ϵDB (as well as ϵDA), we consider Equation (26)
with |Ψ⟩ given, respectively, by the first and second expansions in Equation (22). So,
straightforwardly, we find the following:

ϵCA =
1
2
(c1 a1 + c2 a2), ϵDB =

1
2
(d1 b1 + d2 b2). (27)

For ϵCB and ϵDA we obtain the following:

ϵCB =
1
2
(
c1 ⟨a1|B̂|a1⟩+ c2 ⟨a2|B̂|a2⟩

)
, ϵDA =

1
2
(
d1 ⟨b1|Â|b1⟩+ d2 ⟨b2|Â|b2⟩

)
. (28)

Now, using Equation (24) in Equation (28)

ϵCB = 1
2
(
c1 (b1 |α|2 + b2 |β|2) + c2 (b1 |β|2 + b2 |α|2)

)
,

ϵDA = 1
2
(
d1 (a1 |α|2 + a2 |β|2) + d2 (a1 |β|2 + a2 |α|2)

)
.

(29)

Finally (for |α|2 = 1 − η, |β|2 = η, 0 < η < 1)

cCHSH = 1
2

∣∣∣(d1 + c1)a1 + (d2 + c2)a2 + (d1 − c1)b1 + (d2 − c2)b2

+η((c2 − c1)(b2 − b1)− (d2 − d1)(a2 − a1))
∣∣∣. (30)

Analyzing all the combinations (i.e., e1 = +1, e2 = −1 or e1 = −1, e2 = +1) for en = an, bn,
cn, dn, one realizes that the only possibilities for cCHSH are

cCHSH = 2 or cCHSH = 2 |2η − 1|. (31)

Hence, if we calculate cCHSH for any set of observables for which the state has the EPR
structure, we always find that cCHSH ≤ 2. However, the violation of Bell’s inequalities in
the CHSH construction corresponds to cCHSH > 2 (in fact, 2 < cCHSH ≤ 2

√
2 [67]).

The above finding is a bit curious. EPR states have been discussed in [19] as an attempt
to show that quantum mechanics is incomplete, opening up the possibility of alternatives
like local hidden variables. The violation of the Bell inequalities [20,40] for a quantum
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system overturns such claims [41]. Moreover, many breakthrough experiments have clearly
demonstrated the existence of quantum correlations violating Bell’s inequalities [21–30].
However, when probing only the EPR observables (when N = 2) in a CHSH-like experiment—
without considering any additional information about the composite—one most likely would
not be able to fully discard local hidden variables.

Also, the present is complementary to Hardy’s results [68,69], refuting local hidden
variables without invoking inequalities. Indeed, he demonstrated Bell’s nonlocality through
clever interference-like experimental setups for particle–antiparticle pairs. More recently,
this idea has been extended to many particle systems [70].

6. Final Remarks and Conclusions

Quantum correlations are notoriously more diverse and conceptually more complex
than their classical counterparts. For instance, certain works (see, e.g., [71]) argue that tests
on violations of Bell-type inequalities should be interpreted as statistical inference of the
local incompatibility of observables. So, they might deceive our intuitive predictions about
trending behaviors. This is a direct consequence of the complex way in which observables
are interrelated in certain particular states. Here, we have investigated one of these special
|Ψ⟩ states: bipartite EPR states.

EPR states are known to display maximum entanglement, in the sense that the deter-
mination of an observable for I (II) fully specifies the observable for II (I). Moreover, all
pairs of observable values are equally probable. These characteristics constitute condition
(a)—introduction section. In this contribution, through a rather simple procedure, we
further established that, generally, if |Ψ⟩ can be expanded in terms of eigenvectors, either
for the observables C (of I) and A (of II) or D (of I) and B (of II), then C is incompatible with
D, and A is incompatible with B. In other words, for the associated Hermitian operators, it
follows that [Â, B̂] ̸= 0 and [Ĉ, D̂] ̸= 0. This corresponds to condition (b). To illustrate this
general result, we analyzed the EPR states in three-level systems (N = 3).

From (a), there is a great interdependence between systems I and II: cn ↔ an, dn ↔ bn,
etc. But from (a) and (b), all possible pairs n ((cn, an), (dn, bn), etc) of measurement outcomes
are equiprobable and the observables within each system (C with D, A with B, etc.) are
incompatible. This conceivably should lead to high fluctuations in the observable values,
tending to decrease correlations. Combined, these opposite traits can make it difficult to
foresee ranges for quantum cs obtained solely from the observables forming the |Ψ⟩s. In the
particular situation of qubits (N = 2), by calculating cCHSH only for EPR states, we found
that cCHSH ≤ 2, thus not violating Bell’s inequality.

Finally, a natural issue concerns the behavior of quantum correlations for EPR states
in higher-dimensional bipartite systems, i.e., for N ≥ 3. For such an analysis, it would be
necessary to properly extend Bell’s inequalities, particularly for the CHSH. Some interesting
proposals have already been addressed in the literature [72–74]. Nevertheless, irrespective
of the exact analytic form of a generalized cCHSH, the scheme should involve, as in Section 5,
unitary matrices Γ of order N × N. Since a Γ ∈ U(N) has N2 free parameters, exact analytic
calculations may be laborious, although not unfeasible (at least in some particular instances).
It is our plan to discuss these and other aspects related to N ≥ 3 in a future contribution.
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Appendix A. Transformations between Eigenbasis Associated with Commuting and
Non-Commuting Operators

Below we review some important characteristics of observables and transformations
between the countable basis of a separable Hilbert space H. These are all well known
results, but here organized in a compact although comprehensive way.

We start by addressing the dimensions of the unitary Γ (i.e., Γ Γ† = Γ† Γ = 1N) in
Equation (4). For finite N, the features of the transformation matrix are simply rooted in
standard linear algebra. However, for the infinite case, the issue is whether the correspond-
ing Γ is mathematically well-defined. In other words, one must ensure that typical matrix
operations, such as multiplication, remain valid for N = ∞ (at least to ensure unitarity).

The answer is positively provided: (i) We deal with suitable ONBs for H (see below);
and (ii) The elements of Γ essentially represent inner products between basis eigenvectors,
namely, Γmn = ⟨bm|an⟩ and (Γ†)nm = ⟨an|bm⟩ = ⟨bm|an⟩∗ = (Γmn)∗; refer to Equation (4).
Then, Lemma 1.13 in [75] (see also [76]) guarantees that Γ, Γ†, Γ Γ†, and Γ† Γ are all
meaningful and that Γ and Γ† in Equation (4) are unitary regardless of N. For further details,
we cite thorough studies in the literature about infinite-by-infinite unitary matrices [77],
the infinite matrix representation theory of operators in Hilbert spaces [78,79]—including
the unbounded case [80]—and transformations between infinite ONBs [76,81]. We recall
that for D(H) the domain of Â in the Hilbert space H, the norm of Â, ||Â ||, is given by
sup ||Â |ψ⟩ || with |ψ⟩ ∈ D(H) and || |ψ⟩ || = 1. Â is said bounded (unbounded) if ||Â || is
finite (infinite).

Appendix A.1. The Observables Assumed for EPR States

For an EPR state, |Ψ⟩, in a given Hilbert space, H, one key point is the specific ways |Ψ⟩
can be expanded in terms of the eigenbasis of pertinent observables (cf., Equation (2)). Thence,
an important question is whether or not this eigenbasis can properly span H. In the following,
we summarize only certain facts about the spectrum σ(Â) of a general self-adjoint operator Â,
relevant to settle the query. For a throughout account of this subject, please refer to [78,82,83]
(and in this particular context of quantum mechanics, refer to [84–86]). A real a ∈ σ(Â) iff the
resolvent R̂Â(a) ≡ (Â − a1)−1 is not a bounded operator in the full domain of Â. There are
different ways to classify σ(Â) (see, e.g., [82]). The one here—perhaps the most appropriate
in quantum mechanics—is based on the Lebesgue decomposition of a measure on R [85].
So, σ(Â) is given by the union of the not necessarily disjoint sets σpp(Â), σac(Â), σsc(Â),
respectively, representing the pure point, absolutely continuous, and singular continuous
spectra. Vectors associated with each one of these sets (see, e.g., [78,82]) form three mutually
orthogonal subspaces, Hpp, Hac, and Hsc, all invariant under Â. Then, H can be written as
the direct sum:

H = Hpp ⊕Hac ⊕Hsc. (A1)

In standard quantum physics, the pure point and absolutely continuous parts of the
spectrum are associated, respectively, with bound and scattering states [87–89]. Much less
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common is a non-empty σsc [90–92], generally related to special Hamiltonians, e.g., with
random or ‘bump’ [90] potentials. In such cases, the singular continuous spectrum accounts
for phenomena like Anderson localization (see [88] and refs. therein).

In our present context, according to Equations (2) and (3), appropriate values for
the observable A of an EPR state are the as in the spectrum set σp(Â). Indeed, the eigen-
value a belongs to σp(Â) if there is at least one (eigenvector) |a⟩ in the domain of Â
satisfying Â |a⟩ = a |a⟩. Since σp(Â) is a subset of σpp(Â)— note that σpp(Â) is the clo-
sure of σp(Â) [86], hence it follows that σp(Â) ⊂ σpp(Â)— all the eigenvectors |a⟩ are in
the subspace Hpp. For finite H (a typical example being the spin-1/2 spinor space, see
Appendix A.3), σ(Â) = σpp(Â) = σp(Â).

The multiplicity (in quantum mechanics, degeneracy) of an eigenvalue, a, is the
dimension of its eigenspace. In other words, the degeneracy of any a is the number
of distinct eigenvectors solving the corresponding eigenvalue equation. We have that
a ∈ σp(Â) only if its multiplicity is finite. For instance, for an electron in a constant
magnetic field, we have the well-known discrete Landau levels. However, the full wave
function has a plane wave component, making the Landau levels infinitely degenerated
and the states not in L2(R3), so formally not true eigenstates in H [86,93].

Lastly, for a self-adjoint Â (with σp(Â) not null), its set of eigenvectors forms the basis
for H if

(i) N is finite [78];
(ii) N is infinite and Â is compact;
(iii) N is infinite and Â belongs to certain classes of unbounded operators, see [61].

Few remarks are in order here. We recall that an operator Â: H → H is compact iff for
any bounded sequence {|ψn⟩} ∈ H, the sequence {Â |ψn⟩} has a convergent subsequence in
H (see, e.g., [83]). Any compact operator is bounded. For finite N, a self-adjoint operator is
always compact. A bounded self-adjoint, but not compact, operator is not considered above
because it is always unitarily equivalent to a certain multiplication operator [78]. Usually,
multiplication operators have just generalized eigenvectors [94] (e.g., delta-functions).

As illustrations, for (ii), we mention a not-too-singular attractive potential (like the
hydrogen atom [95]). Then, Â corresponds to the restriction [96] of the associated Hamilto-
nian to the subspace of the bound states [85,95]. For (iii), we can cite Â as the Hamiltonian
Ĥcon f of confining potentials, such as the harmonic oscillator [96]. For non-analytic poten-
tials, e.g., the infinite square well, self-adjoint extension techniques can also lead to proper
Â = Ĥcon f [97–99].

Appendix A.2. The Structure of the Transformation Matrix Γ

For both Â and B̂ being one of the cases in (i)–(iii) in Appendix A.1 and (n = 1, . . . , N),

Â |an⟩ = an |an⟩, B̂ |bn⟩ = bn |bn⟩, (A2)

and the sets {|an⟩} and {|bn⟩} are normalized bases of the Hilbert space H. In the spin-1/2
Bohm’s version [62,100] of the original EPR construction [19], as well as in the general
rigorous definition of EPR states [47] (for infinite-dimensional spaces, see [49,50]), all the
bases discussed are orthonormal. This is straightforwardly the case for {|an⟩} and {|bn⟩} if
the set of eigenvalues {an} and {bn} are non-degenerate. On the other hand, eigenvectors
belonging to the same eigenvalue in principle do not need to be mutually orthogonal.
However, relying on the spectral decomposition theorem for self-adjoint operators on linear
Hilbert spaces [78], we can always use the Gram–Schmidt orthogonalization procedure,
obtaining a complete orthonormal basis, ONB, for H. Thus, without loss of generality, we
can assume {|an⟩} and {|bn⟩} as ONBs.

We now consider two possible situations for the operators Â and B̂ and analyze the
structure of the transformation matrix in Equation (4). Thus, we shall rely on the well-
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known results of the diagonalization of self-adjoint operators, a subject discussed in many
quantum mechanics textbooks (for a particularly instructive treatment, see [101]):

• Â and B̂ commute: (1) The operators have common eigenvectors. (2) So, based on
which one is diagonal, say Â, B̂ is block-diagonal with the distinct blocks having
dimensions (all finite, see Appendix A.1) equal to the multiplicity of the different Â
eigenvalues. (3) But from the previous remarks about spectra decomposition, these
blocks can always be put in a diagonal form. Therefore, there is at least one basis
that simultaneously diagonalizes Â and B̂. As a consequence of (3), Γ in Equation (4)
can be reduced to an identity matrix 1N of size N. In fact, more generally Γ = Pπ(N)

is a permutation matrix, once in Equation (4), we can have |an′′⟩ ↔ |bn′⟩ for some
subsets of indices n′′ ̸= n′. Nonetheless, given that for any permutation matrix,
PT

π(N) Pπ(N) = 1N , a trivial relabeling of one of the basis indices, say {|an⟩}, turns Γ
into 1N .

• Â and B̂ do not commute: (4) There are no common eigenvectors and, thus, no basis
can simultaneously diagonalize Â and B̂. (5) In this way, the matrix Γ may (due to
occasional symmetries associated with Â and B̂) or may not display a block diagonal
format. However, in either situation, neither Γ itself nor its eventual diagonal blocks
can be transformed into identity matrices. If they were, it would imply the existence
of mutual eigenvectors, violating condition (4).

An illustration of the above is given next, for spin-1/2 systems.

Appendix A.3. The Basis Transformation Matrix for Spin-1/2 Systems in Arbitrary Directions

For γ, θ, and ϕ, the first, second, and third Euler angles respectively, the spin-1/2
system component in the direction n ≡ (sin[θ] cos[ϕ], sin[θ] sin[ϕ], cos[θ]) is represented by
the operator (h̄ = 1) [102]

Ŝn =
1
2

(
cos[θ] exp[−iϕ] sin[θ]

exp[+iϕ] sin[θ] − cos[θ]

)
. (A3)

For the eigenvectors of Ŝn, see [102]. Moreover,

|n,+1/2⟩ = exp[−i γ
2 ]

(
+ exp[−iϕ/2] cos[θ/2]
+ exp[+iϕ/2] sin[θ/2]

)
,

|n,−1/2⟩ = exp[+i γ
2 ]

(
− exp[−iϕ/2] sin[θ/2]
+ exp[+iϕ/2] cos[θ/2]

)
.

(A4)

Thus, a basis transformation from n′ to n′′ is written as follows:

|n′′,±1/2⟩ = Γ(n′→n′′)

+ 1
2 ,± 1

2
|n′,+1/2⟩+ Γ(n′→n′′)

− 1
2 ,± 1

2
|n′,−1/2⟩, (A5)

leading to a unitary matrix whose elements are (with ∆ϕ = (ϕ′′−ϕ′)/2, ∆(±)
θ = (θ′′± θ′)/2,

and ∆(±)
γ = (γ′′ ± γ′)/2 )

Γ(n′→n′′)

+ 1
2 ,+ 1

2
= exp[−i∆(−)

γ ]
(
+ cos[∆ϕ] cos[∆(−)

θ ]− i sin[∆ϕ] cos[∆(+)
θ ]

)
,

Γ(n′→n′′)

− 1
2 ,+ 1

2
= exp[−i∆(+)

γ ]
(
+ cos[∆ϕ] sin[∆(−)

θ ] + i sin[∆ϕ] sin[∆(+)
θ ]

)
,

Γ(n′→n′′)

+ 1
2 ,− 1

2
= exp[+i∆(+)

γ ]
(
− cos[∆ϕ] sin[∆(−)

θ ] + i sin[∆ϕ] sin[∆(+)
θ ]

)
,

Γ(n′→n′′)

− 1
2 ,− 1

2
= exp[+i∆(−)

γ ]
(
+ cos[∆ϕ] cos[∆(−)

θ ] + i sin[∆ϕ] cos[∆(+)
θ ]

)
.

(A6)

From the direct analysis of Equation (A6), one finds that Γ(n′→n′′) can be reduced to 12
(or its associated permutation, Appendix A.2) only for those combinations of the angles θ′′,
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θ′, ϕ′′, ϕ′ corresponding to n′′ = ±n′ (and so we can set γ′′ = γ′ = 0). Note this is indeed
a consequence of [ Ĵn′′ , Ĵn′ ] to vanish only if n′′ = ±n′ (the minus signal taking into account
cases like θ′′ = 0 and θ′ = π, for which Ĵn′′ = Ĵz and Ĵn′ = − Ĵz).

Therefore, for n′′ and n′, which are neither parallel nor anti-parallel, the structure of Γ
represents transformations between ONBs associated with non-commuting operators. This
exemplifies our general result in the specific case of a spin-1/2 problem.
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