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Abstract: Biorefinery plays a crucial role in the decarbonization of the current economic model, but its
high investments and costs make its products less competitive. Identifying the best technological route
to maximize operational synergies is crucial for its viability. This study presents a new superstructure
model based on mixed integer linear programming to identify an ideal biorefinery configuration.
The proposed formulation considers the selection and process scale adjustment, utility selection, and
heat integration by heat cascade integration from different processes. The formulation is tested by a
study where the impact of new technologies on energy efficiency and the total annualized cost of a
sugarcane biorefinery is evaluated. As a result, the energy efficiency of biorefinery increased from
50.25% to 74.5% with methanol production through bagasse gasification, mainly due to its high heat
availability that can be transferred to the distillery, which made it possible to shift the bagasse flow
from the cogeneration to gasification process. Additionally, the production of DME yields outcomes
comparable to methanol production. However, CO2 hydrogenation negatively impacts profitability
and energy efficiency due to the significant consumption and electricity cost. Nonetheless, it is
advantageous for surface power density as it increases biofuel production without expanding the
biomass area.

Keywords: biorefinery; MILP superstructure; carbon credit; process integration; biofuels; optimization;
heat integration

1. Introduction

The economic development of a region is linked to the increase in its energy con-
sumption. At present, the world’s energy matrix is mainly composed of non-renewable
sources; therefore, in a global scenario of worsening climate change, the development of
renewable energy sources that do not cause greater greenhouses gas emissions is funda-
mental for sustainable development and the creation of a low-carbon economy. In this
sense, biorefineries play a crucial role in sustainable economic development by enabling
the recovery of waste that would otherwise be discarded. A biorefinery is a collection of
processes that can sustainably convert biomass into marketable products such as bioplas-
tics, biofuels, and chemical intermediates. Several biorefineries have been developed and
implemented, including those for sugarcane, wood, microalgae, and municipal solid waste.
However, the presence of biofuels and other products from renewable resources is still
low due to technological and economic barriers. To achieve competitive improvement, a
biorefinery must operate in an optimized manner, making sustainable use of all available
resources. However, the diversity of resources, processes, and products makes it difficult to
identify this optimal configuration, making the development of a biorefinery a complex
and difficult task to solve. In this sense, superstructure modeling and optimization, a
computational tool used to generate and evaluate systematically all the configurations that
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element sets can present, have been successfully used in process synthesis. This approach
uses mathematical programming to identify the ideal combination of a set of alternatives
that should be adopted to achieve a given objective. In process synthesis engineering,
the superstructure is widely used in heat exchange network synthesis, conversion route
evaluation, and supply chain networks. A superstructure typically consists of an objective
function used to evaluate and compare different outcomes, along with a set of constraints,
variables, and parameters. Optimization by superstructure is a viable solution to this
problem, as evidenced by the results of several researchers, as will be presented. Based on
thermodynamic laws, process heat integration (HI) combined with pinch analysis (PA) is
an essential tool that can increase the economic viability of a biorefinery while reducing its
carbon dioxide (CO2) emissions from the utility system [1]. This method identifies opportu-
nities for heat exchange between heat flows within the same or different processes, thereby
reducing fuel consumption in the utility system. When the method is applied considering
different processes, it is known as total site heat integration (TSHI) [2]. Various works in the
literature apply TSHI concepts to superstructures [3–6]. Due to the combinatorial nature
of the problem, most studies implement sequential strategies to solve it. However, this
approach lacks the guarantee of finding a global optimal solution and may overlook more
suitable options for the specific problem. This approach can have a high computational
cost, making its application impractical in certain cases. Limitations are also present in
other works, as they offer specific formulations for certain problems.

The sugar and alcohol sector is a crucial industry for the Brazilian economy, with Brazil
currently ranking second in the world in bioethanol production. Traditional bioethanol
production in the sugarcane industry is a consolidated process in which bioethanol is
produced from the sugars present in sugarcane juice in seven stages: cleaning, preparation,
and extraction; processing; concentration; sterilization and cooling; fermentation; distilla-
tion; and dehydration. First, the sugarcane arrives at the distillery, where it undergoes a
process of cleaning, cutting, and then grinding. The extracted juice is sent to the treatment
stage, where impurities are removed through a coagulation and decantation process. The
bagasse produced is used as fuel in the utility system. Next, the treated broth is sent to an
evaporator system where it is concentrated by an evaporator system until it reaches 19◦Brix
(a unit of measurement used in the industry to express the mass of sugars in a solution) [7].
In the sterilization stage, the already concentrated broth is heated to 130 ◦C and then
cooled to 32 ◦C. During fermentation, the sugars present in the broth are consumed and
converted into bioethanol by the action of yeasts of the genus Saccharomyces cerevisiae.
It also produces carbon dioxide, which is released into the atmosphere after purification.
To recover the bioethanol, the wine produced is sent to a distillation column system made
up of four columns (A, A1, D, and B-B1). At this stage of the process, hydrated bioethanol
(92.6–93.8% by mass of bioethanol) and a stream of vinasse [8] are obtained, a dark brown
effluent, acidic in nature and with a high pollution potential. For each liter of bioethanol,
10 to 15 L of vinasse are produced [9]. To achieve a concentration of 99.3% by mass for
bioethanol, the hydrated bioethanol undergoes a dehydration process in which excess
water is removed using a solvent such as monoethylene glycol (MEG) or cyclohexane [10].

A standard distillery uses a cogeneration system to meet its energy needs, generating
both electrical and thermal energy for all stages of the process. This system consists of a
boiler, steam turbine, and electrical generator that form a steam cycle. Bagasse is used as
a fuel to heat water and produce superheated steam. The resulting steam is sent to the
steam turbine to expand and generate electricity. The steam then moves to the process,
provides the required energy, and finally returns to the cogeneration system. In certain
cases, there may be an excess of steam, which is then transported to thermoelectric facilities.
The excess electricity produced by these plants is then sold to the power grid. According
to Albarelli [10], improvements in energy integration of the process with investments in
heat recovery technology can make a large amount of bagasse available as feedstock for
other processes, such as gasification integrated with methanol production. According to
Fuess et al. [11], the integration of new processes, in addition to increasing energy efficiency,
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would diversify the products obtained, improving the biorefinery nature of the sugarcane
industry. In this sense, the biodigestion of vinasse is a possibility to be evaluated. It
is usually used for the fertigation of sugarcane crops, but its polluting properties limit
its use in the soil. In addition, the large quantity produced makes its proper disposal
a problem for the distillery. Thus, biodigestion of vinasse, in addition to reducing its
pollution potential, would produce biomethane, a biofuel considered strategic for the
energy transition [12]. Methanol is a product that can be blended with gasoline, is used
in the production of biodiesel or directly in fuel cells, and is commonly obtained from
natural gas; the conversion of carbon dioxide to methanol is a process that has received
attention [13,14].

As mentioned earlier, determining the configuration of a biorefinery can be a complex
task due to the numerous processes that can be integrated. To optimize biorefineries and
identify the best production route, several authors have adopted the use of superstructure
as an alternative. Infante et al. [15] presented a MILP formulation to evaluate a microalgae
biorefinery considering the production of different biofuels in Colombia. Its formulation
found that microalgae liquefaction was the most viable route, while bagasse was used
as process fuel and pellet production. Fonseca et al. [16] formulated a superstructure to
evaluate the best strategy and the economic feasibility of integrating a second-generation
ethanol process into an existing distillery. The results suggested that all bagasse was allo-
cated to hydrolysis, while sugarcane straw, lignin, and biogas were directed to a Rankine
Cycle. Huynh et al. [17] used a superstructure aiming to maximize the biodiesel production
profit. The study by Kenkel et al. [18] employs a bicriteria superstructure, a superstructure
with two objective functions, to investigate the conversion of CO2 to methanol in Germany.
The authors found that the price of electricity significantly influences the selection of tech-
nologies, impacting directly the production costs and emissions. The study suggests that
synthetic methanol production from renewable energy sources could become competitive
with natural gas in the future if its cost were reduced. Pyrgakis and Kokossis [19] employed
a superstructure with a bipartite graphical representation and a modified total site cascade
to study a real lignocellulosic biorefinery. The proposed formulation identified operational
synergies between the thermal currents of the processes, which reduced the demand for
hot and cold utilities by 9% and 14%, respectively. Celebi et al. [20] proposed a multi-
objective superstructure for comparing sugar and syngas biorefinery platforms, ranking
thirty-four configurations, with the lowest cost configuration integrating DME production
with succinic acid. With its superstructure formulation, Galanopoulos et al. [21] reduce the
biodiesel production costs by up to 80% in an integrated algae biorefinery using wastewater
and CO2 emissions. As highlighted above, the approach taken by the works considers
sequential procedures to solve problems, so it lacks the guarantee of finding a globally
optimal solution and may ignore more appropriate options for the specific problem. To
address this issue, this paper presents a new superstructure formulation that utilizes mixed
integer linear programming (MILP) for biorefinery optimization. The presented model’s
innovation lies in its ability to perform the process selection with scale adjustment, simulta-
neously to utility selection, and heat recovery by heat cascade integration. Unlike other
approaches, this method results in the optimal configuration of the biorefinery, ensuring
that the presented configuration is the best possible.

2. Methodology

The formulation presented in this paper consists of general mass and energy balance
and is based on the previous work of Kantor et al. [22], while the constraints to perform
heat cascade constraint is based on Bagajewicz and Rodera [23]. To achieve this, black box
models representing each technology are inserted into the biorefinery. Each of the inserted
models is based on previous works and describes the conversion, input, and output flows
of each process, as well as their thermal stream, which are used to perform the heat cascade
integration. Therefore, the superstructure receives information related to process and
resource economics, including process operation, maintenance, and investment costs, as
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well as resource acquisition costs and market prices. The superstructure was modeled as a
MILP model and implemented in LINGO software v.21 [24]. Figure 1 shows the flow of
information in the superstructure. Next, the formulation of the superstructure is presented.
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Figure 1. Schematic representation of superstructure flow information.

2.1. Main Sets Definitions

The formulation considers different sets, subsets, and their combinations. This struc-
ture makes it possible to perform the inclusion and exclusion of processes and their pa-
rameters in a faster and more organized way, in addition to allowing the superstructure
to be extended by including new concepts in sets. There are two main sets, RESOURCE
(R) and UNIT (U). An r element (r ∈ R) represents anything that can be transported, e.g.,
a biomass or a utility, while a u element (u ∈ U) represents a unit that can transform one
resource into another, e.g., a distillery that transforms sugarcane into bioethanol (EtOH),
vinasse, bagasse, and CO2. Each unit is inserted into the superstructure as a black box
model. In the PROCESS (PU) subset (PU⊂U), the elements represent units that have at least
one heat stream available for heat integration. UTILITIES (UT) subset (UT⊂R) contains
the elements that represent thermal utilities, while HUT (HUT⊂UT) and CUT (CUT⊂UT)
contain the hot and cold utilities, respectively. The elements in the sets LRA (LRA⊂R) and
LRB (LRB⊂R) are the resources that can be acquired and commercialized. Figure 2 shows a
schematic representation of the main sets and subsets in the superstructure.
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2.2. Objective Function

As an objective function presented in Equation (1), the superstructure considers the
minimization of the total annual cost (TAC), which considers the annualized unit capital
cost (UCCu), the resource acquisition cost (RCr), the product commercialization revenue
(PCr), and the carbon credits (CCs) resulting from the replacement of fossil fuels by their
respective renewable energy sources, as expressed in Equation (1).

TAC = ∑
u

UCCu + ∑
r

RCr − ∑
r

PCr− CC (1)
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2.3. Unit Selection and Scale Adjustment

The selection and scale adjustment of each element u, is carried out by Equation (2),
where CapMinu and CapMaxu are parameters that represent the maximum and minimum
scale adjustment that a unit can have, yu is a binary variable that represents the existence of
that unit, and wu is a continuous variable responsible for the unit scale adjustment. When
selected, a unit has its yu equal to one, and its wu is limited by CapMinu and CapMaxu. If
not selected, yu assume value zero, resulting in a wu equal to zero.

CapMinuyu ≤ wu ≤ CapMaxuyu ∀u ∈ U, ∀l ∈ L (2)

2.4. Mass Balance

As mentioned above, the superstructure uses the concept of scale adjustment. In
this concept, each element u is inserted as a black box model with a specific scale and its
input flow (IARu,r) and output flow (OARu,r) for each resource, and it is relative to the
specific scale. Depending on the situation, the scale of this unit can be adjusted, increased,
or decreased. To do this, a continuous variable wu is multiplied by each one of these
parameters, adjusting them linearly and proportionally to the required scale. Thus, the
produced and consumed quantities of a resource are calculated by Equations (3) and (4)
respectively, where produ,r is the production of resource r by unit u and consu,r is the
consumption of resource r by unit u.

OARu,rwu − produ,r= 0 ∀u ∈ U, ∀r ∈ R (3)

IARu,rwu − consu,r= 0 ∀u ∈ U, ∀r∈ (R − UT) (4)

As the superstructure does not consider the accumulation of resources, every re-
source produced or bought needs to be consumed or sold. To represent this condition,
Equations (5)–(7) were developed, where boughtr, soldr, and fop represents the amount
bought and sold of a resource r, and the fop is the hours of operation in a year. Equations (5)
and (6) are applied to the features contained in sets LRA and LRB, respectively. Equation (7)
is applied to features that are not present in the LRA and LRB subsets.

boughtr = ∑
u

consu,rfop ∀r ∈ LRA (5)

∑
u

produ,rfop = ∑
u

consu,rfop + soldr ∀r ∈ LRB (6)

∑
u

produ,rfop = ∑
u

consu,rfop ∀r ∈ R − (LRA + LRB) (7)

The Equations (8) and (9), where availr and demandr represents the amount avail and
demanded of resource r, ensure that every resource bought is available, and every resource
sold is demanded.

boughtr ≤ availr ∀r ∈ LRA (8)

soldr ≤ demandr ∀r ∈ LRB (9)

As the superstructure enables the selection of utilities simultaneously with total site
heat integration, the consumption of a thermal utility (element contained in UT) by a
process (element contained in PU) cannot be defined as a parameter, as it can vary de-
pending on the scale of the process and whether it is energetically integrated with other
processes. Therefore, for a pu element, Equation (4) is rewritten as Equation (10), where
massUtilitypu,ut is the value of the mass flow of utility ut consumed by the pu process.

massUtilitypu,ut − conspu,r= 0 ∀pu ∈ PU, ∀r ∈ UT (10)



Entropy 2024, 26, 501 6 of 26

2.5. Multiple Cascade Heat Integration and Utility Selection

The energy balance and energy integration constraints between cascades were used
and applied to all pu elements to perform utility selection and energy integration. These con-
straints identify regions of heat exchange between processes, as well as between processes
and utilities. For this, it is necessary that the superstructure receives the heat cascade formu-
lation, that is, the number of stages (s) and the inlet (Tes) and outlet (Tss) temperature of
each one, the minimum amount of energy required

(
MERpu), and the minimum consump-

tion of cold utility
(
UFpu

)
of each pu element, in addition to the inlet

(
Tinpu,n

)
and outlet(

Toutpu,n
)

temperature for each stream and its respective thermal capacity (MCppu,n

)
.

Equations (11) and (12) were used to perform the selection of utilities and heat inte-
gration simultaneously, which relate the minimum amount of energy that a process needs
to receive/transfer with its possible sources/receivers. Equation (11) expresses that the
heat demanded by a process is equal to the heat received in the form of utilities (Qupu,ut)
or by direct integration with another process (Qinpu). Since it is possible that there is more
than one utility that can supply heat, the heat received from utilities is placed is special
summations that limits the utilities that can exchange heat. Equation (12) express that
the cold utility consumed by a process is equal to the heat transferred to a cold utility ut
(Qupu,ut) or transferred to another process (Qoutpu).

MERpuwpu = ∑
ut

Qupu,ut + Qinpu ∀u ∈ PU, ∀(ut ∈ HUT ∧ UToutut ≥ Tpinchut) (11)

UFpuwpu = ∑
ut

Qupu,ut + Qoutpu ∀u ∈ PU, ∀(ut ∈ CUT ∧ UToutut ≤ Tpinchut) (12)

When a unit is scaled, its heat demand must be adjusted proportionally as its scale
increases or decreases. This is done by multiplying its minimum energy requirement of hot
utility (MERpu) and cold utility (UFpu) by its scaling variable (wpu). The heat supplied by a
utility to a unit is determined by the unit pinch temperature (Tpinchpu) Equations (13)–(15),
where Qhpu,s is the heat available by the hot streams in stage s by process pu and Qcpu,s
is the heat demanded by the cold streams in stage s by process pu and is limited by the
interval temperature of the heat cascade stage and the heat demand of that stage. Figure 3
shows a representation of the utility placement in heat cascade as a general example.

Qupu,ut ≤ ∑
s| Tss≥ Tpinchpu ∧ Tes≤UToutut

(
Qhpu,s − Qcpu,s

)
wpu ∀puPU, ∀ ut ∈ HUT (13)

Qhpu,s = ∑
n| Tinpu,n≥ Tes ∧ Toutpu,n≤Tss

MCppu,n(Tes − Tss) ∀pu ∈ PU; ∀s (14)

Qcpu,s = ∑
n| Tes≤ Toutpu,n ∧ Tss≥Tinpu,n

MCppu,n(Tes − Tss) ∀pu ∈ PU; ∀s (15)

Equations (16) and (17) are responsible for converting the heat demand of a utility into
its mass flow, connecting mass balance and energy balance.

Qupu,ut = massUtilitypu,uthvut ∀u ∈ PU, ∀ut ∈ HUT (16)

Qupu,ut = massUtilitypu,uthsut ∀u ∈ PU, ∀ut ∈ CUT (17)

To consider the heat entering and leaving one HC stage to another HC, the variables
Qf and Qs have been inserted, and this represents the inlet heat into unit pu and stage
s and Outlet heat into unit pu and stage s, respectively. For the stages below the pinch
temperature, Qf has a value of zero, while for the stages above the pinch, Qs has a value
of zero. These considerations are made to ensure that there is no heat input into the
region below the pinch or heat loss above the pinch. This consideration is expressed in
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Equations (18) and (19), as well as the limitation of the amount of heat that can enter or
leave a stage of the thermal cascade.
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Qfpu,s


= 0

≤
(

Qcpu,s − Qhpu,s

)
wpu

(18)

Qspu,s


= 0

≤
(

Qhpu,s − Qcpu,s

)
wpu

(19)

By preventing heat from leaving the region above the pinch or entering the region
below the pinch of an HC, heat transfer from one HC to another HC is limited to the region
between the pinches of the two HCs, with heat leaving the one with the higher pinch
temperature and entering the lowest pinch temperature. This region is shown in Figure 4.
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The total amount of heat transferred from one process to another is calculated by
Equation (20). Equation (21) expresses the total heat received from other processes.
Equation (22) limits the heat released by a process to the total heat received by others
in the region bounded by the pinch. Equation (23) states that the heat received by a unit
must be less than or equal to the total heat transferred by the others in the region between
the pinches.

Qoutpu = ∑
s| Tes≤ Tpinchpu

Qspu,s (20)

Qinpu = ∑
s| Tss≥ Tpinchpu

Qfpu,s (21)

Qoutpu ≤ ∑
pu′ | Tpinchpu′> Tpinchpu

∑
S| Tes≤Tpinchpu&Tss≥Tpinchpu′

Qfpu′ ,s (22)

Qinpu ≤ ∑
pu′ | Tpinchpu′< Tpinchpu

∑
Tes≤Tpinchpu′&Tss≥Tpinchpu

Qspu′ ,s (23)

Equation (24) guarantees that the total heat output of the processes is equal to the total
heat input of the processes.

∑
pu

Qinpu = ∑
pu

Qoutpu (24)

2.6. Unit Capital Cost and Investment Cost Linearization

Since each unit inserted in the superstructure has a reference scale, in addition to the
resource consumption and production values, each of them has a capital cost related to the
scale considered. Process capital costs tend to vary nonlinearly with scale, so to maintain
the model linearity, a piecewise linearization of the capital cost function was performed
for each process. First, Equation (25) was used to obtain the cost curve as a function of the
scaling factor (wu), where Cu is the adjusted capital cost for unit u, C0u is the annualized
capital cost at the reference scale for unit u, and se is a scaling exponent. As recommended
by Peters et al. [25] it was considered that the unit u could be reduced or increased by
up to 10 times the reference value. In this way, the curve obtained starts with 10% of the
unit’s reference value and ends with 1000% of the unit’s reference value. The curve is
then divided into three levels limited by a minimum and maximum value, CapMinu,l and
CapMaxu,l, respectively, as shown in Figure 5. The linearized cost curve coefficients for
each process are present in the Supplementary Materials.

Cu = C0uwse
u (25)

When a unit is selected and scaled, one of the levels must also be selected. Therefore,
Equation (2) is rewritten as Equation (26). Since only one level can be selected when a unit
is selected, Equation (27) guarantees that only one level is selected. If a level is not selected,
its binary variables (ylu,l) will have a value of zero, so the local scaling factor variable wlu,l
will also have a value of zero, so Equation (28) guarantees that wu will be equal to the value
of wlu,l of the selected level.

CapMinu,lyu,l ≤ wlu,l ≤ CapMaxu,lyu,l (26)

∑
l

ylu,l ≤ 1 (27)

∑
l

wlu,l = wu (28)
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The capital cost of a unit can be determined by Equation (29), where au,l and bu,l
are the angular and linear coefficients of each linearized segment, respectively, MC, OC,
AF and LC are maintenance cost, operation cost, annualization factor, and other cost,
which are fixed as 6%, 8.6%, 0.086, and 10%, respectively. Equations (30)–(32) calculate the
resource acquisition cost, product commercialization revenue, and carbon credits revenue,
respectively, where ResCostr is the cost of resource r, MPr is the market price of resource r,
PCr is the commercialization revenue of resource r, and CarbVal is the carbon credit price.

UCCu = ∑
l

(
au,lwlu,l + bu,lyu,l).AF.(1 + MC + OC + LC) (29)

RCr = BoughtrResCostr (30)

PCr = SoldrMPr (31)

CC =

(
∑

r
SoldrMPr − ∑

r
BoughtrResCostr

)
CarbVal (32)

The capital cost of each process was corrected using the CEPCI index. To annualize
the process, before linearization, each curve was multiplied by the annualization factor
expressed by Equation (33), considering a plant lifetime (n) of 25 years for all units and an
interest rate (i) of 7%.

AF =
i(1 + i)n

(1 + i)n − 1
(33)

3. Sugarcane Biorefinery Case Studies Description

In this paper, a conventional Brazilian sugarcane distillery with a typical processing
capacity of 2,640,000 tons of sugarcane per year is considered, as previously described and
performed by others authors [8]. For the proposed study, different technologies are consid-
ered to compare their impact on the performance of the biorefinery. In this study, several
cases have been evaluated where different technologies have been integrated to improve
the performance of the biorefinery by utilizing the wastes generated during the production
of bioethanol from sugarcane juice. The wastes considered were vinasse, sugarcane bagasse,
and carbon dioxide generated during the fermentation process. This study aimed to convert
vinasse through the biodigestion process and bagasse through the gasification process to
produce methanol or a bagasse power plant to produce and export electricity. For the
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carbon dioxide stream, the CO2 catalytic hydrogenation process was introduced, which
also produces methanol. This study also included methanol catalytic dehydration (MCD)
technology, which converts methanol to DME. Because the processes require electricity
and consume utilities to operate, various production technologies were included. Three
cogeneration systems were evaluated to produce hot utilities, each producing saturated
steam at different pressures. In addition to the cogeneration systems, the possibility of
importing electricity from a photovoltaic panel system was investigated. These technolo-
gies were integrated into the superstructure to collect data from existing published work.
Additional information and process descriptions are provided in the following sections.
Table 1 provides a summary of the technologies used for each case evaluated, and Figure 6
summarizes the combined process in the superstructure.

Table 1. Biorefineries technology cases.

Case Route

1 Distillery + Photovoltaic Power Station (PPS)
2 Distillery + PPS + Vinasse Biodigestion (VBD)
3 Distillery+ PPS + VBD + Bagasse Gasification (BG)
4 Distillery+ PPS + VBD + BG + Methanol Catalytic Dehydration (MCD)
5 Distillery+ PPS + VBD + BG + Catalytic CO2 Hydrogenation (CCH)
6 Distillery+ PPS + VBD + BG + MCD + CCH
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Four additional indicators were included to facilitate the evaluation and comparison
of technologies: payback, energy efficiency, total CO2 avoided, and surface power density.
The payback calculation considers the total investment and cash flows, considering the
purchase and sale of resources, commercialization of carbon credits, and operating costs, as
shown in Equation (34). For energy efficiency, Equation (35), energy input and output flows
were considered in terms of resources, which were obtained based on their respective lower
heating values (LHVs), as shown in Table S1. The calculation of the surface power density
considers the energy produced in the form of biofuels per area of sugarcane cultivated,



Entropy 2024, 26, 501 11 of 26

assuming a productivity of 76.8 tons of sugarcane/hectare. In order to calculate the total
avoided CO2 and consequently the generation of carbon credits, the avoided CO2 for
sugarcane [26], bioethanol [26], biomethanol [27], bioDME [26], biomethane [26], and
electricity [28] are provided in the Supplementary Materials. To commercialize carbon
credits, a sales price of USD 65.00 per credit was considered. The supplemental material
includes the IAR and OAR values for each unit, as well as the linearized cost curves.

Payback =
Total Investment

Cash flow
(34)

Energy Efficiency =
Output Energy
Input Energy

(35)

Technologies Description

Next, the technologies considered are described, as well as the ancillary processes for
providing other resources, such as electricity and hydrogen. Figure 7 shows a representation
of the superstructure formulation for this study.
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Distillery: A Brazilian conventional autonomous distillery, with a typical milling
capacity of 2,640,000 tons of cane per year and a crushing rate of 500 tons of sugarcane
per hour is considered to produce bioethanol. This process includes the following steps:
cleaning, preparation, and extraction system; cane juice treatment; juice concentration; steril-
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ization and must cooling; fermentation; distillation and rectification; and dehydration. This
unit receives sugarcane, water, electricity, and utilities as resources and produces bioethanol
as the main product and bagasse, vinasse, and CO2 as by-products. Process and investment
data were taken from [7,10]. Figure 8 shows a diagram of the sugarcane distillery.
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Figure 8. Distillery flowsheet of the sugarcane distillery.

Vinasse Biodigestion: The process consists of two steps, anaerobic digestion and
biogas purification. In the first, the vinasse is fed directly into an anaerobic biodigester
where microorganisms consume part of the organic material and produce biogas, a gas
mixture of CO2, methane (CH4), and hydrogen sulfide (H2S). In the second step, H2S
is removed from the produced biogas by micro-aeration of the biogas and then CO2 is
removed by the pressure swing absorption (PSA) process, resulting in a high CH4 purity
(>98%) [29], as shown in Figure 9.
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Bagasse Gasification: In the first, the production of biomethanol by bagasse gasifi-
cation takes place in five steps: bagasse pretreatment, gasification, syngas conditioning,
methanol synthesis, and upgrading (Figure 10). In the pretreatment stage, the bagasse
is dried in an air dryer and fed into the steam gasification reactor. Syngas conditioning
removes major impurities such as particulates and tar from the produced gas. The composi-
tion of the syngas is adjusted with hydrogen to achieve a stoichiometric ratio s, defined by
Equation (36), of 2.05, as recommended for methanol synthesis [30]. The adjusted syngas is
sent to the methanol synthesis where its pressure is adjusted to 50 bar, it is mixed with unre-
acted syngas, and it is preheated to 225 ◦C before entering the reactor where its temperature
is adjusted. The methanol synthesis reactor is a fixed bed reactor containing a copper/zinc
oxide/alumina catalyst. The reactor effluent is decompressed and degassed. The liquid
methanol is cooled to 43.3 ◦C and sent to a distillation column where it is purified [31].
Process and economic data were obtained from the literature [31].

s =
H2 − CO2

CO+CO2
(36)
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Catalytic CO2 Hydrogenation (CCH): CCH is a three-step process, gas compression,
methanol synthesis, and upgrading, as shown in Figure 11. First, CO2 is compressed
to 48 bar in a 4-stage compressor and then mixed with hydrogen. Before entering the
preheater, the CO2-H2 mixture receives a recycle stream of unreacted gases. The final
mixture is compressed and preheated to reactor conditions (220 ◦C, 83 bar). The CO2
hydrogenation reactor is a fixed bed reactor with a Cu/ZnO/Al2O3 catalyst. The reactor
effluent is cooled and decompressed; 95% of the unreacted gases are recycled and 5% is
purged. The liquid methanol is cooled to 43.3 ◦C and fed to a distillation column as in
the bagasse gasification unit. The process configuration and conditions are based on the
previous work of [32,33].
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Methanol Catalytic Dehydration (MCD): The process can be divided into two steps,
production and purification, as shown in Figure 12. In the first, fresh methanol is mixed with
recycled reactant and evaporated before entering the reactor. After cooling, the effluent
is sent to the purification stage where the product is recovered by column distillation.
The unreacted methanol is recovered by another column and recycled. The process and
economic data, including information on the process flows, were obtained by Aspen plus
simulation, following the work of Shim et al. [34], Dutta et al. [31], and Turton et al. [35].

Hydrogen Production: Since hydrogen is required to produce methanol and DME,
two different technologies are considered in the superstructure, alkaline electrolysis and
proton exchange membrane electrolysis. The first is the most mature technology, and the
electrodes are immersed in an aqueous KOH solution, allowing water electrolysis and thus
hydrogen production. In the second, a proton exchange membrane is placed in the center
of the cell to conduct the protons produced in the anode to the cathode, where they are
reduced to produce hydrogen [36].
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Utilities Production: For hot utilities, the superstructure considers three different
cogeneration schemes, modeled as a steam-based cycle with steam turbines and sugarcane
bagasse as fuel. Each model considers a different level of turbine output saturated steam
pressure: 2.2, 6, and 9 bar. For bagasse consumption and hot utilities and electricity
production, a model was developed in EES software, version 10, considering a cogeneration
efficiency of 85% and a net calorific value of 7500 kJ/kg for bagasse. The operating
temperatures of sugarcane ethanol distilleries are relatively low, approaching 115 ◦C.
Consequently, the distilleries rely on cogeneration systems powered by sugarcane bagasse.
To provide a more realistic representation of the process, similar systems were selected for
this work. For the cold utilities, cooling water is considered [31].

Electricity Production: In conventional distilleries, the electricity demand is met
by the cogeneration system or, in some cases, by a biomass power plant. In this sense,
for electricity generation, the superstructure has three alternatives: cogeneration units
(described above), bagasse, and import from a solar photovoltaic supplier.

4. Results and Discussion

Six different cases were evaluated after inserting the data into the superstructure. All
cases considered the existence of a sugarcane distillery and the possibility of heat exchange
between processes. For each of the cases, different technologies are integrated into the
existing plant, making it possible to obtain a different biorefinery configuration and result.
Tables 2 and 3 provide a summary of the cost analysis results of the optimization problem
solved for the cases under consideration in this paper, where the total investment represents
the investment with process, resource bought represents the total expenses with resources
like sugarcane. Biofuels and carbon credit revenues represent the income with biofuel
and carbon credit commercialization respectively, while total avoided CO2 and labor cost
represent the CO2 total mass that was no longer emitted and the cost associated with
process labor cost, respectively.

Table 2. Results of the optimal biorefineries configurations cost analysis.

Parameter Case 1 1 Case 2 2 Case 3 3 Case 4 4 Case 5 5 Case 6 6

TAC [×106 USD/year] −91.23 −90.89 −113.85 −101.65 −48.76 −42.17
Total Investment [×106 USD] 233.24 246.02 325.95 333.89 408.03 418.18

Resource bought [×106 USD·y−1] 30.29 30.29 41.54 41.60 115.05 115.13
Biofuels Revenues [×106 USD·y−1] 161.03 163.01 205.27 195.54 237.15 222.93

Carbon Credit Revenue [×106 USD·y−1] 24.84 26.05 41.45 41.24 50.06 49.74
Labor Cost [×106 USD·y−1] 57.37 60.52 80.18 82.13 100.37 102.87

Payback [y−1] 2.38 2.50 2.64 2.99 6.69 7.65
1 Destillery; 2 Destillery + Vinasse Biodigestion (VBD); 3 Destillery + VBD + Bagasse Gasification (BG); 4 Destillery
+ VBD + BG + Methanol Catalytic Dehydration (MCD); 5 Destillery + VBD + BG + Catalytic CO2 Hydrogenation
(CCH); 6 Destillery + VBD + BG + MCD + CCH.
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Table 3. Energy balance results of the optimal biorefinery cases.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Energy Consumed [×109 MJ·y−1] 11.71 11.71 12.36 12.36 16.76 16.76
Energy Produced [×109 MJ·y−1] 5.88 6.256 9.21 9.33 11.14 11.31

Energy Efficiency [%] 50.25 53.43 74.49 75.43 66.46 67.46
Surface Power Density [GJ·ha−1] 171.17 182.00 253.74 257.12 288.83 293.44

For Case 1, the configuration obtained is very similar to that found in bioethanol
distilleries in Brazil, which essentially consist of a distillery and a cogeneration system. The
biorefinery has the potential to produce 171,072 tons of bioethanol, 729,907 tons of bagasse,
2,364,595.2 tons of vinasse (used as fertilizer), and 161,040 tons of CO2 per year. Figure 13
shows the initial GCC of the biorefinery with the indication of the hot utility supplied by
the cogeneration system. Although the distillation column systems, from the bioethanol
distillation section, are the largest consumers of utilities and require heat at a temperature
close to 110 ◦C, the temperature of the extraction and recovery columns directly affects
the selection of the utility level, causing the cogeneration system to supply heat at higher
pressure levels. Thus, the cogeneration system produces saturated steam at 6.5 bar and
uses 45.6 tons of bagasse per hour to produce hot utilities and electricity. Excess bagasse is
diverted to a bagasse power plant, which exports excess electricity to the grid. Energetically,
the biorefinery can produce 5.88 × 109 MJ/year of energy with an initial energy efficiency
of 50.25%.
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If the biodigestion of vinasse is integrated into the biorefinery, as in Case 2, the
configuration remains unchanged. However, the increased consumption of the biorefinery
causes a reduction in the exported electricity. The new process allows the biorefinery
to produce 7075.24 tons of biomethane per year, and the biodigested vinasse is used for
fermentation. Although this new unit resulted in increased TAC and payback due to
higher total investment and operating costs, the production of biomethane improved
environmental performance by reducing total avoided CO2. In addition, the increase in
biofuel production from vinasse biodigestion resulted in a small increase in the energy
efficiency of the biorefinery, as shown in Figure 14. In a carbon credit valorization scenario,
the revenues from biomethane production can exceed the investment costs, making the
process more economically viable. Figure 15a,b shows the biorefinery final configurations
for Cases 1 and 2, respectively.
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In Case 3, the integration of the gasification unit allowed the biorefinery to produce
209,795.6 tons of methanol per year, resulting in a 25% increase in revenue from biofuel
sales. The presence of the BG unit allows heat exchange with another process, eliminating
the use of utilities. The high-temperature characteristics of the BG unit result in a pinch
temperature higher than that of the distillery. Therefore, when heat is exchanged, the BG
unit serves as a source of thermal energy for the distillery. In addition, the heat from the BG
unit was sufficient to meet the distillery’s needs. As a result, the CHP unit was not needed
and was eliminated from the biorefineries’ optimal design.
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Figure 16a shows the GCC of the bagasse gasification unit. Unlike other processes,
the gasification unit does not receive heat from external sources and uses a portion of the
syngas produced to supply the energy required by the gasification process. As a result, two
streams with a high thermal load are produced, with the first consisting of the combustion
gas produced and the second consisting of the synthesis gas that has not been consumed
and must be cooled before being sent to the next stages. Therefore, this unit can act as a heat
source for other units present, meaning that other heat sources are not necessary. Figure 16b
shows the grand composite curve of the biorefinery, and it is possible to observe that even
after the integration of the distillery, there is still a large amount of heat available that can be
used in other processes. It is also possible to visualize the region of the curve where it was
possible to recover part of the heat present in the gasification. In this sense, when bagasse
is sent to gasification, it is no longer used as fuel but instead generates revenue for the
distillery while still providing heat for the processes. Thus, through energy integration, the
gasification unit significantly increases the biorefinery energy efficiency, as can be observed
in Figure 14.
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Due to the delivery of the bagasse stream to the gasification unit, the biorefinery
required the importation of 180,805.20 MWh of electricity from a photovoltaic system, re-
sulting in a 37.15% increase in resource acquisition costs. Although it had a higher payback
than the previous setups, Case 3 had a lower TAC, suggesting that this configuration was
more beneficial over time than the others. A significant increase in this metric can be seen
by examining avoided emissions. The conversion of bagasse to methanol results in the
retention of more carbon in the form of biofuel, thereby increasing the amount of CO2
avoided. In addition, the imported electricity is supplied by a photovoltaic system, which
eliminates any increase in CO2 emissions and results in a greater total amount of CO2
avoided than in the previous cases. Figure 17 shows the biorefinery configuration provided
by the superstructure in this scenario.

In Case 4, the integration of the MCD process enabled the biorefinery to produce
148,756.60 tons of DME per year by converting all 209,795 tons of methanol produced
through the bagasse gasification unit. The MCD integration required an additional in-
vestment of USD 7.94 × 106 compared to Case 3. Although DME has a higher market
price than methanol, the increase in operating costs and process losses led to a decrease
in revenue, which negatively affected the payback of the biorefinery. The heat demand
of the MCD unit can be met through energy integration with the biorefinery. Figure 18a
shows the superposition of the GCC of the MCD and the biorefinery, where it is possible
to observe the availability of heat that can be transferred from the biorefinery to the MCD
unit. Figure 18b shows the GCC of the biorefinery after the integration of the MCD.



Entropy 2024, 26, 501 18 of 26
Entropy 2024, 26, 501 19 of 27 
 

 

 
Figure 17. Biorefinery optimal configuration for Case 3. 

In Case 4, the integration of the MCD process enabled the biorefinery to produce 
148,756.60 tons of DME per year by converting all 209,795 tons of methanol produced 
through the bagasse gasification unit. The MCD integration required an additional 
investment of USD 7.94 × 106 compared to Case 3. Although DME has a higher market 
price than methanol, the increase in operating costs and process losses led to a decrease 
in revenue, which negatively affected the payback of the biorefinery. The heat demand of 
the MCD unit can be met through energy integration with the biorefinery. Figure 18a 
shows the superposition of the GCC of the MCD and the biorefinery, where it is possible 
to observe the availability of heat that can be transferred from the biorefinery to the MCD 
unit. Figure 18b shows the GCC of the biorefinery after the integration of the MCD. 

Of the cases evaluated, Cases 3 and 4 presented the highest energy efficiency values. 
Comparing Cases 2 and 3, a significant increase in the energy efficiency of the biorefinery 
is observed when the gasification process is included, due to its heat transfer from 
gasification to the other process. Despite the higher investment required, the transfer of 
the bagasse flow to the gasification unit made a large amount of heat available while 
increasing the biofuel production, directly increasing the revenue and energy efficiency of 
the biorefinery. Observing Cases 3 and 4, the MCD process introduction did not have a 
negative impact on the energy efficiency of the biorefinery. In fact, there was a slight 
increase. As before, the biorefinery imported all the electricity it consumed. It received a 
supply of 181,759.82 MWh of electricity. Figure 19 shows the main flows in this biorefinery 
configuration. 

 
Figure 18. (a) Overlay of the biorefinery GCC (blue line) and MCD (red dotted line). (b) Biorefinery 
GCC after biorefinery integration. 

Figure 17. Biorefinery optimal configuration for Case 3.

Entropy 2024, 26, 501 19 of 27 
 

 

 
Figure 17. Biorefinery optimal configuration for Case 3. 

In Case 4, the integration of the MCD process enabled the biorefinery to produce 
148,756.60 tons of DME per year by converting all 209,795 tons of methanol produced 
through the bagasse gasification unit. The MCD integration required an additional 
investment of USD 7.94 × 106 compared to Case 3. Although DME has a higher market 
price than methanol, the increase in operating costs and process losses led to a decrease 
in revenue, which negatively affected the payback of the biorefinery. The heat demand of 
the MCD unit can be met through energy integration with the biorefinery. Figure 18a 
shows the superposition of the GCC of the MCD and the biorefinery, where it is possible 
to observe the availability of heat that can be transferred from the biorefinery to the MCD 
unit. Figure 18b shows the GCC of the biorefinery after the integration of the MCD. 

Of the cases evaluated, Cases 3 and 4 presented the highest energy efficiency values. 
Comparing Cases 2 and 3, a significant increase in the energy efficiency of the biorefinery 
is observed when the gasification process is included, due to its heat transfer from 
gasification to the other process. Despite the higher investment required, the transfer of 
the bagasse flow to the gasification unit made a large amount of heat available while 
increasing the biofuel production, directly increasing the revenue and energy efficiency of 
the biorefinery. Observing Cases 3 and 4, the MCD process introduction did not have a 
negative impact on the energy efficiency of the biorefinery. In fact, there was a slight 
increase. As before, the biorefinery imported all the electricity it consumed. It received a 
supply of 181,759.82 MWh of electricity. Figure 19 shows the main flows in this biorefinery 
configuration. 

 
Figure 18. (a) Overlay of the biorefinery GCC (blue line) and MCD (red dotted line). (b) Biorefinery 
GCC after biorefinery integration. 
Figure 18. (a) Overlay of the biorefinery GCC (blue line) and MCD (red dotted line). (b) Biorefinery
GCC after biorefinery integration.

Of the cases evaluated, Cases 3 and 4 presented the highest energy efficiency values.
Comparing Cases 2 and 3, a significant increase in the energy efficiency of the biorefinery is
observed when the gasification process is included, due to its heat transfer from gasification
to the other process. Despite the higher investment required, the transfer of the bagasse
flow to the gasification unit made a large amount of heat available while increasing the
biofuel production, directly increasing the revenue and energy efficiency of the biorefinery.
Observing Cases 3 and 4, the MCD process introduction did not have a negative impact on
the energy efficiency of the biorefinery. In fact, there was a slight increase. As before, the
biorefinery imported all the electricity it consumed. It received a supply of 181,759.82 MWh
of electricity. Figure 19 shows the main flows in this biorefinery configuration.

In Case 5, the integration of the CCH process enabled the biorefinery to produce
306,400 tons of methanol per year, a 46% increase over Case 3. While biofuel production
and carbon credit revenues increased, the payback period also increased, primarily due
to the significant investment in the plant, its operating costs, and resource purchases. To
convert CO2 into methanol, the CCH unit requires hydrogen, which must be produced by
the biorefinery. Two technologies were evaluated for this purpose: alkaline electrolysis and
PEM. Alkaline electrolysis was selected because of its lower capital cost. Previously, as in
many distilleries, the CO2 produced during fermentation was vented to the atmosphere. By
converting it to biofuels, the carbon capture is significantly increased, resulting in a higher
total avoided CO2. Since the biorefinery’s CO2 emissions are in sugarcane cultivation and
transportation, the amount of carbon credits obtained also increases. Overall, the total
avoided CO2 increased by 21.37% compared to Case 4 and by 20.74% compared to Case 3.
Figure 20 shows the biorefinery configuration and its main flows for Case 5.
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The CCH unit uses hot and cold utilities, allowing energy integration with other
processes. By having a pinch temperature higher than that of the distillery, the CCH can
transfer some of its excess heat to the distillery, as shown in the GCC of the two processes
in Figure 21. At the same time, the CCH also receives heat from the gassing, thus acting as
a source and sink of heat for different processes. In this sense, the biorefinery recovered
427,865 MWh of heat per year through heat integration. In Case 5, the biorefinery imported
1,403,629 MWh of electricity to power its processes. This significantly increased resource
acquisition costs due to the high electricity consumption of the electrolyzer. In addition,
the increased electricity consumption reduced the biorefinery’s energy efficiency to 66.46%.
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As noted above, the process of converting CO2 into methanol using CCH requires
0.22 tons of hydrogen for each ton of methanol produced. The hydrogen must be supplied
by the biorefinery. Considering all the CO2 conversion produced by the distillery, as well as
the production of hydrogen through alkaline electrolysis, the biorefinery needed to import
1,403,629 MWh of electricity. With an energy consumption of 343.34 MWh, as hydrogen
form, CCH produces 36.47 tons of methanol, resulting in an energy efficiency of 70.31%
(HHV) for the CCH process. However, considering the efficiency of the electrolyzes, the
overall efficiency of converting CO2 to methanol is 51.28%, which justifies the decrease in
energy efficiency of the biorefinery. The CCH process model has a ratio of 4 moles of H2 to
1.13 moles of methanol, which is very close to the stoichiometric value of the reaction of 3:1.
This suggests that it is essential to improve H2 production, electricity acquisition, or cost
reduction to improve the energy efficiency of the process and the biorefinery.

In Case 6, the biorefinery had a TAC of −31.35 × 106 USD/year and required a total
investment of USD 418.18 × 106, resulting in an annual production of 217,260.7 tons of
DME. The implementation of heat integration allowed the recovery of 603.82 GJ of energy
per year. In this new configuration, the biorefinery has a 14.3% higher payback compared
to the previous configuration, and a total reduction of 0.6% in avoided CO2 emissions.
Figure 22 shows the biorefinery configuration for Case 6. Although the gasification process
is present, Cases 5 and 6 show a reduction in the biorefinery’s energy efficiency. Even
with heat recovery between processes, the high electricity consumption of the electrolyzers
and the unavailability of resources for their production meant that the biorefinery would
have to import much more electricity than in other cases, severely penalizing its energy
efficiency. However, an increase in the energy produced per area of sugarcane cultivated
can be observed, as in other cases where there has been an increase in biofuel production.

Comparing Cases 6 and 4, the integration of the CCH unit has led to a worsening of the
economic and energy indicators, requiring more payback time to recover the investments
made, and a decrease in energy efficiency. As mentioned above, the biorefinery, by produc-
ing hydrogen for the CCH, significantly increases its electricity imports and, consequently,
its expenditure on this resource. This situation can also be observed when comparing Cases
3 and 5, indicating that the integration of the CCH process, despite having a strong positive
impact on the generation of carbon credits, proved to be detrimental to the performance of
the biorefinery. In both Cases 5 and 6, for an annual production of 21,225.6 tons of H2, the
annualized cost of the electrolyzer was USD 15,437,508.52. Thus, hydrogen production has
a cost of USD 4.69 per kg.



Entropy 2024, 26, 501 21 of 26
Entropy 2024, 26, 501 22 of 27 
 

 

 
Figure 22. Biorefinery configuration for Case 6. 
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A comparison of the results obtained with other studies reveals that the values found 
are comparable to those reported. For a first-generation distillery, which produces ethanol 
from sugarcane juice, Albarelli [30] achieved an energy efficiency of close to 43%. By 
integrating methanol production through the gasification of bagasse and sugarcane straw, 
the energy efficiency of the biorefinery varied between 50% and 65%, depending on the 
configuration and mixture evaluated. It is crucial to emphasize that in Albarelli’s work, 
the authors considered a range of biorefinery configurations, including the production of 
second-generation ethanol utilizing a portion of straw and bagasse. Nevertheless, as in 
this work, the authors concluded that the increase in the energy efficiency of the 
biorefinery is a result of the increase in biofuel productivity. However, this is accompanied 
by an increase in investments and the complexity of the technologies present in the 
biorefinery. Bressanin [37] evaluated the production of biofuels using the Fischer–Tropsch 
synthesis process from two different types of sugarcane, obtaining efficiency values 
between 45.4% and 57.7%. 

To evaluate the impact of the electricity price on the payback of the biorefinery, Cases 
3 to 6 were simulated again considering different electricity prices, 60, 45, and 30 
USD·MWh−1. By reducing the cost of electricity, it is possible to observe a positive impact 
on the payback values of all cases, as shown in Figure 23. Since the electricity imports are 
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Figure 22. Biorefinery configuration for Case 6.

A comparison of the results obtained with other studies reveals that the values found
are comparable to those reported. For a first-generation distillery, which produces ethanol
from sugarcane juice, Albarelli [30] achieved an energy efficiency of close to 43%. By
integrating methanol production through the gasification of bagasse and sugarcane straw,
the energy efficiency of the biorefinery varied between 50% and 65%, depending on the
configuration and mixture evaluated. It is crucial to emphasize that in Albarelli’s work,
the authors considered a range of biorefinery configurations, including the production of
second-generation ethanol utilizing a portion of straw and bagasse. Nevertheless, as in this
work, the authors concluded that the increase in the energy efficiency of the biorefinery
is a result of the increase in biofuel productivity. However, this is accompanied by an
increase in investments and the complexity of the technologies present in the biorefinery.
Bressanin [37] evaluated the production of biofuels using the Fischer–Tropsch synthesis
process from two different types of sugarcane, obtaining efficiency values between 45.4%
and 57.7%.

To evaluate the impact of the electricity price on the payback of the biorefinery,
Cases 3 to 6 were simulated again considering different electricity prices, 60, 45, and
30 USD·MWh−1. By reducing the cost of electricity, it is possible to observe a positive im-
pact on the payback values of all cases, as shown in Figure 23. Since the electricity imports
are much higher in Cases 5 and 6 than in Cases 3 and 4, the reduction of the payback time
was more significant. When the cost of electricity is 45 USD·MWh−1, Cases 5 and 6 show a
reduction of 34.8% and 27.8%, respectively. When the cost is 30 USD·MWh−1, the reduction
is 46.5% and 43.6%, respectively, compared to the first case. These results suggest that the
price of electricity is crucial to increase the competitiveness of biofuels and thus improve
the viability of new generations of biorefineries as proposed in this paper. Furthermore,
it is also possible to observe the impact that hydrogen production can have on the perfor-
mance of a biorefinery, raising the hypothesis that the development and improvement of
technologies is a point of great relevance for the development of biorefineries.
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5. Conclusions

This study presents a novel superstructure that uses a MILP formulation to optimize
and evaluate biorefineries. In this formulation, the selection and scaling of each process
are performed simultaneously with the selection of utilities and heat integration between
processes. The selection and scaling of processes for biorefinery composition were governed
by mass balance constraints in addition to demand constraints and feedstock availability.
For heat integration between processes, the concept of process heat cascade integration
is used. This approach allows heat exchange in the region between the pinch points of
these processes, facilitating heat transfer integration and reducing energy consumption.
The simultaneous solution is achieved by linking the mass and energy balance constraints
through the calculation of the utility mass required by the processes. This eliminates
the need for complex computational structures and iterative problem-solving, provided
that all possible process combinations have been considered. The study evaluated the
integration of different technologies to improve diversification and biofuel production in a
sugarcane biorefinery. This sector is of great importance to the Brazilian economy and is
considered essential for the sustainable development of a low-carbon economy. The results
presented show that the integration of energy from the gasification process allowed the
biorefinery to simultaneously generate revenue and energy from bagasse. Since it led to a
significant improvement in the energy, economic, and environmental performance of the
biorefinery, the production of methanol through bagasse gasification can be considered
a key process for the expansion of the biorefinery. On the contrary, the conversion of
carbon dioxide into methanol, while increasing the generation of carbon credits, has a
significant negative impact on biorefinery energy efficiency and economic viability. This
is due to the significant increase in electricity cost acquisition. The results also show that
the price of electricity is critical to the economic viability of the biorefinery due to its high
consumption of electrolyzers. Furthermore, the results indicate that the incorporation of
the bagasse gasification process may be a viable technological alternative to conventional
cogeneration systems. This is due to its demonstrated ability to meet the entire heat demand
of the biorefinery.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/e26060501/s1, Table S1: Main economic assumptions
adopted for economic evaluation; Table S2. Values of CO2 emitted and avoided used to gener-
ate carbon credits. Table S3: Linearized cost curve coefficients and their respective levels; Table S4:
Steam parameters considered; Table S5: Heat streams considered for each process; Table S6: IAR
values used for each model considered in the cases; Table S7: OAR values used for each model
considered in the cases.

https://www.mdpi.com/article/10.3390/e26060501/s1
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Nomenclature

Sets
R Resource set
U Unit set
PU Process subset
UT Utilities subset
HUT Hot utility subset
CUT Cold utility subset
LRA Subset for available resources
LRB Subset for demanded resources
Subscripts
u Unit set index
r Resource set index
pu Process subset index
ut Utility subset index
n Stream index
l Unit level index
Abbreviations and formulas
CO2 Carbon Dioxide
CCH Catalytic CO2 Hydrogenation
CH4 Methane
DME Dimethyl Ether
HC Heat Cascade
HI Heat Integration
H2S Hydrogen Sulfide
MCD Methanol Catalytic Dehydration
MeOH Methanol
PA Pinch Analysis
TSI Total Site Integration
Variables and Parameters
au,l Angular coefficient of linearized segment l of unit u
AF Annualization factor
availr Available amount of resource r
bu,l Linear coefficient of linearized segment l of unit u
boughtr Amount bought of resource r
CapMinu,l Minimum capacity of unit u in level l
CapMaxu,l Maximum capacity of unit u in level l
CarbVal Value of carbon credit
CC Carbon credit revenue
consu,r Consumption of resource r by unit u
Cu Adjusted capital cost for unit u
C0u Annualized capital cost at the reference scale for unit u
demandr Amount demanded of resource r
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fop Hours of operation in a year
hsut Available heat per mass of cold utility ut
hvut Available heat per mass of hot utility ut
IARu,r Inlet flow rate of resource r in unit u
LC Other cost
massUtilitypu,ut Mass of utility ut consumed by unit pu
MC Maintenance cost
MCppu,n Thermal capacity of stream n of process pu
MPr Market price of resource r
MERpu Minimum energy requirement of hot utility ut
OARu,r Outlet flow rate of resource r in unit u
OC Operational cost
PCr Commercialization revenue of resource r
PCr Revenue commercialization from product r
produ,r Production of resource r by unit u
Qcpu,s Heat demanded by the cold streams in stage s by process pu
Qfpu,s Inlet heat into unit pu and stage s
Qhpu,s Heat available by the hot streams in stage s by process pu
Qinpu Heat received from another unit by unit pu
Qoutpu Heat supplied to another unit by unit pu
Qupu,ut Heat consumed by unit pu of utility ut
Qspu,s Outlet heat into unit pu and stage s
RCr Acquisition cost of resource r
ResCostr Cost of resource r
se Scaling exponent
soldr Sold amount of resource r
TAC Total annualized cost
Tes Inlet temperature of stage s
Tinpu,n Inlet temperature of stream n of unit pu
Toutpu,n Outlet temperature of stream n of unit pu
Tpinchpu Pinch temperature of unit pu
Tss Outlet temperature of stage s
UCCu Capital cost of unit u
UFpu Minimum energy requirement of cold utility ut
UToutut Outlet temperature of utility ut
yu,l Binary variable that selects a unit u in a linearized segment l
wu Scale adjustment variable of unit u
wlu,l Local scaling adjustment variable of unit u in level l
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