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Abstract: In addition to their importance in statistical thermodynamics, probabilistic entropy mea-
surements are crucial for understanding and analyzing complex systems, with diverse applications
in time series and one-dimensional profiles. However, extending these methods to two- and three-
dimensional data still requires further development. In this study, we present a new method for
classifying spatiotemporal processes based on entropy measurements. To test and validate the
method, we selected five classes of similar processes related to the evolution of random patterns:
(i) white noise; (ii) red noise; (iii) weak turbulence from reaction to diffusion; (iv) hydrodynamic fully
developed turbulence; and (v) plasma turbulence from MHD. Considering seven possible ways to
measure entropy from a matrix, we present the method as a parameter space composed of the two best
separating measures of the five selected classes. The results highlight better combined performance
of Shannon permutation entropy (Sp

H) and a new approach based on Tsallis Spectral Permutation
Entropy (Ss

q). Notably, our observations reveal the segregation of reaction terms in this Sp
H × Ss

q space,
a result that identifies specific sectors for each class of dynamic process, and it can be used to train
machine learning models for the automatic classification of complex spatiotemporal patterns.

Keywords: nonlinear dynamics; spatiotemporal patterns; turbulence; Shannon entropy; Tsallis
entropy; gradient pattern analysis

1. Introduction

The intricate relationship between probability and entropy is a cornerstone in informa-
tion theory and statistical thermodynamics, providing a robust framework for analyzing
a multitude of phenomena ranging from data transmission processes to the behavior of
many physical systems. Entropy, derived from the probability distribution of the states of a
process or system, can be interpreted as a quantitative measure of randomness or disorder,
offering deep insights into the underlying dynamics of several complex systems (see, for
instance, Refs. [1–6]).

From a thermodynamic perspective, the entropy concept is intimately tied to the sta-
tistical mechanics of microstates. Entropy, S, is defined by Boltzmann’s entropy equation,
S = kB ln Ω, where kB is the Boltzmann constant and Ω represents the number of mi-
crostates. This relationship can be interpreted as the degree of disorder or randomness in a
system’s microscopic configurations, drawing a direct connection between the macroscopic
observable properties and the statistical behavior of microstates. Complementarily, in the
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realm of information theory, entropy is fundamentally concerned with quantifying the
expected level of “information”, “surprise”, or “uncertainty” in the potential outcomes
of a system [7]. This quantification is intricately linked to the probability distribution
of these outcomes. It essentially measures the average unpredictability or the requisite
amount of information needed to describe a random event, thereby providing a metric for
the efficiency of data transmission and encoding strategies. Therefore, the duality of the
entropy interpretation works as a bridge between the abstract realm of information and the
tangible world of the statistics of physical systems. It encapsulates the essence of entropy as
a fundamental measure, providing a unifying lens through which the behavior of complex
systems, whether in the context of information processing or thermodynamics, can be
coherently understood and analyzed. This interdisciplinary approach not only deepens
our understanding of individual phenomenon but also reveals the underlying universality
of the concepts of randomness and information across diverse scientific domains.

In the scenario described above, it is necessary to identify entropy measures that
are effective in characterizing the spatiotemporal patterns of complex processes typically
observed or simulated in 3D + 1: following the notation of the amplitude equation the-
ory, where D corresponds to the spatial dimension in which the amplitude of a variable
fluctuates over time. This need is justified by the great advances in the generation of big
data in computational physics, with emphasis on the direct numerical simulation (DNS) of
turbulence [8,9], ionized fluids [10–14], and reactive–diffusive processes [15] to highlight
a few.

Our main objective in this work is to present and evaluate the performance of a set
of information entropy measurements, conjugated two by two, in order to characterize
different classes of 3D structural patterns arising from nonlinear spatiotemporal processes.
To this end, the article is organized as follows: The analytical methodology is presented
in Section 2, and the data are presented in Section 3. The results, in the context of a
benchmark based on the generalization of the silhouette score, are presented and interpreted
in Section 4. Our concluding remarks, with emphasis on pointing out the usability of the
method in the context of data-driven science, are presented in Section 6.

2. Methods

Various entropy metrics have been proposed in the literature, including spectral
entropy, permutation entropy, and statistical complexity.

The process of defining a new metric typically involves two fundamental steps: (i) es-
tablishing the probability definition and (ii) determining the entropic form. This framework
allows for the generalization of any new metric by specifying these two steps (code publicly
available at https://github.com/rsautter/Eta (14 January 2024)).

In Sections 2.1 and 2.2, we present, respectively, the key techniques for defining
probabilities and entropic forms. Subsequently, in Section 2.3, we introduce a methodology
to assess these metrics using criteria that are commonly applied to clustering techniques.

2.1. Probabilities

Probability is a concept that quantifies the likelihood of an event occurring. It is
expressed as a numerical value between 0 and 1. Here, 0 signifies the complete impossibility
of an event, while 1 denotes absolute certainty. Mathematically, if we consider a process
with a finite number of possible outcomes, the probability Pr(E) of an event E is defined by
the following ratio:

Pr(E) =
Number of favorable outcomes

Total number of possible outcomes
. (1)

This definition is useful for gaining insight of systems that produce discrete real-valued
outcomes. In such a case, a histogram of proportions of observed events is the usual tool
for estimating the underlying probability distribution of such outcomes.

https://github.com/rsautter/Eta
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Many systems produce continue-valued multidimensional outcomes, and the observer
needs to define methods for estimating a useful probability that is able to characterize their
behavior. Approaches such as permutation and spectral analysis incorporate spatial locality
and scale considerations to elucidate the occurrence of specific patterns.

In the permutation approach, local spatial differences (increase, decrease, or constancy)
represent the states. New states can be generated by permuting the array elements. Thus,
the probabilities account for the occurrences of those states. To extend this definition to
multiple dimensions, a given array is flattened. Further details of this technique have been
explored by Pessa and Ribeiro [16].

Another methodology involves spectral analysis, wherein the probability is computed
as the power spectrum density (PSD) of the signal P(ω), which is normalized accordingly.
Since this approach considers the probability associated with a given frequency ω, it
explores the scaling relation of the signal. For instance, white noise, characterized by equal
power across all frequencies, represents a type of signal exhibiting maximum entropy. In
contrast, red noise presents a higher PSD for lower frequencies, leading to lower entropy
values. This approach has been popularized in the literature to study time series [2,17].
The probabilities presented in this section describe the possible spatial states, while the
subsequent subsection elaborates on the entropic characterization of this system.

2.2. Entropic Forms

Several entropy equations and generalizations have been proposed, such as Boltzmann–
Gibbs entropy (also known as Shannon entropy), Tsallis entropy, and Rényi entropy. The
most common form is Shannon entropy, which is expressed as follows:

SH = −
W

∑
i=1

pi log pi. (2)

Here, pi is the probability of state i, which can also comprise complex numbers [18], and
W is the size of the set of possible events. The value of SH depends on the distribution.
Notably, SH is at the maximum when all probabilities are equal, i.e., under the uniform
distribution; in this case, SH = − log W, and it is at the minimum when pi is Dirac’s delta.
To account for this maximum value, normalized Shannon entropy is given by the following:

SH = −∑W
i=1 pi log pi

log W
. (3)

Another significant entropic form is Tsallis entropy, proposed as a generalization of
Boltzmann–Gibbs entropy [19]:

Sq =
1 − ∑W

i=1 pq
i

q − 1
, (4)

where q ∈ R is the entropic index or nonextensivity parameter, and it plays a crucial role in
determining the degree of nonextensivity in Tsallis entropy.

It is important to explore a range of values for the parameter q to derive a metric
distinct from Shannon entropy since limq→1 Sq = SH . Therefore, we suggest exploring
values for q in the range of 1 < q < 5 and seek a relationship denoted by α, where
log Sq = α log q. This approach enables the examination of this generalization of SH .

A unique strategy for characterizing complex nonlinear systems is gradient pattern
analysis (GPA). This technique involves computing a set of metrics derived from the
gradient lattice representation and the gradient moments (see Appendix A). Specifically, we
highlight G4, which is determined as the Shannon entropy from the complex representation
of the gradient lattice:

G4 =

∣∣∣∣∣VA

∑
j=0

zj

z
ln

zj

z

∣∣∣∣∣. (5)
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In the lattice context, the gradient signifies the local variation of amplitudes, computed
as the spatial derivative at every embedding dimension. From these spatial derivatives, the
following complex representation is formed:

zj = |vj|eiθj , (6)

It comprises both the modulus (|vj|) and phases (θj). To obtain a probability, the
complex notation is normalized by z = ∑ zj. For an in-depth review of this metric, please
refer to [18,20]. Table 1 provides a summary of all combinations of entropic forms with
associated probabilities, along with the GPA metric, that were examined in this study.

Table 1. Entropy measures.

Measure Probability Entropic Form Reference

Sh
H histogram Shannon, Equation (3) Lesne [21]

Sp
H permutation Shannon, Equation (3) Pessa, Ribeiro [16]

Ss
H spectral Shannon, Equation (3) Abdelsamie et al. [9],

Abdullah et al. [3]
Sh

q histogram Tsallis q-law, Equation (4) Li and Shang [22]
Sp

q permutation Tsallis q-law, Equation (4) Li and Shang [22]
Ss

q spectral Tsallis q-law, Equation (4) This paper
G4 gradient Complex Shannon, Equation (5) Ramos et al. [18]

To assess the efficacy of each metric and explore the impact of various combinations
of probability definitions with entropic forms, we introduce a criterion outlined in the
subsequent section. This criterion is formulated with a focus on clustering the entropy
measures of the dataset.

2.3. Silhouette Score and Generalized Silhouette Score

Non-supervised algorithms face unique challenges, and a remarkable one is defin-
ing their efficiency. The silhouette score is a criterion for defining if a set has been well
clusterized [23]. Given an element xi in a cluster πk, this metric is computed as follows [3,24]:

s(xi) =
b(xi)− a(xi)

max
{

b(xi), a(xi)
} , (7)

where a(xi) is the average dissimilarity, which is the average distance of xi to all other
elements in the cluster πk, and b(xi) is the average distance to the elements of other clusters.
The greater the s(xi) value, the better performance of the clustering algorithm because it
has produced groups with low dissimilarities and large distances between clusters. This
technique can be extended to feature extractions if one considers the individual datasets
as the clusters πk. However, it is equally essential to account for the potential correlation
between metrics, as metrics may inadvertently capture the same data aspects, which is
undesirable. To mitigate this, we use the modulus of the Pearson correlation |r| to form the
penalty term 1 − |r| as follows:

s′(xi) =
(
1 − |r|

) b(xi)− a(xi)

max
{

b(xi), a(xi)
} , (8)

which we call the generalized silhouette score (GSS).
After defining a group of entropy measurements and the tool (GSS), which allows

the determination of the best pair of measurements to compose a 2D parameter space, we
selected the dataset to test and validate our methodological approach.
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3. Data

Our main objective is to test the performance of a space composed of two entropy
measures in which it is possible to distinguish different classes of complex spatiotempo-
ral processes. For this first study, we chose turbulence-related processes and simulated
dynamic colored noises.

We employ simulated data related to the following processes: (i) white noise; (ii) col-
ored noise; (iii) weak turbulence; (iv) hydrodynamic turbulence; and (v) magnetohydrody-
namic turbulence (MHD). The main reason for choosing these processes, except colored
noise, is that they all present random-type patterns with underlying dynamic characteristics
based on physical processes described by partial differential equations (diffusion, reaction,
and advection). Each was obtained from simulations identified in Table 2.

Based on the power-law-scaling algorithm technique [25], we created our noise sim-
ulator [26]. The data representing weak turbulence (also called chemical or reactive–
diffusive turbulence) were obtained from the solution of the Ginzburg–Landau complex
equation [15,27]. The hydrodynamic turbulence patterns were selected from the John Hop-
kins database (JHTDB) [28], and the MHD turbulence was simulated using the PENCIL
code [12]. Details regarding the simulations are provided in the Supplementary Materials
in the GitHub repository.

To test the approach based on entropy measurements, we selected a total of 25 snap-
shots representing the evolution of each chosen process. After selecting the middle slice
of the hypercube, we uniformly resized all snapshots to 64 × 64 byte-valued pixels using
nearest neighbor interpolation; while this resizing expedites the analysis, it does entail a
loss in resolution. The snapshots were extracted from 3D simulations, taking the analysis
of the central slice of each hypercubeas a criterion as the measurement technique used to
act on matrices within a two-dimensional approach.

Table 2. Datasets and references.

Simulation Process Reference

White Dynamic Noise Spatiotemporal stochastic Timmer et al. [25]
Red Dynamic Noise Spatiotemporal stochastic Timmer et al. [25]
CGL 1 Weak turbulence Sautter [26], Sautter et al. [27]
JHTDB Fully developed turbulence Brandenburg et al. [12]
PENCIL MHD turbulence Brandenburg et al. [12]

1 Our 3D simulator is public available at https://github.com/rsautter/Noisy-Complex-Ginzburg-Landau (14
January 20224).

Figure 1 shows representative snapshots of the respective spatiotemporal processes.
These visualizations provide a compelling narrative of the dynamic behavior of each system,
highlighting the wide variety of patterns that emerge through temporal dynamics in the
phase space.

The numerical procedures and/or technical acquisition details related to the data
shown in Figure 1 are available in the Supplementary Materials in the repository
(https://github.com/rsautter/Eta/ (14 January 2024)) and in the section entitled “Data
Simulations”.

https://github.com/rsautter/Noisy-Complex-Ginzburg-Landau
https://github.com/rsautter/Eta/
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Figure 1. Snapshots of the spatiotemporal evolution of each selected system class, listed in Table 2.
Each row shows one of the simulations, rendered at time steps that show representative pattern
dynamics: dynamic white noise (β = 0 represented by colormap ‘Blues’) on the 1st row; random red
noise (β = 2, represented by colormap ‘Reds’) on the 2nd row; weak turbulence from the reaction–
diffusion complex Ginzburg–Landau dynamics on the 3rd row (represented by colormap ‘viridis’);
fully developed turbulence from JHTDB on the 4th row (represented on colormap ‘rainbow’) and
MHD turbulence from PENCIL on the 5th row (represented by colormap ‘cool’).

4. Results and Interpretation

The analyses in this study were conducted within 2D metric spaces, encompassing all
possible entropy measure combinations. Based on the minimum information principle, this
configuration offers advantages in terms of interpretability, considering the minimum set of
parameters that can be addressed as labels within a possible machine learning interpretation.
Our approach to measuring entropies from the data follows the following steps:

• Input of a snapshot;
• Pre-processing for which its output is a 64 × 64 matrix with amplitudes ranging from

0 to 255;
• Generation of three matrix data outputs: 2D histogram, 2D permutation, and 2D

FFT spectra;
• For each of the three domains, the entropy measures are calculated.

Given the definition of the three types of domains interpreted as probabilities (from
histogram, permutation, and spectrum), we have six entropy variations, as detailed in
Section 2. To distinguish these metrics, we introduced superscripts denoted by h for
histogram probability, p for permutation probability, and s for spectral probability. The
GPA analysis yields another metric, resulting in 21 scores, as illustrated in Figure 2.

As a result, the most effective combination is the following pair: spectral Tsallis
entropy (Ss

q) and Shannon permutation entropy (Sp
H). A visual representation of this space,

accompanied by some snapshots, is presented in Figure 3. In this space, the metrics
reveal a constant Shannon permutation entropy dynamical noise system, which is solely
distinguished by spectral Tsalllis entropy, indicating the differences in the scaling effects in
pattern formation. Conversely, the distinct complex nonlinear characteristics and reaction
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terms observed in MHD simulations are more pronounced in Shannon permutation entropy,
accentuating the diversity of localized patterns alongside the larger-scale ones.

Sh
H Sp

H Ss
H Sh

q Sp
q Ss

q G4

Sh
H

Sp
H

Ss
H

Sh
q

Sp
q

Ss
q

G4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2. Generalized silhouette score for all 2D metric combinations. Higher values on the heatmap
indicate superior metric performance. The optimal result is achieved with the pairing of spectral
Tsallis entropy and Shannon permutation entropy (Ss

q × Sp
H).
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Figure 3. Optimal outcomes achieved are assessed through the generalized silhouette score criterion.
The method achieves its best performance in the (Ss

q × Sp
H) parameter space.
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The analysis of entropy distribution is essential in a classification context, as it offers
insights into the similarity between a new dataset and various models. However, carefully
analysing the entropy metrics over time can highlight important aspects of the underlying
physical processes. For instance, the transition from initial conditions to an oscillatory
relaxation state is evident in Figure 4. This outcome aligns with expectations in the context
of the CGL system due to the periodic nature of the reaction term. However, it is essential
to highlight that in this introductory study, we avoided simulations with more complex
regimes (such as relaxations) as the primary purpose here is to present a new method, and
the objective here is not to use it to deepen the physical interpretation of each process.

1.90 1.85 1.80 1.75 1.70
Spectral Tsallis Entropy (Ss

q)
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0.785

0.790

0.795

0.800

0.805
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0.815

0.820

0.825

Figure 4. Best entropy set according to the generalized silhouette score (see Figure 2) for the 3D-CGL
solution over time, where the oscillatory dynamic of the system is highlighted. The color indicates
the snapshot, where 500 samples are presented.

5. Outlook

Based on the study and approach presented here, we defined a methodological pipeline
for the spatiotemporal characterization of simulated and/or observed complex processes
(Figure 5). The method can be applied to identify and segregate different classes of pro-
cesses and to classify isolated patterns when necessary. In a context where measured and
simulated data may exist, it also serves to validate models. Likewise, the pair of entropy
measurements can also serve as a binomial label for training deep learning architectures
for automatic classification.
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Figure 5. Pipeline of the method proposed in this study based on the best results found: A sequence
of snapshots from the simulation of a given process (in the 2D + 1 or 3D + 1 domains) comprises
the input from which entropy measurements will be obtained. To calculate the respective Shannon
permutation entropy values Sp

H , the permutation values are obtained (see Appendix B). To calculate
the spectral Tsallis entropy Ss

q, the respective spectra are obtained. From the calculated values, the
parameter space is constructed where where it is proposed to characterize the underlying process.
The space also works for classifying isolated patterns, taking as reference the distinct processes that
have already been characterized.

6. Concluding Remarks

This work carried out a comprehensive analysis of entropy metrics and their ap-
plication to complex extended nonlinear systems. The study explored new approaches,
including different entropy measures and a new generalized silhouette score for measure-
ment evaluation.

Through the meticulous consideration of canonical datasets, distinct patterns have been
characterized in terms of entropy metrics. The pivotal finding was the identification of the
optimal pair: spectral Tsallis entropy (Ss

q) and Shannon permutation entropy (Sp
H), yielding

superior outcomes in the generalized silhouette score. This combination showcased efficacy
in distinguishing spatiotemporal dynamics coming from different classes of turbulent-like
processes, including pure stochastic 2D 1/ f−β (colored) noise.

The new method contributes valuable insights into applying entropy probabilistic
measures, providing a foundation for future studies in terms of extended complex system
pattern formation characterization.

Initial work considering entropy measurements for training machine learning models
is underway. In this context, it also includes a study of the computational complexity of
the method for a benchmark with other measures and approaches that may emerge. This
strategy is fundamental when we think about the presented method being applied in a
data science context.

Author Contributions: Conceptualization, R.R.R., L.O.B. and R.A.S.; methodology, R.R.R., L.O.B.
and R.A.S.; software, L.O.B. and R.A.S.; validation, R.R.R., L.O.B., R.A.S., A.C.F. and E.L.R.; formal
analysis, R.A.S. and L.O.B.; investigation, R.A.S. and L.O.B.; resources, R.R.R., L.O.B. and A.C.F.;
data curation, E.L.R. and R.A.S.; writing—original draft preparation, R.R.R., L.O.B. and R.A.S.;
writing—review and editing, R.R.R., L.O.B., R.A.S., A.C.F. and E.L.R.; visualization, L.O.B. and R.A.S.;
supervision, R.R.R.; project administration, R.R.R.; funding acquisition, R.R.R., L.O.B., R.A.S. and
A.C.F. All authors have read and agreed to the published version of the manuscript.

Funding: R.R.R. thanks FAPESP under Grant No. 2021/15114-8 for partial financial support. L.O.
Barauna and R.A.S were supported by the Federal Brazilian Agency-CAPES. E.L.R. acknowledges
financial support from CNPq (Brazil) under Grant No. 306920/2020-4. Te Herenga Waka–Victoria
University of Wellington partially funded this publication through Read & Publish agreements
negotiated by the Council of Australian University Librarians (CAUL) Consortium.

Institutional Review Board Statement: Not applicable.



Entropy 2024, 26, 508 10 of 12

Data Availability Statement: All the mathematical content and data used in this work in a GitHub
repository (https://github.com/rsautter/Eta/ (14 January 2024)) to guarantee the reproducibility of
this experiment.

Acknowledgments: The authors thank the Brazilian Space Agency (AEB) for the payment of APC
(Article Processing Charge) costs.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Gradient Pattern Analysis

Gradient pattern analysis (GPA) represents a paradigm shift in data analysis, focusing
on the spatiotemporal dynamics of information rather than static values. This innovative
approach emphasizes the examination of gradients within datasets—dynamic vectors
that encode the rate of change—thereby revealing patterns and structures that are often
obscured by traditional analytical methods.

From a mathematical perspective, GPA utilizes a series of gradient moments to quan-
tify the smoothness and alignment of these vectors within the data lattice:

G1 =
NC − NV

NV
, (A1)

G2 =
VA
V

1 −

∣∣∣∣∣VA
∑

j=0
vj

∣∣∣∣∣
2

VA
∑

j=0

∣∣vj
∣∣
, (A2)

G3 =
1
2

(
VA
V

+
1

2VA

VA

∑
j=0

uj.vj + 1

)
, (A3)

and

G4 =

∣∣∣∣∣VA

∑
j=0

zj

z
ln

zj

z

∣∣∣∣∣. (A4)

where NC and NV are the connections in the Delaunay triangulation and the number of
vertices; VA is the number of asymmetrical vectors, V is the total number of vectors in
the lattice, and vA

j is an asymmetrical vector; uj = (cos(ϕj), sin(ϕj)) and zj = |vi| exp(iθj),
where |vi| represents the modulus and θj represents the phase and

z =
VA

∑
j

zj. (A5)

These moments provide a distinctive signature that characterizes the inherent patterns
in the data, and they are applicable across various domains. This versatility enables GPA’s
application in diverse fields, ranging from time-series analysis in climatology to image
recognition in computer vision.

One of the notable strengths of GPA is its capacity for efficient data compression. By
discerning and eliminating redundant information while retaining the essential gradient
characteristics, GPA achieves data compression without losing the dataset’s critical struc-
tural and dynamic properties. This aspect of GPA is particularly advantageous for storing,
transmitting, and analysing large-scale datasets in numerous scientific and engineering
disciplines. For a complete review, see Refs. [18,20].

https://github.com/rsautter/Eta/
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Appendix B. Two-Dimensional Permutation Entropy

Based on the concept of permutation entropy [29], two-dimensional multiscale sample
entropy has been proposed as a new texture algorithm [30,31] and has therefore been used
to evaluate the complexity of 2D patterns [32]. In a simplified way, the technique is based
on the following steps:

• Step 1: Obtain the coarse-grained image as an N × N matrix;
• Step 2: Apply a window of size d × d to it;
• Step 3: Carry out d! reshape permutations to obtain the probabilities of each local

pattern;
• Step 4: Repeat the last procedure, scanning the entire matrix;
• Step 5: Apply the probability values as input to the chosen entropy formula.

In our application, we use d = 9 since it is the minimum kernel size encompassing a
central pixel. This value corresponds to a kernel of dx = dy = 3.
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