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Abstract: The problem of testing random number generators is considered and a new method for
comparing the power of different statistical tests is proposed. It is based on the definitions of random
sequence developed in the framework of algorithmic information theory and allows comparing the
power of different tests in some cases when the available methods of mathematical statistics do not
distinguish between tests. In particular, it is shown that tests based on data compression methods
using dictionaries should be included in test batteries.
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1. Introduction

Random numbers play an important role in cryptography, gambling, Monte Carlo
methods and many other applications. Nowadays, random numbers are generated using
so-called random number generators (RNGs), and the “quality” of the generated numbers
is evaluated using special statistical tests [1]. This problem is so important for applications
that there are special standards for RNGs and for so-called test batteries, that is, sets of
tests. The current practice for using an RNG is to verify the sequences it generates with
tests from some battery (such as those recommended by [2,3] or other standards).

Many statistical tests are designed to test some deviations from randomness described
as classes of random processes (e.g., Bernoulli process with unequal probabilities 0 and 1,
Markov chains with some unknown parameters, stationary ergodic processes, etc.) [1–5].

A natural question is: how do we compare different tests and, in particular, create
a suitable battery of tests? Currently, this question is mostly addressed experimentally:
possible candidate tests are applied to a set of known RNGs and the tests that reject
more (“bad”) RNGs are suitable candidates for the battery. In addition, researchers try to
choose independent tests (i.e., those that reject different RNGs) and take into account other
natural properties (e.g., testing speed, etc.) [1–4]. Obviously, such an approach depends
significantly on the set of selected tests and RNGs pre-selected for consideration. It is worth
noting that at present there are dozens of RNGs and tests, and their number is growing
fast, so the recommended batteries of tests are rather unstable (see [4]).

It is clear that increasing the number of tests in a battery increases the total testing time
or, conversely, if testing time is limited, increasing the number of tests causes the length of
the binary sequence being examined to decrease and therefore the power of any battery
test is reduced. Therefore, it is highly desirable to include in the battery powerful tests
designed for different deviations from randomness.

The goal of this paper is to develop a theoretical framework for test comparison and
illustrate it by comparing some popular tests. The main idea of the proposed approach is
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based on the definition of randomness developed in algorithmic information theory (AIT).
Apparently, it is natural to use this theory, since it is the only mathematically correct theory
that formally defines what a random binary sequence is, and by definition any RNG should
generate such sequences. Similar to AIT, we extend the notion of “random sequence” to any
statistical test T, and then compare the “size” of the set of random sequences corresponding
to different tests. More precisely, let RT1 and RT2 be random sequences according to T1 and
T2. Then, if dim(RT1\RT2) > 0, then T1 accepts a large set of sequences as random, whereas
T2 rejects these sequences as non-random. So, in this sense, a T1 test cannot replace T2 in a
battery of tests (here dim is the Hausdorff dimension.).

Based on this approach, we give some practical recommendations for building test
batteries. In particular, we recommend including in the test batteries a test based on a
dictionary data compressor, like Lempel–Ziv codes [6], grammar-based codes [7] and
some others.

The rest of this paper consists is organized as follows. The next part contains definitions
and preliminary information, the third part is a comparison of the test performance on
Markov processes with different memories and general stationary processes, and the fourth
part investigates tests based on Lempel–Ziv data compressors. The fifth part is a brief
conclusion; some of the concepts used in this paper are given in the Appendix A.

2. Definitions and Preliminaries
2.1. Hypothesis Testing

In hypothesis testing, there is a main hypothesis H0 = {the sequence x is random}
and an alternative hypothesis H1 = ¬H0. (In the probabilistic approach, H0 is that the
sequence is generated by a Bernoulli source with equal probabilities 0 and 1.) A test is an
algorithm for which the input is the prefix x1 . . . xn (of the infinite sequence x1, . . . , xn, . . . )
and the output is one of two possible words: random or non-random (meaning that the
sequence is random or non-random, respectively).

Let there be a hypothesis H0, some alternative H1, let T be a test and τ be a statistic,
that is, a function on {0, 1}n which is applied to a binary sequence x = x1 . . . xn. Here and
below {0, 1}n is the set of all n-bit binary words, {0, 1}∞ is the set of all infinite words
x1x2 . . . , xi ∈ {0, 1}.

By definition, Type I error occurs if H0 is true and H0 is rejected; the significance level
is defined as the probability of the Type I error. Denote the critical region of the test T
for the significance level α by C̄T(α, n) and let CT(α, n) = {0, 1}n \ C̄T(α, n). Recall that,
by definition, H0 is rejected if and only if x ∈ C̄T(α, n) and, hence,

|C̄T(α, n)| ≤ 2nα , (1)

see [8]. We also apply another natural limitation. We consider only tests T such that for all
n and α1 < α2 C̄T(α1, n) ⊂ C̄T(α2, n). (Here and below, |X| is the number of elements X if
X is a set, and the length of X, if X is a word.)

A finite sequence x1 . . . xn is considered random for a given test T and the significance
level α if it belongs to CT(α, n).

2.2. Batteries of Tests

Let us consider a situation where the randomness testing is performed by conducting
a battery of statistical tests for randomness. Suppose that the battery T̂ contains a finite
or countable set of tests T1, T2, . . . and αi is the significance level of i-th test, i = 1, 2, . . . .
If the battery is applied in such a way that the hypothesis H0 is rejected when at least
one test in the battery rejects it, then the significance level α of this battery satisfies the
following inequality:

α ≤
∞

∑
i=1

αi , (2)
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because P(A + B) ≤ P(A) + P(B) for any events A and B (This inequality is a simple
extension of the so-called Bonferroni correction, see [9]).

It will be convenient to formulate this inequality in a different way. Suppose there is
some α ∈ (0, 1) and a sequence ω of non-negative ωi such that ∑∞

i=1 ωi ≤ 1. For example,
we can define the following sequence ω∗:

ω∗
i = 1/(i(i + 1)) i = 1, 2, . . . . (3)

If the significance level Ti equals αωi, then the significance level of the battery T̂ is not
grater than α. (Indeed, from (2) we obtain ∑i=1 αi = ∑i=1(αωi) = α ∑i=1 ωi ≤ α.) Note that
this simple observation makes it possible to treat a test battery as a single test.

2.2.1. Random and Non-Random Infinite Sequences

Kolmogorov complexity is one of the central notations of algorithmic information
theory (AIT), see [10–18]. We will consider the so-called prefix-free Kolmogorov complexity
K(u), which is defined on finite binary words u and is closely related to the notion of
randomness. More precisely, an infinite binary sequence x = x1x2 . . . is random if there
exists a constant C such that

n − K(x1 . . . xn) < C (4)

for all n, see [19]. Conversely, the sequence x is non-random if

∀ C > 0 ∃ nC nC − K(x1 . . . xnC ) ≥ C

In some sense, Kolmogorov complexity is the length of the shortest lossless prefix-free
code, that is, for any (algorithmically realisable) code f there exists a constant c f for which
K(u) ≤ | f (u)|+ c f [10–16]. Recall that a code f is lossless if there is a mapping f−1 such
that for any word u f−1( f (u)) = u and f is prefix-free (or unprefixed) if for any words u, v,
f (u) is not a prefix of f (v) and f (v) is not a prefix of f (u).

Let f be a lossless prefix-free code defined for all finite words. Similarly to (4), we call
it random with respect to f if there is a constant C f such that

n − | f (x1 . . . xn)| < C f (5)

for all n. We call this difference the statistic corresponding to f and define

τf (x1 . . . xn) = n − | f (x1 . . . xn)|. (6)

Similarly, the sequence x is non-random with respect to f if

∀C > 0 ∃ nC nC − | f (x1 . . . xnC | ≥ C . (7)

Informally, x is random with respect to f if the statistic τf is bounded by some constant on
all prefixes x1 . . . xn and, conversely, x is non-random if τf is unbounded when the prefix
length grows.

Based on these definitions, we can reformulate the concepts of randomness and non-
randomness in a manner similar to what is customary in mathematical statistics. Namely,
for any α ∈ (0, 1) we define the set {y = y1 . . . yn : τf (y) ≥ − log α}. It is easy to see that
(1) is valid and, therefore, this set represents the critical region C̄T(α, n), where the test T is
as follows: T = {x1 . . . xn: τf (x1 . . . xn) < α}.

Based on these consideration, (6) and the definitions of randomness (4), (5) we give
the following definition of randomness and non-randomness for the statistic τf and cor-
responding test Tf . An infinite sequence x = x1x2 . . . is random according to the test Tf
if there exists such α > 0 that for any integer n and this α the word x1 . . . xn is random
(according to the Tf test). Otherwise, the sequence x is non-random.
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Note that we can use the statistic

τf = n − | f (x1 . . . xn)|

with the critical value tα = n − log(1/α)− 1, α ∈ (0, 1), see [20,21]. So, there is no need to
use the density distribution formula and it greatly simplifies the use of the test and makes
it possible to use this test for any data compressor f .

It is important to note that there are tests developed within the AIT that can be used
to test RNG [22,23].

2.2.2. Test Performance Comparison

For test T, let us define the set RT of all infinite sequences that are random for T.
We use this definition to compare the “effectiveness” of different tests as follows. The

test T1 is more efficient than T2 if the size of the difference RT2\RT1 is not equal to zero,
where the size is measured by the Hausdorff dimension.

Informally, the “smallest” set of random sequences corresponds to a test based on
Kolmogorov complexity (4) (corresponding set RK contains “truly” random sequences).
For a given test T1 we cannot calculate the difference RT1\RK because the statistic (4) is
noncomputabele, but in the case of two tests T1 and T2, where dim(RT2\RT1) > 0, we
can say that the set of sequences random according to T2 contains clearly non-random
sequences. So, in some sense, T1 is more efficient than T2. (Recall that we only consider
computable tests.)

The definition of the Hausdorff dimension is given in the Appendix A, but here we
briefly note that we use the Hausdorff dimension for it as follows: for any binary sequence
x1x2 . . . we define a real number σ(x) = 0. x1x2 . . . and for any set of infinite binary
sequences S we denote the Hausdorff dimension of σ(S) by dim S. So, a test T1 is more
efficient than T2 (formally T1 ⪰ T2) if dim(RT2\RT1) > 0. Obviously, information about a
test’s effectiveness can be useful to developers of the test’s batteries.

Also note that the Hausdorff dimension is widely used in information theory. Perhaps
the first such use was due to Eggleston [24] (see also [25,26]), and later the Hausdorff
dimension found numerous applications in AIT [27–29].

2.2.3. Shannon Entropy

In RNG testing, one of the popular alternative hypotheses (H1) is that the considered
sequence generated by Markov process of memory (or connectivity) m, m > 0, (Sm), but the
transition probabilities are unknown. (S0, i.e., m = 0, corresponds to the Bernoulli process).
Another popular and perhaps the most general H1 is that the sequence is generated by a
stationary ergodic process (S∞) (excluding H0).

Let us consider the Bernoulli process µ ∈ S0 for which µ(0) = p, µ(1) = q, (p + q = 1).
By definition, the Shannon entropy h(µ) of this process is defined as h(µ) = −(p log p +
q log q) [30]. For any stationary ergodic process ν ∈ S the entropy of order k is defined
as follows:

hk(ν) = Eν(− ∑
u∈{0,1}k

(ν(0/u) log(0/u) + ν(1/u) log ν(1/u))),

where Eν is the mathematical expectation according to ν, ν(z/u) is the conditional proba-
bility ν(xi+1 = z|xi−k . . . xi = u), it does not depend on i due to stationarity [30].

It is known in Information Theory that for stationary ergodic processes (including
S∞ and Sm, m ≥ 0) hk ≥ hk+1 for k ≥ 0 and there exists the limit Shannon entropy
h∞(ν) = lim hk(ν). Besides, for ν ∈ Sm h∞ = hm [30].

Shannon entropy plays an important role in data compression because for any lossless
and prefix-free code, the average codeword length (per letter) is at least as large as the
entropy, and this limit can be reached. More precisely, let ϕ be a lossless, prefix-free code
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defined on {0, 1}n, n > 0, and let ν ∈ S. Then, for any ϕ, ν, and codewords of average
length

En(ϕ, ν) =
1
n ∑

u∈{0,1}n
ν(u)|ϕ(u)| (8)

En(ϕ, ν) ≥ h(ν). In addition, there are codes ϕ1, ϕ2, . . . such that limn→∞ En(ϕn, ν) = h(ν) [30].

2.2.4. Typical Sequences and Universal Codes

The sequence x1x2 . . . is typical for the measure µ ∈ S∞ if for any word y1 . . . yr
limt→∞ Nx1 ...xt(y1 . . . yr)/t = µ(u), where Nx1 ...xt(y1 . . . yr) is the number of occurrences of
a word y1 . . . yr in a word x1 . . . xt.

Let us denote the set of all typical sequences as Tµ and note that µ(Tµ) = 1 [30].
This notion is deeply related to information theory. Thus, Eggleston proved the equality
dim Tµ = h(µ) for Bernoulli processes (µ ∈ S0) [24], and later this was generalized for
µ ∈ S∞ [26,28].

By definition, a code ϕ is universal for a set of processes S if for any µ ∈ S and any
x ∈ Tµ

lim
n→∞

|ϕ(x1 . . . xn)|/n = h∞(µ). (9)

In 1968, R. Krichevsky [31] proposed a code κt
m(x1 . . . xt), m ≥ 0, t is an integer, whose

redundancy, i.e., the average difference between the code length and Shannon entropy, is
asymptotically minimal. This code and its generalisations are described in the Appendix A,
but here we note the following main property. For any stationary ergodic process µ, that is,
µ ∈ S∞ and typical x ∈ Tµ,

lim
t→∞

|κt
m(x1 . . . xt)|/t = hm(µ) , (10)

see [32].
Currently there are many universal codes which are based on different ideas and

approaches, among which we note the PPM universal code [33], the arithmetic code [34],
the Burrows–Wheeler transform [35], which is used along with the book-stack (or MTF)
code [36–38], and some others [39–41].

The most interesting for us is the class of grammar-based codes suggested by Kieffer
and Yang [7,42] which includes the Lempel–Ziv (LZ) codes [6] (note that perhaps the first
grammar-based code was described in [43]).

The point is that all of them are universal codes and hence they “compress” stationary
processes asymptotically to entropy and therefore cannot be distinguishable at S∞. On the
other hand, we show that grammar-based codes can distinguish "large" sets of sequences
as non-random beyond S∞.

2.2.5. Two-Faced Processes

The so-called two-faced processes are described in [20,21] and their definitions will be
given in Appendix A. Here, we note some of their properties: the set of two-faced processes
Λs(p) of order s, s ≥ 1, and probability p, p ∈ (0, 1), contains the measures λ from Ss
such that

h0(λ) = h1(λ) = · · · = hs−1(λ) = 1,

hs(λ) = h∞(λ) = −(p log p + (1 − p) log(1 − p)). (11)

Note that they are called two-faced because they appear to be truly random if we look at
word frequencies whose length is less than s, but are "completely" non-random if the word
length is equal to or greater than s (and p is far from 1/2).
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3. Comparison of the Efficiency of Tests for Markov Processes with Different Memories
and General Stationary Processes

We now describe the statistical tests for Markov processes and stationary ergodic
processes as follows. By (6), statistical definitions are as follows:

τKt
m
(x1 . . . xn) = n − |κ̂t

m(x1 . . . xn)|,

τRt(x1 . . . xn) = n − |ρ̂t(x1 . . . xn)|

where κ̂t
m and ρ̂t are universal codes for Sm and S∞ defined in the Appendix A, see (A4)

and (A5). We also denote the corresponding tests by Tt
Km

and Tt
R. The following statement

compares the performance of these tests.

Theorem 1. For any integers m, s and t = ms

Tt
Km

⪯ Tt
Km+1

, Tt
Km

⪯ Tt
KR

.

Moreover, dim(Tt
Km

\ Tt
Km+1

) = 1.

Proof. First, let us say a few words about the scheme of the proof. If we apply the Tt
Km

test to
typical sequences of a two-faced process λ ∈ TΛm+1(p)

,
p ̸= 1/2, they will appear random since hm(λ) = 1. So, the set of random sequences
RTt

Km
(i.e., random sequences according to Tt

Km
test) contains the set of the typical se-

quences TΛm+1(p)
for which dim(TΛm+1(p)

) equals the limit Shannon entropy −(p log p +

(1 − p) log(1 − p)). Hence, dim(RTt
Km

) ≥ dim(TΛm+1(p)
) = −(p log p + (1 − p) log(1 − p)).

On the other hand, typical sequences of a two-faced process λ ∈ TΛm+1(p)
, p ̸= 1/2 are

not random according to Tt
Km+1

since hm+1(λ) = −(p log p + (1 − p) log(1 − p)) < 1 (11)
and the test. Tt

Km
“compresses” them till the Shannon entropy −(p log p + (1− p) log(1− p)).

So, dim(RTt
Km

\ RTt
Km+1

) ≥ dim(RTt
Km
) ≥ −(p log p + (1 − p) log(1 − p)). Then supp∈(0,1/2)

dim(Tt
Km

\ Tt
Km+1

) = 1.
More formally, consider a typical sequence x of TΛm+1(p)

, p ̸= 1/2. So,
limt→∞ −∑u∈{0,1}m+1 (Nx1 ...xt(u)/t) log(Nx1 ...xt(u)/t) = hλ(m) = 1, see (11), where the
first equality is due to typicality, and the second to the property of two-faced processes (11).

From here and (A1), (A4) we obtain Eλ(1/n)|κ̂t
m(x1 . . . xn)| = 1 + ϵ, where ϵ > 0.

From this and typicality we can see that limn→∞ |κ̂t
m(x1 . . . xn)|/n = 1 + ϵ. Hence, there

exists such nδ that 1+ ϵ− δ < |κ̂t
m(x1 . . . xn)|/n < 1+ ϵ+ δ, if n > nδ. So n− |κ̂t

m(x1 . . . xn)|
≤ n − (n + ϵ − δ). So, if we take δ = ϵ/2, we can see that for n > nδ n − |κ̂t

m(x1 . . . xn)| is
negative. From this and the definition of randomness (5), we can see that typical sequences
from TΛm+1(p)

are random according to κ̂t
m(x1 . . . xn), i.e., Tt

Km
. From this and (A6), we

obtain Tt
Km+1

⪯ Tt
R.

4. Effectiveness of Tests Based on Lempel-Ziv Data Compressors

In this part we will describe a test that is more effective than Tt
R and Tt

Km
for any m.

First, we will briefly describe the LZ77 code based on the definition in [44]. Suppose
there is a binary string σ∗ that is encoded using the code LZ77. This string is represented by
a list of pairs (p1; l1) . . . (ps; ls). Each pair (pi; li) represents a string, and the concatenation
of these strings is σ∗. In particular, if pi = 0, then the pair represents the string li, which
is a single terminal. If pi ̸= 0, then the pair represents a portion of the prefix of σ∗ that
is represented by the preceding i − 1 pairs; namely, the li terminals beginning at position
pi in σ∗; see ([44] part 3.1). The length of the codeword depends on the encoding of the



Entropy 2024, 26, 513 7 of 12

sub-words pi, li which are integers. For this purpose we will use a prefix code C for integers,
for which for any integer m

|C(m)| = log m + 2 log log(m + 1) + O(1). (12)

Such codes are known in information theory; see, for example, ([30] part 7.2). Note that
C is the prefix code and, hence, for any r ≥ 1 the codeword C(p1)C(l1) . . . C(pr)C(lr) can
be decoded to (p1; l1) . . . (pr; lr). There is the following upper bound for the length of the
LZ77 code [30,44]: for any word w1w2 . . . .wm

|codeLZ(w1w2 . . . wm)| ≤ m (1 + o(1)), (13)

if m → ∞.
We will now describe such sequences that, on the one hand, are not typical for any

stationary ergodic measure and, on the other hand, are not random and will be rejected by
the suggested test. Thus, the proposed model allows us to detect non-random sequences
that are not typical for for any stationary processes.On the other hand, those sequences are
recognized tests based on LZ77 as non-random. To do this, we take any random sequence
x = x1x2 . . . (that is, for which (4) is valid) and define a new sequence y(x) = y1y2 . . . as
follows. Let for k = 0, 1, 2, . . .

uk = x
22k−1

x
22k x

22k+1
. . . x

22k+1−2

y(x) = u0u0u1u1u2u2u3u3 . . . (14)

For example, u0 = x1x2, u1 = x3 x4 . . . x14, u2 = x15 . . . x254, y(x) = x1x2 x1x2x3x4 . . . x14
x3x4 . . . x14 x15 . . . x254 x15 . . . x254 . . . .

The idea behind this sequence is quite clear. Firstly, it is obvious that the word y
cannot be typical for a stationary ergodic source and, secondly, when u0u0u1u1 . . . ukuk is
encoded the second subword uk will be encoded by a very short word (about O(log |uk|)),
since it coincides with the previous word uk. So, for large k the length of the encoded
word LZ(u0u0u1u1 . . . ukuk) will be about |u0u0u1u1 . . . ukuk| (1/2 + o(1)) . So,
lim infn→∞ |LZ(y1y2 . . . yn)|/n = 1/2. Hence, it follows that

dim({y(x) : x is random}) = 1/2. (15)

Here, we took into account that x is random and, dim{x : x is random} = 1, see [28].) So,
having taken into account the definitions of non-randomness (6) and (7), we can see that
y(x) is non random according to statistics τ = n − |LZ(y1 . . . yn)|. Denote this test by TLZ.

Let us consider the test Tt
Km

, m, t are integers. Having taken into account that the
sequence x is random, we can see that limt→∞ |κt

m(xixi+1 . . . xi+t|/t = 1. So, from from
(A4) we can see that for any n |κ̂t

m(x1 . . . xn|/t = 1 + o(1). The same reasoning is true for
the code ρ̂t.

We can now compare the size of random sequence sets across different tests as follows:

RTt
Km

\RTLZ ⊃ {y(x) : x is random} .

Taking into account (15), we can see that

dim(RTt
Km

\RTLZ ) ≥ 1/2 .

Likewise, the same is true for the TR test. From the latest inequality we obtain the following

Theorem 2. For any random (according to (4) ) sequence x the sequence y(x) is non-random for
the test TLZ, whereas this sequence is random for tests Tt

R and Tt
Km

. Moreover, Tt
R ⪯ TLZ and

Tt
Km

⪯ TLZ for any m, t.
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Comment. The sequence y(x) is constructed by duplicating parts of x. This construc-
tion can be slightly modified as follows: instead of duplication (as uiui), we can use uiu

γ
i ,

where uγ
i contains γ|u| the first letters of u, γ < 1/2. In this case, dim(RTt

Km
\RTLZ ) ≥ 1− γ

and, therefore,
sup

γ∈(0,1/2)
dim(RTt

Km
\RTLZ ) = 1 .

5. Conclusions

Here, we describe some recommendations for the practical testing of RNGs, based on
the method of comparing the power of different statistical tests. Based on Theorem 1, we
can recommend to use several tests TKt

s
, based on the analysis of occurrence frequencies of

words of different length s. In addition, we recommend using tests for which s depends
on the length n of the sequence under consideration. For example, s1 = O(log log n)),
s2 = O(

√
log n), etc. They can be included in the test battery directly or as the “mixture”

TR with several non-zero β coefficients, see (A2) in the Appendix A.
Theorem 2 shows that it is useful to include tests based on dictionary data compressors

such as the Lempel–Ziv code. In such a case we can use the statistic

τLZ = n − |LZ(y1 . . . yn)|

with the critical value tα = n − log(1/α)− 1, α ∈ (0, 1), see [20,21]. Note that in this case,
there is no need to use the density distribution formula, which greatly simplifies the use of
the test and makes it possible to use a similar test for any grammar-based data compressor.
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Appendix A

Appendix A.1. Hausdorff Dimension

Let A ⊂ [0, 1], ρ > 0. A family of sets S is called a ρ-covering A if
(i) S is finite or countable, (ii) any σ ⊂ [0, 1] and its length is not greater than ρ and (iii)

∪σ∈Sσ ⊃ A. Let
l(α, A, ρ) = inf ∑

σ∈S
diam(σ)α,

where the infimum is taken over all ρ-coverings. Then, Hausdorff dimension dim(A) is
determined by the equality

dim(a) = inf
α

lim
ρ→0

l(α, A, ρ) = 0 = sup
α

lim
ρ→0

l(α, A, ρ) = ∞.

Appendix A.2. Krichevsky Universal Code and Twice-Universal Code

Krichevsky in [31] described the following measure K0 and universal code κ0 for
Bernoulli processes, which in the case of the binary alphabet looks like

Kt
0(x1x2 . . . xt) =

t−1

∏
i=0

Nx1 ...xi (xi+1) + 1/2
i + 1

,

κt
0(x1x2 . . . xt) = ⌈− log K0(x1x2 . . . xt)⌉ .
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Then, he generalized them for Markov chains of memory m, m > 0 [32], as follows:

Kt
m(x1 . . . xt) =



1
2t

if t ≤ m
1
2t ∏t−1

i=m
Nx1...xi (xi+1−m ...xi+1)+1/2

Nx1...xi−1 (xi+1−m ...xi)+1

if t > m,

κt
m(x1 . . . xt) = ⌈− log Kt

m(x1 . . . xt)⌉, see [32]. For example,

K5
0(01010) =

1/2
1

1/2
2

132
3

3/2
4

5/2
5

,

K5
1(01010) =

1
2

1/2
1

1/2
1

3/2
2

3/2
2

.

The code κt
m is universal for a set of processes Sm, and , for any ν ∈ Sm

hm(ν) < Eν(κ
t
m, ν) ≤ hm(ν) + 2m log t/(2t) + O(1/t) (A1)

Refs. [31,32]. (This code is optimal in the sense that the redundancy, that is 2m log t/(2t) +
(1/t), is asymptotically minimal [31,32].)

One of the first universal codes for the set of all stationary ergodic processes S∞ was
proposed in [45]. For this code, the measure ρ and the code length R are defined as follows:

Rt(x1 . . . xt) =
∞

∑
i=0

βiKt
i (x1x2 . . . xt), (A2)

ρt(x1 . . . xt) = ⌈− log Rt(x1x2 . . . xt)⌉ ,

where ∑∞
i=0 βi = 1 and ∀i : βi > 0. Obviously, for any j

− log
∞

∑
i=0

βiKt
i (x1x2 . . . xt) = − log β jKt

j(x1x2 . . . xt)+

− log(1 +
∞

∑
i=0,i ̸=j

βiKt
i (x1x2 . . . xt)/(β jKt

j(x1x2 . . . xt))

≤ − log β jKt
j(x1x2 . . . xt) .

Hence,
ρt(x1 . . . xt) ≤ ⌈− log β j − log Kt

j(x1x2 . . . xt)⌉ ≤ ⌈− log β j⌉

+⌈− log Kt
j(x1x2 . . . xt)⌉ = ⌈− log β j⌉+ |κt

j(x1x2 . . . xt)|. (A3)

This code is called twice universal [45] because it can be used to compress data when both
the process memory and the probability distribution are unknown.

Usually, when using universal codes, the sequence x1 . . . xn is encoded in parts as
follows:

κ̂t
m(x1 . . . xn) = κt

m(x1 . . . xt)κ
t
m(xt+1 . . . x2t) . . . .κt

m(xn−t+1 . . . xn) (A4)

(for brevity, we assume that n/t is an integer). Let us similarly define

ρ̂t(x1 . . . xn) = ρt(x1 . . . xt)ρ
t(xt+1 . . . x2t) . . . .ρt(xn−t+1 . . . xn) (A5)

Taking into account the definition of κt
j(x1x2 . . . xt) and Equations (4), (A4) and (A5) we

obtan that for any integer j

ρ̂t(x1 . . . xn) ≤ κ̂t
j(x1 . . . xn) + O(n/t). (A6)
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Appendix A.3. Two-Faced Processes

Let us first consider several examples of two-faced Markov chains. Let a matrix of
transition probabilities T1 be as follows:

T1 =

0 1

0 ν 1 − ν
1 1 − ν ν

,

where ν ∈ (0, 1) (i.e., P{xi+1 = 0|xi = 0} = ν, P{xi+1 = 0|xi = 1} = 1 − ν, . . . ). The
“typical” sequences for ν = 0.9 and ν = 0.1 can be as follows:

0000000000 111111111 0000000000 1111111 0 . . . ,

01010101 1010101010 010101010101010101 1010 . . . .

(Here, the gaps correspond to state transitions.) Of course, these sequences are not truly
random. On the other hand, the frequencies of 1s and 0s go to 1/2 due to the symmetry of
the matrix T1.

Define

T̂1 =

0 1

0 1 − ν ν
1 ν 1 − ν

T2 = (T1T̂1) =

00 01 10 11

0 ν 1 − ν 1 − ν ν
1 1 − ν ν ν 1 − ν

(Here P{xi+1 = 0|xi = 0, xi−1 = 0} = ν, P{xi+1 = 0|xi = 0, xi−1 = 1} = 1 − ν, . . . .)
Now, we can define a transition matrix with two-faced Markov chains with different

memory as follows.
The k + 1-order transition matrix Tk+1 = TkT̂k, T̂k+1 = T̂kTk, k = 2, 3, . . . . T In order

to define the process x1x2 . . . the initial probability distribution needs to be specified. We
define the initial distribution of the processes Tk and T̄k, k = 1, 2, . . . , to be uniform on
{0, 1}k, i.e., P{x1 . . . xk = u} = 2−k for any u ∈ {0, 1}k.

The following statement from [20,21] describes the main properties of the processes
defined above.

Claim. Let a sequence x1x2 . . . be generated by the process Tk (or T̄k), k ≥ 1 and u
be a binary word of length k. Then, if the initial state obeys the uniform distribution over
{0, 1}k, then

(i) For any j ≥ 0
P(xj+1 . . . xj+k = u) = 2−|u|. (A7)

(ii) For each ν ∈ (0, 1), the k-order Shannon entropy (hk) of the processes Tk and T̄k,
equals 1 bit per letter, whereas the limit Shannon entropy (h∞) equals −(ν log2 ν +
(1 − ν) log2(1 − ν)).
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