A Dynamic Entropy Approach Reveals Reduced Functional Network Connectivity Trajectory Complexity in Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Estimation of the Spatial Functional Networks
2.3. Estimation of the Functional Network Connectivity
2.4. Number of Temporally Independent Sources
2.5. Temporal Functional Network Connectivity Profiles (tFNCPs)
2.6. Entropy Analysis
2.7. Comparison Tests
2.8. Regression Analysis
3. Results
3.1. Static Functional Network Connectivity
3.2. Joint Entropy
3.3. tFNCP Entropy
3.4. Multiple Linear Regression
3.4.1. Diagnostic Effects
3.4.2. Symptomatic Effects
3.4.3. Cognitive Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Brodersen, K.H.; Deserno, L.; Schlagenhauf, F.; Lin, Z.; Penny, W.D.; Buhmann, J.M.; Stephan, K.E. Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage Clin. 2014, 4, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. The disconnection hypothesis. Schizophr. Res. 1998, 30, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Wernicke, C. Grundriß der Psychiatrie in Klinischen Vorlesungen. 1906. Available online: https://wellcomecollection.org/works/tdy5stqg (accessed on 15 November 2023).
- Bleuler, E. Dementia Praecox or the Group of Schizophrenias. Am. J. Psychiatry 1992, 149, 1733–1734. [Google Scholar]
- Moskowitz, A.; Heim, G. Eugen Bleuler’s Dementia Praecox or the Group of Schizophrenias (1911): A Centenary Appreciation and Reconsideration. Schizophr. Bull. 2011, 37, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Stephan, K.E.; Baldeweg, T.; Friston, K.J. Synaptic Plasticity and Dysconnection in Schizophrenia. Biol. Psychiatry 2006, 59, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Narendran, R.; Frankle, W.G.; Keefe, R.; Gil, R.; Martinez, D.; Slifstein, M.; Kegeles, L.S.; Talbot, P.S.; Huang, Y.; Hwang, D.-R.; et al. Phencyclidine-induced psychosis. Am. J. Psychiatry 1978, 135, 1081–1084. [Google Scholar] [CrossRef]
- Javitt, D.C.; Zukin, S.R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 1991, 148, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Kapur, S. Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 2003, 160, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Kreitschmann-Andermahr, I.; Rosburg, T.; Demme, U.; Gaser, E.; Nowak, H.; Sauer, H. Effect of ketamine on the neuromagnetic mismatch field in healthy humans. Cogn. Brain Res. 2001, 12, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Black, J.E.; Kodish, I.M.; Grossman, A.W.; Klintsova, A.Y.; Orlovskaya, D.; Vostrikov, V.; Uranova, N.; Greenough, W.T. Pathology of Layer V Pyramidal Neurons in the Prefrontal Cortex of Patients with Schizophrenia. Am. J. Psychiatry 2004, 161, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, S.M.; Buechel, C.; Whalley, H.C.; Frith, C.D.; Friston, K.J.; Johnstone, E.C. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol. Psychiatry 2002, 51, 1008–1011. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-H.; Williams, L.M.; Breakspear, M.; Gordon, E. Synchronous Gamma activity: A review and contribution to an integrative neuroscience model of schizophrenia. Brain Res. Rev. 2003, 41, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.M.; Nestor, P.G.; Perlmutter, R.; Niznikiewicz, M.A.; Klump, M.C.; Frumin, M.; Shenton, M.E.; McCarley, R.W. Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc. Natl. Acad. Sci. USA 2004, 101, 17288–17293. [Google Scholar] [CrossRef]
- Yu, Q.; Allen, E.A.; Sui, J.; Arbabshirani, M.R.; Pearlson, G.; Calhoun, V.D. Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging. Curr. Top. Med. Chem. 2012, 12, 2415–2425. [Google Scholar] [CrossRef]
- Yu, Q.; Erhardt, E.B.; Sui, J.; Du, Y.; He, H.; Hjelm, D.; Cetin, M.S.; Rachakonda, S.; Miller, R.L.; Pearlson, G.; et al. Assessing dynamic brain graphs of time-varying connectivity in fMRI data: Application to healthy controls and patients with schizophrenia. NeuroImage 2015, 107, 345–355. [Google Scholar] [CrossRef]
- Damaraju, E.; Allen, E.; Belger, A.; Ford, J.; McEwen, S.; Mathalon, D.; Mueller, B.; Pearlson, G.; Potkin, S.; Preda, A.; et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage Clin. 2014, 5, 298–308. [Google Scholar] [CrossRef]
- Kambeitz, J.; Kambeitz-Ilankovic, L.; Cabral, C.; Dwyer, D.B.; Calhoun, V.D.; Heuvel, M.P.v.D.; Falkai, P.; Koutsouleris, N.; Malchow, B. Aberrant Functional Whole-Brain Network Architecture in Patients with Schizophrenia: A Meta-analysis. Schizophr. Bull. 2016, 42, S13–S21. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Thermenos, H.W.; Milanovic, S.; Tsuang, M.T.; Faraone, S.V.; McCarley, R.W.; Shenton, M.E.; Green, A.I.; Nieto-Castanon, A.; LaViolette, P.; et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl. Acad. Sci. USA 2009, 106, 1279–1284. [Google Scholar] [CrossRef]
- Salvador, R.; Sarró, S.; Gomar, J.J.; Ortiz-Gil, J.; Vila, F.; Capdevila, A.; Bullmore, E.; McKenna, P.J.; Pomarol-Clotet, E. Overall brain connectivity maps show cortico-subcortical abnormalities in schizophrenia. Hum. Brain Mapp. 2010, 31, 2003–2014. [Google Scholar] [CrossRef]
- Cabral, J.R.B.; Hugues, E.; Kringelbach, M.L.; Deco, G. Modeling the outcome of structural disconnection on resting-state functional connectivity. NeuroImage 2012, 62, 1342–1353. [Google Scholar] [CrossRef]
- Lehmann, D.; Skrandies, W. Spatial analysis of evoked potentials in man—A review. Prog. Neurobiol. 1984, 23, 227–250. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.; Michel, C.; Lehmann, D. Segmentation of Brain Electrical Activity into Microstates: Model Estimation and Validation. IEEE Trans. Biomed. Eng. 1995, 42, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Strelets, V.; Faber, P.; Golikova, J.; Novototsky-Vlasov, V.; Koenig, T.; Gianotti, L.; Gruzelier, J.; Lehmann, D. Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations. Clin. Neurophysiol. 2003, 114, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
- Sakoğlu, Ü.; Pearlson, G.D.; Kiehl, K.A.; Wang, Y.M.; Michael, A.M.; Calhoun, V.D. A method for evaluating dynamic functional network connectivity and task-modulation: Application to schizophrenia. Magn. Reson. Mater. Phys. Biol. Med. 2010, 23, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Glover, G.H. Time–frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 2010, 50, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, R.M.; Womelsdorf, T.; Allen, E.A.; Bandettini, P.A.; Calhoun, V.D.; Corbetta, M.; Della Penna, S.; Duyn, J.H.; Glover, G.H.; Gonzalez-Castillo, J.; et al. Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage 2013, 80, 360–378. [Google Scholar] [CrossRef] [PubMed]
- Preti, M.G.; Bolton, T.A.W.; Van De Ville, D. The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage 2017, 160, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, V.D.; Eichele, T.; Adalı, T.; Allen, E.A. Decomposing the brain: Components and modes, networks and nodes. Trends Cogn. Sci. 2012, 16, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Allen, E.A.; Damaraju, E.; Plis, S.M.; Erhardt, E.B.; Eichele, T.; Calhoun, V.D. Tracking Whole-Brain Connectivity Dynamics in the Resting State. Cereb. Cortex 2012, 24, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Blair, D.S.; Soriano-Mas, C.; Cabral, J.R.B.; Moreira, P.; Morgado, P.; Deco, G. Complexity changes in functional state dynamics suggest focal connectivity reductions. Front. Hum. Neurosci. 2022, 16, 958706. [Google Scholar] [CrossRef]
- Miller, R.L.; Yaesoubi, M.; Turner, J.A.; Mathalon, D.; Preda, A.; Pearlson, G.; Adali, T.; Calhoun, V.D. Higher dimensional meta-state analysis reveals reduced resting fMRI connectivity dynamism in schizophrenia patients. PLoS ONE 2016, 11, e0149849. [Google Scholar] [CrossRef] [PubMed]
- Molina, V.; Lubeiro, A.; Garcia, R.d.L.; Gomez-Pilar, J.; Martín-Santiago, O.; Iglesias-Tejedor, M.; Holgado-Madera, P.; Segarra-Echeverría, R.; Recio-Barbero, M.; Núñez, P.; et al. Deficits of entropy modulation of the EEG: A biomarker for altered function in schizophrenia and bipolar disorder? J. Psychiatry Neurosci. 2020, 45, 322–333. [Google Scholar] [CrossRef]
- Keator, D.B.; van Erp, T.G.; Turner, J.A.; Glover, G.H.; Mueller, B.A.; Liu, T.T.; Voyvodic, J.T.; Rasmussen, J.; Calhoun, V.D.; Lee, H.J.; et al. The Function Biomedical Informatics Research Network Data Repository. NeuroImage 2016, 124, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Fu, Z.; Sui, J.; Gao, S.; Xing, Y.; Lin, D.; Salman, M.; Abrol, A.; Rahaman, A.; Chen, J.; et al. NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders. NeuroImage Clin. 2020, 28, 102375. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.H.; Liu, J.; Zheng, Y.R.; Liang, H.; Calhoun, V.D. Semiblind spatial ICA of fMRI using spatial constraints. Hum. Brain Mapp. 2010, 31, 1076–1088. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Fan, Y. Group information guided ICA for fMRI data analysis. NeuroImage 2013, 69, 157–197. [Google Scholar] [CrossRef] [PubMed]
- Motlaghian, S.M.; Belger, A.; Bustillo, J.R.; Ford, J.M.; Iraji, A.; Lim, K.; Mathalon, D.H.; Mueller, B.A.; O’Leary, D.; Pearlson, G.; et al. Nonlinear functional network connectivity in resting functional magnetic resonance imaging data. Hum. Brain Mapp. 2021, 43, 4556–4566. [Google Scholar] [CrossRef] [PubMed]
- Motlaghian, S.; Vahidi, V.; Baker, B.; Belger, A.; Bustillo, J.; Faghiri, A.; Ford, J.; Iraji, A.; Lim, K.; Mathalon, D.; et al. A method for estimating and characterizing explicitly nonlinear dynamic functional network connectivity in resting-state fMRI data. J. Neurosci. Methods 2023, 389, 109794. [Google Scholar] [CrossRef] [PubMed]
- Fries, P. A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends Cogn. Sci. 2005, 9, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Glerean, E.; Salmi, J.; Lahnakoski, J.M.; Jääskeläinen, I.P.; Sams, M. Functional Magnetic Resonance Imaging Phase Synchronization as a Measure of Dynamic Functional Connectivity. Brain Connect. 2012, 2, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Cabral, J.R.B.; Vidaurre, D.; Marques, P.; Magalhães, R.; Moreira, P.S.; Soares, J.M.; Deco, G.; Sousa, N.; Kringelbach, M.L. Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Sci. Rep. 2017, 7, 5135. [Google Scholar] [CrossRef] [PubMed]
- Deco, G.; Cruzat Grand, J.; Kringelbach, M.L. Brain songs framework used for discovering the relevant timescale of the human brain. Nat. Commun. 2019, 10, 583. [Google Scholar] [CrossRef] [PubMed]
- Rashid, B.; Damaraju, E.; Pearlson, G.D.; Calhoun, V.D. Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Front. Hum. Neurosci. 2014, 8, 897. [Google Scholar] [CrossRef] [PubMed]
- Abrol, A.; Damaraju, E.; Miller, R.L.; Stephen, J.M.; Claus, E.D.; Mayer, A.R.; Calhoun, V.D. Replicability of time-varying connectivity patterns in large resting state fMRI samples. NeuroImage 2017, 163, 160–176. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Tu, Y.; Di, X.; Du, Y.; Pearlson, G.; Turner, J.; Biswal, B.B.; Zhang, Z.; Calhoun, V. Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: An application to schizophrenia. NeuroImage 2018, 180, 619–631. [Google Scholar] [CrossRef]
- Fu, Z.; Tu, Y.; Di, X.; Du, Y.; Sui, J.; Biswal, B.B.; Zhang, Z.; de Lacy, N.; Calhoun, V. Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism. NeuroImage 2019, 190, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Fu, Z.; Calhoun, V.D. Classification and prediction of brain disorders using functional connectivity: Promising but challenging. Front. Neurosci. 2018, 12, 525. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, V.D.; Potluru, V.K.; Phlypo, R.; Silva, R.F.; Pearlmutter, B.A.; Caprihan, A.; Plis, S.M.; Adalı, T. Independent Component Analysis for Brain fMRI Does Indeed Select for Maximal Independence. PLoS ONE 2013, 8, e73309. [Google Scholar] [CrossRef]
- Lopes-Dos-Santos, V.; Ribeiro, S.; Tort, A.B.L. Detecting cell assemblies in large neuronal populations. J. Neurosci. Methods 2013, 220, 149–166. [Google Scholar] [CrossRef]
- Bell, A.J.; Sejnowski, T.J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef]
- Nadal, J.-P.; Parga, N. Redundancy Reduction and Independent Component Analysis: Conditions on Cumulants and Adaptive Approaches. Neural Comput. 1997, 9, 1421–1456. [Google Scholar] [CrossRef]
- Nadal, J.-P.; Parga, N. Sensory Coding: Information Maximization and Redundancy Reduction; World Scientific Publishing: London, UK, 1999; pp. 164–171. [Google Scholar]
- Himberg, J.; Hyvärinen, A. ICASSO: Software for investigating the reliability of ICA estimates by clustering and visualization. In Proceedings of the 2003 IEEE XIII Workshop on Neural Networks for Signal Processing, Toulouse, France, 7–19 September 2003; pp. 259–268. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. In The Mathematical Theory of Communication; Harvard Mathematics Department: Cambridge, MA, USA, 1948; pp. 1–54. [Google Scholar]
- Singh, H.; Misra, N.; Hnizdo, V.; Fedorowicz, A.; Demchuk, E. Nearest Neighbor Estimates of Entropy. Am. J. Math. Manag. Sci. 2003, 23, 301–321. [Google Scholar] [CrossRef]
- Kozachenko, L.F.; Leonenko, N.N. Sample estimate of the entropy of a random vector. Probl. Inf. Transm. 1987, 23, 9–16. [Google Scholar]
- Delattre, S.; Fournier, N. On the Kozachenko–Leonenko entropy estimator. J. Stat. Plan. Inference 2017, 185, 69–93. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Krol, L.R. Permutation Test; GitHub: Berlin, Germany, 2021; Available online: https://github.com/lrkrol/permutationTest (accessed on 31 January 2020).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- van Erp, T.G.M.; Preda, A.; Turner, J.A.; Callahan, S.; Calhoun, V.D.; Bustillo, J.R.; Lim, K.O.; Mueller, B.; Brown, G.G.; Vaidya, J.G.; et al. Neuropsychological profile in adult schizophrenia measured with the CMINDS. Psychiatry Res. 2015, 230, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Goria, M.N.; Leonenko, N.N.; Mergel, V.V.; Inverardi, P.L.N. A new class of random vector entropy estimators and its applications in testing statistical hypotheses. J. Nonparametr. Stat. 2005, 17, 277–297. [Google Scholar] [CrossRef]
- Yu, Q.Y.; Plis, S.M.; Erhardt, E.B.; Allen, E.A.; Sui, J.; Kiehl, K.A.; Pearlson, G.; Calhoun, V.D. Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state. Front. Syst. Neurosci. 2012, 5, 18383. [Google Scholar] [CrossRef] [PubMed]
- Fornito, A.; Zalesky, A.; Pantelis, C.; Bullmore, E.T. Schizophrenia, neuroimaging and connectomics. NeuroImage 2012, 62, 2296–2314. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.S.; Nelson, B.G.; Mueller, B.A.; Camchong, J.; Lim, K.O. Altered resting state complexity in schizophrenia. NeuroImage 2012, 59, 2196–2207. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, D.E.-W.; Knudsen, G.M.; Barrett, F.S.; Doss, M.K.; Carhart-Harris, R.L.; Rosas, F.E.; Deco, G.; Kringelbach, M.L.; Preller, K.H.; Ramaekers, J.G.; et al. Psychedelic resting-state neuroimaging: A review and perspective on balancing replication and novel analyses. Neurosci. Biobehav. Rev. 2022, 138, 104689. [Google Scholar] [CrossRef] [PubMed]
- Cruzat Grand, J.; Perl, Y.S.; Escrichs, A.; Vohryzek, J.; Timmermann, C.; Roseman, L.; Luppi, A.I.; Ibañez, A.; Nutt, D.; Carhart-Harris, R.; et al. Effects of classic psychedelic drugs on turbulent signatures in brain dynamics. Netw. Neurosci. 2022, 6, 1104–1124. [Google Scholar] [CrossRef] [PubMed]
- Singleton, S.P.; Luppi, A.I.; Carhart-Harris, R.L.; Cruzat, J.; Roseman, L.; Nutt, D.J.; Deco, G.; Kringelbach, M.L.; Stamatakis, E.A.; Kuceyeski, A. Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control energy landscape. Nat. Commun. 2022, 13, 5812. [Google Scholar] [CrossRef] [PubMed]
- Martínez, S.A.; Marsman, J.-B.C.; Kringelbach, M.L.; Deco, G.; ter Horst, G.J. Reduced spatiotemporal brain dynamics are associated with increased depressive symptoms after a relationship breakup. NeuroImage Clin. 2020, 27, 102299. [Google Scholar] [CrossRef] [PubMed]
- Martínez, S.A.; Deco, G.; Ter Horst, G.J.; Cabral, J. The Dynamics of Functional Brain Networks Associated with Depressive Symptoms in a Nonclinical Sample. Front. Neural Circuits 2020, 14, 570583. [Google Scholar] [CrossRef] [PubMed]
- Jirsa, V.K. Structured Flows on Manifolds as guiding concepts in brain science. In Selbstorganisation—Ein Paradigma für die Humanwissenschaften; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2020; pp. 89–102. [Google Scholar] [CrossRef]
- Calhoun, V.D.; Kiehl, K.A.; Pearlson, G.D. Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum. Brain Mapp. 2008, 29, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Yaesoubi, M.; Miller, R.L.; Calhoun, V.D. Mutually temporally independent connectivity patterns: A new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender. NeuroImage 2015, 107, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Betzel, R.F.; Gu, S.; Medaglia, J.D.; Pasqualetti, F.; Bassett, D.S. Optimally controlling the human connectome: The role of network topology. Sci. Rep. 2016, 6, 30770. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Betzel, R.F.; Mattar, M.G.; Cieslak, M.; Delio, P.R.; Grafton, S.T.; Pasqualetti, F.; Bassett, D.S. Optimal trajectories of brain state transitions. NeuroImage 2017, 148, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Cieslak, M.; Baird, B.; Muldoon, S.F.; Grafton, S.T.; Pasqualetti, F.; Bassett, D.S. The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure. Sci. Rep. 2018, 8, 2507. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.H.; Ma, Z.; Ciric, R.; Gu, S.; Betzel, R.F.; Kaczkurkin, A.N.; Calkins, M.E.; Cook, P.A.; de la Garza, A.G.; Vandekar, S.N.; et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat. Commun. 2018, 9, 3003. [Google Scholar] [CrossRef] [PubMed]
- Ashourvan, A.; Shah, P.; Pines, A.; Gu, S.; Lynn, C.W.; Bassett, D.S.; Davis, K.A.; Litt, B. Pairwise maximum entropy model explains the role of white matter structure in shaping emergent co-activation states. Commun. Biol. 2021, 4, 210. [Google Scholar] [CrossRef] [PubMed]
- Brodersen, K.H.; Buhmann, J.M.; Stephan, K.E.; Ghahramani, Z. Generative Embedding and Variational Bayesian Inference for Multivariate Time Series. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2012. [Google Scholar] [CrossRef]
Mean ± Variance (Patients) | Mean ± Variance (Controls) | β ± Standard Error | |
---|---|---|---|
tFNCP 1 | 0.60064 ± 0.17609 | 0.53301 ± 0.15494 | 0.04467 ± 0.04456 |
tFNCP 2 | 0.93204 ± 0.10030 | 0.93372 ± 0.09301 | 0.00388 ± 0.03498 |
tFNCP 3 | 0.88852 ± 0.13293 | 0.84955 ± 0.10751 | 0.03043 ± 0.03877 |
tFNCP 4 | 0.71817 ± 0.18799 | 0.89108 ± 0.12927 | −0.16376 ± 0.04556 |
tFNCP 5 | 0.65917 ± 0.16392 | 0.88848 ± 0.12678 | −0.23097 ± 0.04298 |
tFNCP 6 | 0.69955 ± 0.11751 | 0.86619 ± 0.08971 | −0.17171 ± 0.03671 |
tFNCP 7 | 0.72430 ± 0.13709 | 0.93682 ± 0.13044 | −0.20885 ± 0.04164 |
tFNCP 8 | 0.67983 ± 0.18125 | 0.94130 ± 0.13691 | −0.25684 ± 0.04519 |
Joint Entropy | 5.90221 ± 2.58525 | 6.84015 ± 1.98335 | −0.95316 ± 0.17359 |
Regression | Student’s t-Test | Kolmogorov–Smirnov Test | Permutation Test | |||||
---|---|---|---|---|---|---|---|---|
t-Statistic | p-Value | t-Statistic | p-Value | KS-Statistic | p-Value | Hodges’ G | p-Value | |
tFNCP 1 | 1.00243 | 0.31694 | NaN | N/A | 0.12219 | 0.18315 | 0.16623 | 0.14119 |
tFNCP 2 | 0.11107 | 0.91164 | −0.04757 | 0.96209 | 0.04706 | 0.99435 | −0.00539 | 0.96050 |
tFNCP 3 | 0.78467 | 0.43327 | 0.99200 | 0.32197 | 0.09868 | 0.41693 | 0.11238 | 0.32237 |
tFNCP 4 | −3.59408 | 0.00038 | −3.83671 | 0.00015 | 0.20219 | 0.00288 | −0.43413 | 0.00030 |
tFNCP 5 | −5.37432 | 1.55 × 10−07 | −5.31133 | 2.09 × 10−07 | 0.27111 | 1.55 × 10−05 | −0.60149 | 1.00 × 10−04 |
tFNCP 6 | −4.67690 | 4.41 × 10−06 | −4.57202 | 7.00 × 10−06 | 0.28241 | 5.71 × 10−06 | −0.51771 | 1.00 × 10−04 |
tFNCP 7 | −5.01616 | 9.04 × 10−07 | −5.12340 | 5.30 × 10−07 | 0.31515 | 2.49 × 10−07 | −0.58108 | 1.00 × 10−04 |
tFNCP 8 | −5.68322 | 3.13 × 10−08 | −5.78981 | 1.73 × 10−08 | 0.29528 | 1.74 × 10−06 | −0.65556 | 1.00 × 10−04 |
Joint Entropy | −5.49083 | 8.53 × 10−08 | −5.48028 | 8.82 × 10−08 | 0.31544 | 2.42 × 10−07 | −0.62058 | 1.00 × 10−04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blair, D.S.; Miller, R.L.; Calhoun, V.D. A Dynamic Entropy Approach Reveals Reduced Functional Network Connectivity Trajectory Complexity in Schizophrenia. Entropy 2024, 26, 545. https://doi.org/10.3390/e26070545
Blair DS, Miller RL, Calhoun VD. A Dynamic Entropy Approach Reveals Reduced Functional Network Connectivity Trajectory Complexity in Schizophrenia. Entropy. 2024; 26(7):545. https://doi.org/10.3390/e26070545
Chicago/Turabian StyleBlair, David Sutherland, Robyn L. Miller, and Vince D. Calhoun. 2024. "A Dynamic Entropy Approach Reveals Reduced Functional Network Connectivity Trajectory Complexity in Schizophrenia" Entropy 26, no. 7: 545. https://doi.org/10.3390/e26070545
APA StyleBlair, D. S., Miller, R. L., & Calhoun, V. D. (2024). A Dynamic Entropy Approach Reveals Reduced Functional Network Connectivity Trajectory Complexity in Schizophrenia. Entropy, 26(7), 545. https://doi.org/10.3390/e26070545