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Abstract: Over the past decade and a half, dynamic functional imaging has revealed low-dimensional
brain connectivity measures, identified potential common human spatial connectivity states, tracked
the transition patterns of these states, and demonstrated meaningful transition alterations in disorders
and over the course of development. Recently, researchers have begun to analyze these data from
the perspective of dynamic systems and information theory in the hopes of understanding how
these dynamics support less easily quantified processes, such as information processing, cortical
hierarchy, and consciousness. Little attention has been paid to the effects of psychiatric disease on
these measures, however. We begin to rectify this by examining the complexity of subject trajectories
in state space through the lens of information theory. Specifically, we identify a basis for the dynamic
functional connectivity state space and track subject trajectories through this space over the course
of the scan. The dynamic complexity of these trajectories is assessed along each dimension of the
proposed basis space. Using these estimates, we demonstrate that schizophrenia patients display
substantially simpler trajectories than demographically matched healthy controls and that this drop
in complexity concentrates along specific dimensions. We also demonstrate that entropy generation in
at least one of these dimensions is linked to cognitive performance. Overall, the results suggest great
value in applying dynamic systems theory to problems of neuroimaging and reveal a substantial
drop in the complexity of schizophrenia patients’ brain function.

Keywords: functional network connectivity; dynamic functional connectivity; Shannon entropy;
NeuroMark; independent component analysis; principal component analysis; sliding window
correlation; multiple linear regression

1. Introduction

Schizophrenia (literally: split mind) ranks among the most studied disorders in modern
psychiatry and neuroscience. There are manifold reasons for this, but perhaps the most
prominent is the sheer variety of symptoms which it can produce. The symptoms of
schizophrenia broadly fall into three categories, positive, negative, and cognitive, and
can range from delusion, paranoia, and hallucination to apathy, anhedonia, and social
withdrawal. This makes schizophrenia a difficult disorder to treat, as treatments for one
group of symptoms may have limited or no effect on another. Indeed, it has been suggested
that schizophrenia should not be considered a single disorder at all but rather a family of
disorders aggregated by historical precedent [1].

For the past quarter of a century, hypotheses on schizophrenia’s causes have focused on
the interactions between brain regions. Perhaps the most prominent is the dysconnectivity
hypothesis [2], which may be summarized as the proposition that aberrant connectivity,
rather than focal abnormalities, is the primary cause of schizophrenia. In this sense, it
may be considered a forerunner to the concept of distributed cognition—quite an early
forerunner, as it was first proposed at the beginning of the 20th century [3–5]. The past half
a century of research into schizophrenia has amassed considerable evidence in its favor [6],
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with experimental results suggesting that schizophrenia affects connectivity and plasticity
from the level of individual synapses [7–11] to interregional communication [12–14] and
white matter tracts. Most of these studies, however, base their analyses on anatomically
rather than functionally derived atlases and do not examine time courses through a latent
or state space. They may, therefore, miss some of the crucial insights which examining such
systems through these lenses can provide.

At the “global”, or whole-brain, scale, most studies have examined static functional
connectivity (FC) or structural connectivity (SC). Such studies have reported reduced global
connectivity in schizophrenia patients [15,16], particularly between auditory, sensorimotor,
and visual networks [17]. In addition, network-based analyses of functional connectivity in
schizophrenia indicate a general reduction in organization and efficiency in the structural
and functional connectivity of schizophrenia patients [18]. Beyond this, however, findings
have been inconsistent. Some reports suggest decreased communication between the
frontal and temporal areas of the brain [12]; others have found increased connectivity
within the default-mode network [19]; still, others imply decreased connectivity within
and between the default-mode network and cortical regions [20]. Attempts to model the
static functional connectivity of schizophrenia patients have provided equally confused
results, with both reduced effective connectivity and increased structural connectivity
suggested [21]. Overall, then, the analysis of structural and static functional connectivity has
been unable to conclusively identify the large-scale changes which underlie the symptoms
of schizophrenia.

Statical analyses’ neglect of brain dynamics may be one reason for these inconclusive
results. Electroencephalography (EEG) has demonstrated that functional microstates con-
stantly and fluidly change [22–24], a fact captured in fMRI in 2010 [25,26]. Although fMRI
captures microstate alterations at a timescale of seconds rather than the milliseconds of
EEG, its superior spatial resolution compared to EEG has allowed researchers to precisely
identify recurring connectivity states [15,27–30]. Schizophrenia patients have displayed
altered dynamics in these states. For instance, a 2014 study suggested that patients have a
higher probability of entering states with attenuated cortical–subcortical connections and
increased intrasensory connectivity than controls, and that these same patients also display
elevated low-frequency power in thalamosensory communication [17]. This same study
suggested that the thalamosensory hyperconnectivity reported in its static FC analysis may
result from these alterations. However, aside from state transition probabilities and average
dwell times, this study did not report any metrics designed to capture state dynamics. This
lack of metrics designed to capture the dynamics of functional connectivity has proven to
be a problem, not just for schizophrenia research but also for the broader field of functional
neuroimaging.

We seek to add a means of capturing functional connectivity dynamics to the neu-
roscience toolkit, specifically a means of measuring the entropy rate of individual fMRI
scans [31]. In the present article, we use this framework to demonstrate a statistically mean-
ingful difference in functional connectivity entropy in a dataset of medicated schizophrenia
patients and demographically matched controls. Rather than attempting to explicitly track
interactions between brain regions, this framework defines a basis for a state space within
which to plot each subject’s time course. This approach allows for the direct application
of tools and metrics from dynamic systems analysis and information theory to subjects’
time courses and thus reduces the challenge of comparing subject trajectories. The decision
to quantify fMRI dynamics in a state space is not novel [32], but the present framework
specifically seeks to make efficient use of the Shannon entropy. The results of this analysis
suggest substantially disordered state dynamics in the patient population, with patients
displaying simpler trajectories in five out of eight state space dimensions, one of which
correlates with cognitive performance. Previous studies in EEG have found similar en-
tropy deficits in patients [33], but EEG’s poor spatial resolution has precluded any detailed
mapping of the connectivity state space. Overall, this represents a positive step towards
quantifying the dynamic connectivity alterations which underlie this psychiatric disease
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and towards the discovery of a clinically useful basis space in which to diagnose and
predict patient treatment.

2. Materials and Methods

A high-level overview of the pipeline is displayed in Figure 1. Detailed explanations
of each step follow.

2.1. Data Collection

This study utilizes control and schizophrenia patient data from the Function Biomedi-
cal Informatics Research Network (FBIRN) repository [34], preprocessed according to the
description given in [35]. To summarize, a statistical parametric mapping package (SPM12)
was used to correct for subject head motion and slice timing differences, to warp subject
anatomy to the Montreal Neurological Institute (MNI) echo planar imaging (EPI) template
space, to resample the collected data to 3 × 3 × 3 mm3 isotropic voxels, and to smooth
the resampled fMRI images with a Gaussian kernel with a full width at half maximum
(FWHM) of 6 mm. Subjects with head motion greater than 3◦ were excluded from the study,
as were subjects whose full brains could not be normalized due to incomplete imaging
data. These criteria led to a final dataset of 151 schizophrenia (SZ) patients and 160 healthy
controls (HCs).

2.2. Estimation of the Spatial Functional Networks

Spatial functional networks were estimated using NeuroMark’s adaptive independent
component analysis (adaptive ICA) [35], which extends spatially constrained independent
component analysis [36,37] to map known fMRI network templates to novel subject data.
This requires balancing two competing goals at a time: to maximize the spatial indepen-
dence of networks in each subject and to ensure that the network maps in each subject
correspond to known group-level templates. Here, we use the multi-objective optimized
ICA with the reference (MOO-ICAR) approach, which maximizes two competing objective
functions in turn until a solution is achieved. This allows adaptive ICA to capture subject-
unique characteristics while maintaining comparable functional networks across datasets.
It should be noted that this method allows us to capture both the internal structure of brain
functional connectivity networks and the extent of inter-network connectivity via static
and sliding-window functional connectivity estimates.

2.3. Estimation of the Functional Network Connectivity

Before estimating the functional network connectivity (FNC), Du et al. [35] chose to
remove noise sources from each functional network’s subject-level time series. The removal
of noise sources involved four steps: first, the removal of linear, quadratic, and cubic
trends in the data; second, multiple regressions of the six realignment parameters and their
temporal derivatives to control for in-scanner motion; third, de-spiking to remove outliers;
and fourth, band-pass filtration to select for signals in the 0.01–0.15 Hz frequency bands.
Once these steps were completed, subject-level static functional network connectivity
(sFNC) was computed via Pearson correlation. Other measures of statistical similarity
could have been used; for instance, mutual information has been proposed due to its
sensitivity to nonlinear interactions [38,39]. However, Pearson correlation’s simplicity,
interpretability, and ease of computation means it remains the dominant method for
estimating functional connectivity.

While the static FNC provides valuable information on the extent of inter-network
communication, its poor time resolution makes it unable to capture the dynamics of this
communication. The two most notable methods proposed to circumvent this problem are
the sliding time window approach [25,27,30] and coherence-based connectivity [40–43]. The
present study uses the sliding window approach. As the name suggests, this method slides
a window over the time series of each ICN in small steps, thus segmenting the total time
series into many short, overlapping time series. The functional network connectivity of
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each time series window is computed in the same way as for static FNC, and the resulting
N × N connectivity matrices are concatenated into an N × N × T array (N being the
number of functional networks and T the number of time series windows). This study
convolved a normal distribution with a mean of zero and a standard deviation of three
(N (µ = 0, σ = 3)) with a rectangle 40-times-to-repetition (TRs) long [35] to generate its
selection window.

2.4. Number of Temporally Independent Sources

Most clustering or source separation algorithms require users to specify the number
of sources for which the algorithm should search. This poses a problem in neuroimaging
analysis, as the number of recurrent connectivity states which the human brain expresses
has not been fully established. As such, researchers do not know a priori the appropriate
model order to input into their separation algorithm. It is common to circumvent this
problem by testing several numbers of recurrent states, usually within the range of four
to eight [44–48], and determining the optimal number by applying a validity index or
comparing the results of runs with different source counts. In this instance, an eight-
source model was found to maximize the number and size of group-level differences while
maintaining a reasonable model order.

2.5. Temporal Functional Network Connectivity Profiles (tFNCPs)

The goal of this study is to identify recurring, overlapping, temporally invariant
functional brain patterns and to capture their dynamics. Both clustering and source sep-
aration algorithms may be used to achieve this goal, dependent on how these states are
hypothesized to manifest in time-resolved fMRI images. A clustering algorithm, such as
k-means, may be appropriate if each time-resolved fMRI “snapshot” primarily consists
of a single state, S. If, on the other hand, each time-resolved snapshot contains a mixture
of states, S, a blind source separation algorithm may be more applicable. As this study
presumes that each time-resolved fMRI image consists of a linear mixture of underlying
“source” connectivity states, S, a linear source separation algorithm is required. In addition,
an entropy-based analysis is made considerably simpler when the time courses, TC, are
statistically unrelated. As such, we required a linear source separation algorithm which
maximizes the statistical independence of each predicted source. Independent component
analysis (ICA) is the obvious solution to this problem, as it has been proven to minimize
the statistical dependencies between sources in neuroimaging data [49] and to isolate
functionally meaningful communities in spike train data [50].

Most ICA algorithms accept two-dimensional inputs, with one dimension representing
input variables and the second representing samples. For instance, the time series of N
functional networks should produce a data array of N × T, with T being the number of
samples taken over the course of recording. A dFNC array, on the other hand, has three
dimensions, N × N × T, which standard ICA algorithms cannot process. We circumvent
this by converting the upper triangle of each sample dFNC(t) array to a vector. Repeating
this process across all samples converts the data array from N × N ×T to N(N−1)

2 ×T, which
can be decomposed into maximally independent sources by any standard ICA algorithm.

Before maximizing independence, researchers typically whiten the data via principal
component analysis (PCA). This serves to reduce the dimensionality of the input data and
to improve the estimation of independent components, both of which optimize and stabilize
ICA outputs. We ran the InfoMax ICA algorithm [51–53] 150 times and consolidated the
results via the ICASSO method [54] to identify repeatable tFNCPs and time courses.

2.6. Entropy Analysis

We used a Kozachenko–Leonenko entropy estimator to estimate each state’s subject-
level rate of entropy production:

Hk,N = mln ρk + ln(N − 1)− ψ(k) + ln c1(m)
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where ρk is the geometric mean of the distance between the kth nearest neighbors in the
signal:

ρ(x, y) =

√√√√ m

∑
j=0

(
xj − yj

)2

ρi,k := min
{

ρ
(
Xi, Xj

)}
, j ∈ {1, . . . , N}\{i, j1, . . . , jk − 1} = ρ

(
Xi, Xjk

)
ρk =

N

√√√√ N

∏
i=1

ρi,k

and ψ(k) is the digamma function:

ψ(k) =
Γ′(k)
Γ(k)

=
d
dk

ln Γ(k) =
∫ ∞

0

(
e−t

t
− e−kt

1 − e−t

)
dt,

according to refs. [55–58]. This produces an S × Nsubjects array of entropy rate values, with
S being the number of sources and Nsubjects the number of subjects. The substates’ temporal
independence allows us to estimate the joint entropy of all sources by summing the entropy
rate across substates [59]:

H(C1, . . . , CN) =
N

∑
j=1

H
(
Cj
)

Note that this calculation requires that source signals be statistically independent. Depen-
dencies between sources must be accounted for when estimating source entropy, which
makes evaluating joint entropy quite difficult when dealing with statistically related signals.
ICA’s minimization of intersource relationships was a major motivation for its selection.

2.7. Comparison Tests

We utilized both a difference-of-means permutation test [60] and the Kolmogorov–Smirnov
two-sample test to search for differences between groups. Student’s t-test was also
employed when the Jarque–Bara test indicated normally distributed data. Multiple-
comparison correction consists of the false discovery rate [61].

2.8. Regression Analysis

To correct for possible confounds in the data, a multiple linear regression was em-
ployed alongside standard hypothesis tests. This regression separately modeled the effects
of site, age, gender, and diagnosis on subject-level joint and source entropies. Additional
regression analyses examined the effects of clinical (PANSS positive and negative) and cog-
nitive (CMINDS composite) scores on subject entropy distributions, again while correcting
for site, age, and gender effects. As cognitive scores are highly correlated (Figure 2), it was
decided to examine only the most general score, namely the CMINDS composite score [62],
to avoid effect cross-contamination.

A version of the Kozachenko–Leonenko estimator [56,57,63] was employed to estimate
the entropy rate for each subject. Specifically, in each subject, this estimator computed the
entropy rate of each source, si, over the course of the scan. The temporal independence
which ICA enforces between sources ensures that the entropy rate of source i has minimal
effect on the entropy rate of source j (i ̸= j). The joint entropy rate of each subject may thus
be estimated by summing the subject-wise entropy rates of all sources.
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Figure 1. Procedure for identifying subject-level tFNCP and joint entropy. Procedural schematic for
identifying subject-level tFNCP and joint entropy in functional magnetic resonance images (fMRIs).
Adaptive ICA [37] is used to map V subject-level voxel time courses of length L to N preestablished
network templates [35] (N = 53). This produces subject-level time courses and spatial maps which
maintain comparability. Sliding-window correlation [25] then finds the time-resolved correlation of
each subject to produce N × N × T connectivity arrays (with a window length of 40 TRs). The upper
triangle of each connectivity matrix is vectorized to produce Nsubjects l × T subject-level time-resolved
connectivity records, which are concatenated to produce a single l × k record of subject connectivities(

l = N(N−1)
2 , k = Nsubjects × T

)
. After principal component analysis (PCA) whitens and reduces

this array to m spatial dimensions, ICA is used to extract m temporally independent source time
courses (S), along with the coefficient vectors which map from connectivity to source space (W).
Each subject’s time courses are then isolated for entropy analysis.
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Figure 2. Clinical and cognitive variable relations. Correlation matrix of the clinical and cognitive
variables assessed in the FBIRN dataset. The primary result is the consistently high correlation
between cognitive scores (processing speed through the CMINDS composite score). This high
correlation informed the decision to only include the CMINDS score in our linear regression analysis,
as including other cognitive variables would likely split the effect while providing little additional
information. The low correlation between negative and positive PANSS scores is also of note, as it
suggests considerable heterogeneity in subject symptom expression.

3. Results
3.1. Static Functional Network Connectivity

As a pre-analysis sanity test, we compared static functional network connectivity
(sFNC) in the same fashion as [35] for comparison purposes. Figure 3A displays the mean
sFNCs of the FBIRN dataset. Notably, the healthy controls display visibly greater mean
absolute FNC values than the schizophrenic patients across the majority of the sFNC
matrices’ N(N−1)

2 correlation coefficients. This is due to a reduction in the sFNC variance
in patients, visible in bar chart format (Figure 3C) and in the absolute difference between
the control and patient means (Figure 3D,E). This visible reduction in patient sFNC values
provides initial support for the dysconnectivity hypothesis, as it suggests that schizophrenia
is broadly characterized by reduced internetwork communication compared to the controls.
This, in addition to the block-diagonal structure of the sFNC matrices, suggests that the
data have been correctly reconstructed.

3.2. Joint Entropy

We estimate each tFNCP’s subject-level entropy rate with the variation in the
Kozachenko–Leonenko estimator [57,58] based on the k-nearest-neighbor distances be-
tween sample points [56,63]. This estimation algorithm is necessary due to the unavail-
ability of source signals’ complete probability distributions, which is necessary for an
exact calculation of signal entropy. Fortunately, the statistical independence of the tFNCPs
prevents any dependence between their respective entropy rates. As such, the joint entropy
rate of each subject can be estimated simply by summing all tFNCPs’ entropy rates within
that subject. The resulting group-level distributions of the dynamic functional connectiv-
ity’s joint entropy are displayed in Figure 3B, with schizophrenia patients on the left and
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healthy controls on the right. Patients display depressed joint entropy rate relative to the
controls, with the Kolmogorov–Smirnov test demonstrating that this elevation is highly
significant

(
p = 4.506 × 10−8, D∗ = 0.2188

)
. A difference-of-means permutation test con-

firms this finding
(

p = 9.999 × 10−5, G = −0.4095
)
. Student’s t-test was not employed

because the joint distribution fails the Jarque–Bara test, thus violating Student’s assumption
of normality. Group-level means and standard deviations are listed in Table 1.
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Figure 3. Group-level FNC and joint entropy. The results from group-level functional network
connectivity (FNC) and joint entropy estimates. Panel (A) displays the connectivity matrices of the
respective groups after mapping preprocessed fMRI images to the NeuroMark atlas [35]. Functional
networks (FNs) are ordered and labeled according to their functional domains. Panel (B) displays the
joint entropy distributions of each group’s dynamic functional network connectivity in boxplot format.
In line with previous work [32], the healthy controls display substantially higher joint entropy than
the schizophrenia patients, suggesting reduced flexibility in patient connectivity and computation.
Visual inspection suggests that schizophrenia patients’ functional connectivity is generally dampened
compared to healthy controls, in line with the dysconnectivity hypothesis and its supporting work.
Panels (C–E) confirm this supposition by demonstrating increased variance in control static FNC and
the fact that the controls show higher average sFNC magnitudes than patients.
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Table 1. Group-level means, variances, and differences (β) of tFNCP and joint entropies. Note that
the difference between patient and control entropies reverses after the third tFNCP (3), with control
entropies becoming consistently greater than patient entropies. Note also that the magnitude of β

increases substantially in the last five tFNCPs. Since controls were assigned a contrast value of 0 and
patients a contrast value of 1, a negative β indicates depressed entropy in patients.

Mean ± Variance
(Patients)

Mean ± Variance
(Controls) β ± Standard Error

tFNCP 1 0.60064 ± 0.17609 0.53301 ± 0.15494 0.04467 ± 0.04456
tFNCP 2 0.93204 ± 0.10030 0.93372 ± 0.09301 0.00388 ± 0.03498
tFNCP 3 0.88852 ± 0.13293 0.84955 ± 0.10751 0.03043 ± 0.03877
tFNCP 4 0.71817 ± 0.18799 0.89108 ± 0.12927 −0.16376 ± 0.04556
tFNCP 5 0.65917 ± 0.16392 0.88848 ± 0.12678 −0.23097 ± 0.04298
tFNCP 6 0.69955 ± 0.11751 0.86619 ± 0.08971 −0.17171 ± 0.03671
tFNCP 7 0.72430 ± 0.13709 0.93682 ± 0.13044 −0.20885 ± 0.04164
tFNCP 8 0.67983 ± 0.18125 0.94130 ± 0.13691 −0.25684 ± 0.04519

Joint Entropy 5.90221 ± 2.58525 6.84015 ± 1.98335 −0.95316 ± 0.17359

3.3. tFNCP Entropy

Having confirmed that subject joint entropy rate differs between populations, an
obvious question is whether these differences are evenly distributed amongst tFNCPs
or whether they are concentrated within a subset of them. To answer this question, we
compared the group-level entropy rates of each tFNCP using the Kolmogorov–Smirnov two-
sample test, with the false discovery rate [61] correcting for multiple comparison. A Student’s
t-test was also applied to the entropy rate distributions, which passed the Jarque–Bera test
for normality. This approach reveals decreased patient entropy rates in five of eight tFNCPs
(Figure 4), with no qualitative differences between the Kolmogorov–Smirnov two-sample
test and Student’s t-test results. Figure 4 displays the connectivity matrices and entropy
distribution boxplots of each tFNCP, with group entropy means, variances, and test statistics
listed in Table 2.

Table 2. Summary of linear regression and hypothesis test results from examining the relation of
entropy to subjects’ diagnostic status. Controls were assigned a group contrast label of 0, while
patients were assigned a group contrast label of 1. All applied tests produced similar results, namely
highly significant relations between diagnostic status and the entropy rate of the last five tFNCPs.
The directionality of these results is consistent with Table 1, with all tests showing higher entropy in
the control trajectories than those of the schizophrenia patients. The consistency across multiple tests
suggests the high robustness of the proposed methodology.

Regression Student’s t-Test Kolmogorov–Smirnov Test Permutation Test
t-Statistic p-Value t-Statistic p-Value KS-Statistic p-Value Hodges’ G p-Value

tFNCP 1 1.00243 0.31694 NaN N/A 0.12219 0.18315 0.16623 0.14119

tFNCP 2 0.11107 0.91164 −0.04757 0.96209 0.04706 0.99435 −0.00539 0.96050

tFNCP 3 0.78467 0.43327 0.99200 0.32197 0.09868 0.41693 0.11238 0.32237

tFNCP 4 −3.59408 0.00038 −3.83671 0.00015 0.20219 0.00288 −0.43413 0.00030

tFNCP 5 −5.37432 1.55 × 10−07 −5.31133 2.09 × 10−07 0.27111 1.55 × 10−05 −0.60149 1.00 × 10−04

tFNCP 6 −4.67690 4.41 × 10−06 −4.57202 7.00 × 10−06 0.28241 5.71 × 10−06 −0.51771 1.00 × 10−04

tFNCP 7 −5.01616 9.04 × 10−07 −5.12340 5.30 × 10−07 0.31515 2.49 × 10−07 −0.58108 1.00 × 10−04

tFNCP 8 −5.68322 3.13 × 10−08 −5.78981 1.73 × 10−08 0.29528 1.74 × 10−06 −0.65556 1.00 × 10−04

Joint Entropy −5.49083 8.53 × 10−08 −5.48028 8.82 × 10−08 0.31544 2.42 × 10−07 −0.62058 1.00 × 10−04
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Figure 4. tFNCP-level maps and entropies. Our study finds eight tFNCPs shared between the
controls and schizophrenia patients. Five of these eight, outlined in red above, display significant
group-level entropy rate changes. The entropy rate of the fifth tFNCP, outlined in red and blue,
also positively relates to the composite CMINDS cognitive score. Spatial maps of these tFNCPs
are displayed in connectivity matrix format, with the respective tFNCP entropy distribution shown
in boxplot format. Both regression and statistical tests show that the patients exhibit significantly
attenuated entropy in five tFNCPs. It is noteworthy that of these five tFNCPs, three display stable
intra- and inter-domain correlation between the visual, auditory, and sensorimotor domains. In
all three cases, this block is strongly anticorrelated with at least one other domain: (part of) the
cognitive control domain, the default-mode domain, or the cerebellar domain. The cognitive control
domain also displays a distinct tendency to split into two largely separate networks, with weak
autocorrelation and strong correlation or anticorrelation with other domains being present in four of
five significant tFNCPs. Somewhat oddly, no tFNCP displays strong intra-domain correlation. High
correlation values are instead concentrated between domains, as seen in the cerebellar–subcortical
block of the third tFNCP (3). In fact, only two tFNCPs display high intradomain correlation: numbers
4 and 5. Even within these tFNCPs, this is the exception rather than the rule, with tFNCP 4 showing
high intradomain correlation only in the sensorimotor and visual domains and tFNCP 5 only in the
default-mode networks.
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3.4. Multiple Linear Regression

The wide range of ages and the seven collection sites of the FBIRN dataset raise
the possibility of substantial age and site effects, potentially large enough to affect the
outcome of the previously described hypothesis tests. To account for this, we employed a
multiple linear regression analysis to separate the effects of site, age, gender, and diagnostic
status (“patient” vs. “control”) on subjects’ joint and tFNCP-level entropy rate. We used
similar analyses to examine the link between subject-level entropy, clinical scores, and
cognitive scores. Clinical scores consist of the PANSS positive and negative scores, while
the CMINDS composite score is used as a surrogate for cognitive scores due to the high
correlation among the subscales (Figure 2).

3.4.1. Diagnostic Effects

The multiple linear regression diagnostic results, after controlling for site, age, and
gender, remain consistent with the statistical hypothesis tests. The site effects are both
substantial and highly significant, but they do not change the outcomes of the hypothesis
tests. Age and gender effects were found to be small and statistically insignificant.

3.4.2. Symptomatic Effects

The multiple linear regression identified no statistically significant relationship be-
tween the patients’ PANSS scores and entropy rate in any of the tFNCPs. The effect sizes
are small, with only four of eighteen examined relationships displaying effect sizes of the
order 10−2 or higher.

3.4.3. Cognitive Effects

One tFNCP, number five (5), displays a small but highly significant (β = 0.0633,
p = 0.0053) relationship between the subjects’ CMINDS composite score [62] and entropy
rate. Interestingly, this tFNCP is characterized by strong anticorrelations between two
higher cognitive domain regimes: default-mode and subcortical networks oppose visual
networks and sensorimotor networks, with cognitive control networks split between these
two regimes. The default mode is the most prominent of these domains, being strongly
anticorrelated with both opposing domains. The joint entropy rate is also positively related
to the CMINDS composite score, although this relationship does not reach statistical
significance (p = 0.1203).

4. Discussion

This article presents a novel method for evaluating the entropy of the dynamics of
temporally independent FNCs and the relationship of that entropy to psychiatric disease. Of
the eight temporally independent FNC profiles identified, five display significant entropic
reductions in schizophrenia patients, with the remaining three showing no such reduction.
One of these five diagnostically variable tFNCPs displays a significant positive relationship
with cognitive score, with this single tFNCP including strong contributions from default-
mode networks, cognitive control networks, and other higher cognitive domains.

The initial inspection of the group-level static functional network connectivity broadly
supports previous work showing reduced global connectivity in schizophrenia patients [64].
Positive correlations between auditory, sensorimotor, and visual networks appear notably
attenuated in the patients compared to their healthy counterparts. This reduced connec-
tivity strength and structure may reduce patients’ ability to rapidly reconfigure network
relationships [65,66].

Extant research on dynamic functional connectivity consistently suggests an attenua-
tion in the complexity of connectivity dynamics in psychiatric disorders, particularly in
schizophrenia. Prior work by Miller et. al. [32] has shown that patients explore less of their
connectivity state space than comparable healthy controls do and that their trajectories
within this state space are both more rigid and more repetitive than controls as well. These
findings imply a simplification of dynamics in patients, in line with the reduction in en-
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tropy described in this article. Such simplification may underlie the cognitive rigidity and
inflexibility known to characterize some psychiatric disorders. Interestingly, the findings
of Miller et al. [32] and the present article contrast with research by Prof. Kringelbach of
Oxford University, as Kringelbach et. al. found that the intake of psychedelic substances
increases activity diversity, turbulence, and information flow compared to placebos [67–69].
This suggests that hallucinatory experiences in the psychiatric and psychedelic realms
possess fundamentally different operational mechanisms. Future research should attempt
to identify the mechanisms in each of these populations. The finding of reduced entropy in
patients may also align with the finding that psychiatric patients operate in a less metastable
regime than their healthy counterparts [70,71]. Similarly, it may imply that patients occupy
a reduced functional manifold compared to controls [72]. The concentration of entropy
declines in specific tFNCPs may suggest an alteration in the connectivity’s energy landscape
as well, as described in [69]. Which, if any, of these hypotheses can best predict the subject
trajectories in the tFNCP basis space may prove a valuable line of research.

Of the eight tFNCPs identified in this study, five display significant, positive, linear
relationships between the entropy rate and the diagnosis of schizophrenia. One of these
further displays a small but highly significant positive relationship between general cog-
nitive function (CMINDS score) and entropy rate. Within these five tFNCPs, the most
notable feature of the functional domain structure is the stability of the visual–sensorimotor
domain block. In four of the five tFNCPs with significant entropy–diagnosis relations, these
domains strongly correlate with one another. Further, of these four tFNCPs, three extend
the block to include the auditory domain. Only the eighth tFNCP does not display a strong
visual–sensorimotor domain block. Instead, the eighth tFNCP mostly displays control and
visual domain interactions with multiple other domains, mostly visual.

Of the five tFNCPs with altered entropy in schizophrenia patients, each displays
a different block to anticorrelate, or oppose, the dominant visuo-sensorimotor–auditory
domain alignment. Cerebellar and subcortical networks primarily make up the fourth
tFNCP’s opposition, along with most of the default-mode and cognitive control domains.
Three default-mode and cognitive control networks align with the visuo-sensorimotor
blocks as well. The fifth tFNCP, which appears to influence the CMINDS score, recruits the
subcortical and default-mode networks in opposition to the sensorimotor–visual–auditory
block. The seventh tFNCP appears to possess three distinct domain-level modules, with
cognitive control and default-mode networks correlated with themselves, while subcortical
networks oppose the sensorimotor–auditory block. The eighth tFNCP, as noted, shows
links between the cognitive control, default-mode, and visual domain areas.

When observing all eight tFNCPs as well as the diagnostically significant five, two no-
table trends emerge. First, no tFNCP displays a strong intra-domain correlation. High corre-
lation values are instead concentrated between domains, as seen in the cerebellar–subcortical
block of the third tFNCP (3). In fact, only two tFNCPs display high intradomain correlation:
numbers 4 and 5. Even within these tFNCPs, this is the exception rather than the rule,
with tFNCP 4 showing high intra-domain correlation only in the sensorimotor and visual
domains and tFNCP 5 only in the default-mode networks. This consistent lack of strong
intra-domain correlation stands in notable contrast to the static FNC of both groups, the
strongest connections of which are all within domains.

The second notable trend across all eight tFNCPs is that cognitive control networks
seem to straddle the line between the sensorimotor–visual–auditory block and its oppo-
sition. This domain is generally divided between more evident functional modules, but
its strongest correlations consistently tend towards the sensorimotor–visual block, even in
cases where most of its networks align against it. Its nonaligned status is most apparent
in the seventh tFMCP, in which the cognitive control and default-mode networks form a
third block which does not largely correlate with the sensorimotor or cerebellar functional
modules. The cognitive control domain also displays a distinct tendency to split into two
largely separate networks, with relatively weak autocorrelation and strong correlation or
anticorrelation with other domains being present in four of the five significant tFNCPs.
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5. Conclusions

Overall, this article proposes a novel means of quantifying entropy in neuroimag-
ing signals. Its basis in well-established methods for identifying functionally relevant
spatial maps [35,42,73,74] and maximizing the independence of temporal signals [49]
lends credence to its findings of reduced dynamic connectivity trajectory complexity in
schizophrenia patients. This reduction appears specific to identifiable tFNCPs, one of which
significantly relates to cognitive function. It thus represents a potential link between the
fields of neuroimaging and psychological analysis and is a substantial step in the ongoing
search for biomarkers of psychiatric disease.

Future work with this and related methods should focus on bridging the gap between
computational psychiatry, neuroimaging, and dynamical systems models. The ability to
directly identify the time courses and complexity of specific tFNCP trajectories means that
similar methods may be able to complement theoretical work on cognitive manifolds [72]
or confirm extant studies on the transition networks and energy landscapes of the human
chronnectome [75–79]. Similar methods may also be able to identify functionally related
subgroups within heterogeneous disease categories, as has been achieved with certain
psychological models [1,80]. This, in turn, could lead to the development of biomarkers
of symptom dimensions directly, which may provide a more reliable and intuitive classi-
fication system for psychiatric distress than the extant Diagnostic and Statistical Manual
of Mental Disorders (DSM-V) or International Classification of Diseases (ICD). We thus
anticipate extensive use of this and related methodologies in future studies as part of the
wider quest to catalog and diagnose psychiatric and neurological dysfunction.
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