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Received: 7 May 2024

Revised: 24 June 2024

Accepted: 28 June 2024

Published: 30 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Study on the Stability of Complex Networks in the Stock
Markets of Key Industries in China
Zinuoqi Wang 1, Guofeng Zhang 1,2,3,* , Xiaojing Ma 4 and Ruixian Wang 1

1 School of Economics, Hebei GEO University, Shijiazhuang 050031, China; zinuoqiwang@gmail.com (Z.W.);
ruixianw6@gmail.com (R.W.)

2 Research Base for Scientific-Technological Innovation and Regional Economic Sustainable Development of
Hebei Province, Hebei GEO University, Shijiazhuang 050031, China

3 Natural Resource Asset Capital Research Center, Hebei GEO University, Shijiazhuang 050031, China
4 School of Earth Sciences, Hebei GEO University, Shijiazhuang 050031, China; maxiaojing@hgu.edu.cn
* Correspondence: zhangguofeng@hgu.edu.cn; Tel.: +86-15100122713

Abstract: Investigating the significant “roles” within financial complex networks and their stability
is of great importance for preventing financial risks. On one hand, this paper initially constructs
a complex network model of the stock market based on mutual information theory and threshold
methods, combined with the closing price returns of stocks. It then analyzes the basic topological
characteristics of this network and examines its stability under random and targeted attacks by
varying the threshold values. On the other hand, using systemic risk entropy as a metric to quan-
tify the stability of the stock market, this paper validates the impact of the COVID-19 pandemic
as a widespread, unexpected event on network stability. The research results indicate that this
complex network exhibits small-world characteristics but cannot be strictly classified as a scale-free
network. In this network, key roles are played by the industrial sector, media and information
services, pharmaceuticals and healthcare, transportation, and utilities. Upon reducing the threshold,
the network’s resilience to random attacks is correspondingly strengthened. Dynamically, from
2000 to 2022, systemic risk in significant industrial share markets significantly increased. From a
static perspective, the period around 2019, affected by the COVID-19 pandemic, experienced the
most drastic fluctuations. Compared to the year 2000, systemic risk entropy in 2022 increased nearly
sixtyfold, further indicating an increasing instability within this complex network.

Keywords: stock market; complex network; stability; systematic risk entropy

1. Introduction

In the past few years, China’s economic development has shown vigorous vitality in
the complex and changing international environment, continuously achieving a virtuous
cycle of domestic and international economic and trade activities. This is inseparably linked
to the economic resilience provided by China’s stable economic network. Meanwhile, the
unstoppable wave of economic globalization has made the interdependence and intercon-
nectedness between international financial markets increasingly apparent [1–3]. Through
economic activities such as import and export trade [4,5] and cross-border investment [6],
the financial networks constructed by countries not only supply fresh blood to national
economic development but also provide channels for the contagion of systemic financial
risks. The COVID-19 pandemic, as an unexpected exogenous event, significantly impacted
global trade and investment activities, further leading to a subdued overall performance
of financial markets. In April 2020, the three major US stock indices—the Dow Jones
Industrial, S&P 500, and NASDAQ—experienced severe declines, falling by 20.5%, 17.6%,
and 11.8% from the beginning of the year, respectively. The negative repercussions of the
COVID-19 pandemic on international capital marketplaces and major commodity markets,
including crude oil, have surpassed those experienced during the 2008 global financial

Entropy 2024, 26, 569. https://doi.org/10.3390/e26070569 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26070569
https://doi.org/10.3390/e26070569
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0009-9473-7807
https://doi.org/10.3390/e26070569
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26070569?type=check_update&version=1


Entropy 2024, 26, 569 2 of 17

meltdown [7]. China’s mainland A-share market also experienced unprecedented vio-
lent fluctuations, with over 3000 stocks hitting their down-limits. This underscores the
importance for countries to always guard against systemic financial risks and maintain
financial market stability, as both are complementary and crucial for achieving sustainable
and healthy economic development.

Overall, the academic community’s theoretical guidance on financial market issues has
transitioned from neoclassical financial theory to behavioral finance and now to the current
complexity science. This shift employs new research paradigms, ideological frameworks,
and knowledge systems to reveal the complex, dynamic, and non-equilibrium structure
and inherent laws of financial markets, pushing the research towards directions of greater
universal significance and closer alignment with reality.

Numerous scholars have employed a variety of methods to analyze factors causing
fluctuations in the equity marketplace and to measure indicators of whether the market
is in a stable state, thereby providing indirect evidence for the necessity of researching
stock market stability. Diebold and Yilmaz, through empirical methods, unveiled the
connection between macroeconomic fundamentals’ fluctuations and stock market stability,
a connection that might be overlooked by mere time-series analysis [8]. Son et al. utilized
a statistical model centered around the Stock Market Stability Index (SMSI) to monitor
the robustness of the South Korean share market; should this model prove ineffective,
it would signify that the market is in a state of instability [9]. Chen et al. found that
stock index futures trading significantly improves the stability of the Chinese share mar-
ket if it is combined with a panel data policy evaluation method [10]. Resta combined
self-organizing maps (SOMs) and minimum spanning trees (MSTs) to study market
conditions characterized by varying degrees of stability, ultimately achieving early
risk warning [11].

Scholars starting from the behavioral finance theory have focused on investor psychol-
ogy and behavioral traits as key factors influencing financial market stability. Phenomena
such as herd behavior and positive feedback serve as signals that market stability is under
threat [12]. Chiang and other researchers discovered proof of herding behavior in devel-
oped equity marketplaces (excluding the United States) and Asian markets [13]. Additional
studies uncovered evidence of herding tendencies among investors in China’s A-share
market, contingent upon the variability of stock returns within the lower quantiles as ana-
lyzed by quantile regression [14]. Gardini et al., by constructing a behavioral stock market
model, discovered that the existence of emotional bargainers could impair the stability of
the share marketplace [15]. Spelta et al. have identified the onset of market instability by
measuring the strength of self-organizing activities that arise due to the synchronicity in
stock returns [12].

Currently, scholars are increasingly focusing on exploring issues of financial market
stability through complex networks [16,17]. Billio et al. investigated the interconnected-
ness of international financial markets using principal component analysis and Granger
causality analysis, suggesting that complex networks can measure, detect, and prevent
the destruction of financial crises, thus maintaining stability [18]. Heiberger studied the
stability of the S&P 500 market during financial crises using a winner-takes-all principle,
finding that the market forms a concentrated topological structure to adapt to crises [19].
Mantegna initially employed the minimum spanning tree approach to model the stock
market and reveal its general hierarchy and then used the price fluctuations of American
stocks to construct a hierarchical network and replicate the market’s topological properties,
aiming to capture essential market information while reducing market complexity as much
as possible [20]. Zhang and Zhuang, by constructing a system of the Chinese share market,
discovered a Granger causal relevance between share marketplace volatility and the net-
work steadiness parameter, with system connectivity and clustering coefficient negatively
correlated with equity market volatility [21]. Huang et al. used financial categorization
and threshold methods to construct a network and analyze the stability of China’s equity
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marketplace, believing their conclusions could also provide effective recommendations for
securities investment and risk management [22].

In the broad spectrum of scholarly research, volatility is synonymous with risk and
uncertainty [23]. Another approach to analyzing economic or financial issues, such as
stock market instability, involves applying the concept of entropy from physics. Gradojevic
and Caric have discovered that the analysis of entropy values is effective for predictive
marketplace risk management, with the predictability level intimately associated with the
entropy type and the characteristics of the base signals [24].

In summary, scholars have witnessed an evolution in the methodologies for research-
ing equity market stability, transitioning from econometric to complex network analyses.
This shift has allowed for a comprehensive capture of the dynamic complexities within
market movements, though the perspective has predominantly been macroscopic. In light
of this, the marginal contribution of this paper lies in adopting a “top-down” research
perspective, focusing on China’s key industries, and employing mutual information and
threshold methods to construct a complex network model of the stock market for analyzing
its topological structure. This approach further facilitates the identification of major indus-
tries within the complex network model and assesses network stability under random and
targeted attack strategies. Additionally, the paper utilizes systemic risk entropy to quantify
network stability, confirming the impact of the COVID-19 pandemic as a widespread,
unexpected event on network stability. It specifically focuses on representative enterprises
to target business dynamics proactively, with the aim of preemptively managing risks and
minimizing losses.

The marginal contribution of this paper lies in the adoption of a “top-down” research
perspective, focusing on key industries in China. By using mutual information and the
threshold method, we construct a complex network model of the stock market to analyze
its topological characteristics. To quantify the stability of the network, this paper introduces
the systemic risk entropy index, which can measure the robustness of the complex network
when facing shocks. This index offers a new perspective for risk management and predicts
risk variations under different market conditions. Additionally, the conclusion and recom-
mendations of this paper emphasize the need to pay special attention to the operational
dynamics of representative companies. By proactively identifying and monitoring the risk
factors of these key enterprises, we can provide targeted risk management advice to both
companies and investors. This helps them to anticipate risks and mitigate potential losses
during market fluctuations.

2. Data Material and Methods
2.1. Data Selection

This paper focuses on key industry sectors within the securities trading market that
are large in scale, well developed, and highly correlated with the national economy. This
study selects data from the period of 1 January 2000 to 24 September 2020, during normal
trading periods (excluding weekends and holidays). To minimize the impact of incom-
plete data on the network stability analysis, stocks with long suspension periods and
incomplete data were excluded. Ultimately, a sample of 2488 stocks collected from the
Shanghai and Shenzhen Stock Exchanges was used to construct a complex financial se-
curities network, covering 11 major industries: real estate, industry, building materials,
transportation, finance, media information services, energy and environment, consumer
goods, and pharmaceuticals and healthcare.

It is important to note that this study chooses daily data over intraday data mainly for
the following reasons. First, intraday data may contain a significant amount of market noise,
which can affect the calculation of mutual information. Daily data, being relatively more
stable, can reduce the interference from short-term fluctuations, thereby more accurately
reflecting the long-term relationships between stocks. Second, this study aims to explore
the long-term stability and overall behavior patterns of the stock market. Daily data are
more suitable for capturing long-term trends and the overall structure of the market.
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Each stock is treated as a point within the web, and the correlation between any
two stocks is considered an edge in the system. The effective trading day price series of
a stock is denoted as {pi(1), pi(2), pi(Ni)} , where Ni represents the number of effective
trading days for stock i, and pi(t) represents the closing price of stock i on the t-th effective
trading day. The daily closing price return rate of a stock is defined as follows:

Ri(t) = ln pi(t)− ln pi(t − 1) (1)

2.2. Construction of Matrix Based on Mutual Information

Mutual information is a measure of the mutual dependence between two random
variables. It quantifies the extent to which the information of one variable can be obtained
through another variable.

In the financial market, the overall situation of stock prices exhibits volatility, uncer-
tainty, and non-linearity, yet changes in different stock prices share certain correlations.
Mutual information theory, which measures distance without relying on theoretical and
statistical distributions of data, is a non-parametric method. This method remains effective
in measuring the dependency between financial data even in the face of drastic market
fluctuations. Simultaneously, Guo X et al., in their study on the relationships between
stocks traded on the Shanghai Stock Exchange, evaluated the effectiveness of measuring
stock relationships by comparing correlation coefficients and mutual information. They
found that in a stock market where stock prices can experience significant fluctuations,
mutual information is a more effective method than correlation coefficients for measuring
stock relationships [25]. Sharma C and Habib A, by using mutual information to study
the nonlinear interactions in high-frequency data of the Indian stock market, effectively
revealed the network of stock returns [26]. The mutual information between discrete and
continuous random variables can be defined as follows:

I(X, Y) = ∑
x∈X,y∈Y

p(x, y) log
p(x, y)

pX(x)pY(y)
(2)

I(X, Y) =
x

X,Y

f (x, y) log
fX,Y(x, y)

fX(x) fY(y)
dxdy (3)

Among them, P(x,y) is the joint probability of X and Y, PX(x) and PY(y) are the marginal
probabilities of X and Y, respectively, f (x,y) is the joint probability density function of
X and Y, and fX(x) and fY(y) are the marginal probability density functions of X and Y,
respectively. The notation (X,Y) is used to indicate that X and Y are discrete variables. This
definition indicates how much information about X can be known if the value of the variable
Y is already known. From our definition, we can see that if X and Y are independent,
i.e., f (x,y) = fX(x)fY(y), then the mutual information I(X,Y) is zero. In other words, if the
value of Y is known, the amount of information known about X is zero. This is consistent
with the concept of independence. Based on the formula above, the mutual information
between every pair of stocks is calculated, and a mutual information matrix is constructed.

2.3. Probability Density Estimation of the Complex Network of Financial Stocks

Based on the closing prices and using the formula for return rates, the relative daily
return rates for each stock were calculated. Subsequently, the mutual information formula
was applied to compute the mutual information matrix of the pairwise stocks’ relative daily
return rates, further deriving the corresponding probability density distribution, as shown
in Figure 1.

In Figure 1, the X-axis represents different mutual information value intervals, used to
measure the mutual dependence between stock pairs. The left vertical axis n shows the
sample count corresponding to different mutual information values X, and the right vertical
axis displays the probability density f (x) of the mutual information values. From this
figure, it can be observed that the distribution of mutual information among the stocks is
generally close to a normal distribution. Through fitting with Matlab 2023a, the parameters
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for the normal distribution expression based on mutual information were found to be
µ = 0.183, σ = 0.048.
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2.4. Calculation of Mutual Information in the Complex Network of Financial Stocks

The first step involves calculating the daily closing price return rate of stocks according
to Equation (1). The second step uses an equidistant algorithm to calculate the information
entropy and mutual information between stock X and stock Y. It satisfies the following
three conditions: First, mutual information itself is non-negative, i.e., I(X;Y) ≥ 0, which
meets the non-negativity requirement of a distance measure. When X and Y are completely
independent, the mutual information is zero, indicating no shared information between
them. Second, mutual information is symmetric, I(X;Y) = I(Y;X), and the distance based on
mutual information also maintains this symmetry.

Finally, a transformed distance based on mutual information is defined as
d(X,Y) =

√
1 − exp(−2·I(X;Y)). Initially, the number of intervals is calculated according to

Equation (4), where m is the number of intervals, and n is the sample size.

m = 1.87 × (n − 1)2/5 (4)

Subsequently, the interval width is calculated according to Equation (5). For stock X,
its interval width can be expressed as follows:

hx = (maxx − minx)/m (5)

where max x is the maximum value in the series of stock X, and min x is the minimum value.
The final step is the estimation of the probability density function. For two time series Xi and
Yi with a sample size of n, max x and min x, and max y and min y, respectively, represent the
maximum and minimum values of the series Xi and Yi. Dividing the intervals [min x, max x]
and [min y, max y] into m parts, denoted as A1, A2, . . ., Aj and B1, B2, . . ., Bj, the sample
volume falling within intervals Aj and Bj for time series Xi and Yi are, respectively, denoted
as pi, qi, with the sample size denoted as ωij. Thus, the probability density function and joint
probability density function for Xi and Yi can be represented as follows:

f̂ (x) =
pi

nhx
(i = 1, 2, . . . . . . , m) (6)

f̂ (y) =
qi

nhy
(i = 1, 2, . . . . . . , n) (7)

f̂ (x, y) =
ωij

nhxhy
(i = 1, 2, . . . . . . , n) (8)
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Following this, information entropy and mutual information are calculated. Informa-
tion entropy for Xi and Yi is computed according to Equations (9) and (10), respectively, and
mutual information between the two variables is calculated using Equation (11). Finally,
mutual information is standardized in accordance with Equation (12):

H(X) = −
∫

X
f (x) log f (x)dx (9)

H(X, Y) = −
x

X,Y

f (x, y) log f (x, y)dxdy (10)

I(X, Y) = H(X) + H(Y)− H(X, Y) (11)

NMI =
I(X, Y)√

H(X)H(Y)
(12)

2.5. Selection and Optimization of the Effective Threshold Range

By selecting an appropriate threshold using the threshold method, redundant infor-
mation can be reduced, making the network more streamlined. For any nodes i and j, if
the normalized mutual information (NMIij) between these two nodes is greater than or
equal to the determined threshold θ ∈ [−1,1], an edge is added between nodes i and j;
otherwise, no edge is added. The setting of the threshold determines whether the variables
can participate in the construction of the network. This paper optimizes the threshold
range by observing changes in the points within the largest interconnected subgraph as
the threshold varies. Based on a determined effective threshold range, a more effective
threshold range and a reasonable threshold are identified by analyzing the inflection points
on the curve that depicts the change in the number of points in the largest connected
subgraph with increasing threshold values.

2.6. Construction of the Complex Network of the Share Market

Before investigating the complex network of financial shares, it is necessary to define
the nodes and edges of this network. Standardize the daily return data of the stocks,
then calculate the mutual information between each pair of stocks to generate the mu-
tual information matrix I, where Iij represents the mutual information value between
stock i and stock j. Based on the selected threshold θ, if Iij is greater than or equal to θ, set
the corresponding position in the adjacency matrix to 1; otherwise, set it to 0.

2.7. Two Different Network Attack Methods Based on Node Removal

In the complex network of financial shares, the degree of a node represents its relation-
ship with other nodes. Therefore, the higher the degree value, the closer its relationship
with other nodes, or in other words, the greater its influence. When studying the stability
of complex networks, there are generally two methods based on node removal: (1) Random
attack: some nodes and all their connected edges in the complex network of financial
securities are deleted entirely at random. (2) Intentional attack: nodes in the complex
network of financial securities are removed in order of importance from highest to lowest,
thus carrying out an intentional attack on the complex network of the stock market.

2.8. Calculation of Systematic Risk Entropy

There is a close relationship between the stability of intricate networks of share mar-
ketplaces and the entropy of systemic risk, which together form an important framework
for understanding and assessing the stability and risk level of complex systems. The nodes
represent stocks in the market, while the edges represent interactions between stocks, such
as synchronized price movements or mutual influences. The flow and allocation of capital
resources not only reflect the structure and dynamics of the stock market, but are also
profoundly influenced by investor behavior. At the same time, these behaviors are con-
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strained by the quantity and quality of available information, which affect the effectiveness
of capital allocation and hence the stability of the equity market system. In this paper, the
systematic risk entropy is calculated using the following method:

When researching the entropy of systemic risk, the assignment of weight ω is typically
based on the connectivity among nodes (i.e., shares) within the network. Building on the
preceding context, mutual information is employed as a metric to gauge the correlation
between stocks, and the edge weights are calculated based on the mutual information
values between stocks. This approach can be regarded as a measure of the weight between
pairs of stocks. At this juncture, the systemic risk entropy of the entire network is calculated
as follows:

H = −∑N
i=1 ∑N

j=1,j ̸=i p(i, j) · I(i; j) · log[p(i, j)] (13)

Within the model, P(i, j) signifies the joint probability distribution of stocks i and j,
and I(i; j) is the mutual information between share i and share j, employed as the weight
ωij. The inner sum compiles the cumulative contributions of correlations for a given equity
i with respect to other stocks j. Moreover, the equation presupposes that the inter-stock
correlations are static. After data processing and insertion into the formula, the computed
systemic risk entropy within the complex system of the equity marketplace, representing
China’s significant industries within the study period, amounts to 13,975.7805.

3. Results and Discussion
3.1. Determination of Threshold

Incorporating the normal distribution characteristics exhibited in Figure 1 previously,
the probability of values outside the range of [µ − 3σ, µ + 3σ] is exceptionally low. Thus,
according to the 3σ rule, an effective threshold range of [0.039, 0.327] can be established,
designated as the effective threshold range for the complex network of stocks.

As shown in Figure 2, further analysis of the largest connected subgraph reveals that
when the threshold is set to 0.160, the amount of points in the largest connected subgraph
begins to decline sharply, stabilizing only when the threshold reaches 0.362. Therefore,
the optimal threshold range for the complex network of financial stocks, after threshold
optimization based on mutual information, is determined to be [0.160, 0.327]. When select-
ing the threshold range, it is essential to ensure that this range can effectively identify the
presence of disconnections within the complicated web of financial shares. Consequently,
the value immediately preceding the onset of disconnections in the complicated network
of financial stocks, as the threshold changes, is determined to be the threshold; thus, the
threshold for the complicated network of financial shares constructed using the mutual
information threshold method is established at 0.198.
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3.2. Construction of the Complicated Network of the Equity Marketplace

For the complex network of the financial stock market based on a mutual information
threshold, setting the threshold at 0.198 eliminates all values below 0.198 while retaining
those above it. These data are then transformed into a mutual information matrix and
visualized using Python 3.12, resulting in the intricate network of the financial stock market
depicted in Figure 3.
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3.3. Characteristics of the Intricate Network of the Equity Market

(1) Small-world properties

To investigate whether the financial stocks network constructed using the mutual
information threshold method exhibits small-world properties, we reference the study by
Watts and Strogatz [27]. A random network with the same number of nodes as the financial
stock network was generated. This random network provided corresponding clustering
coefficients and average shortest path lengths, allowing for a comparative analysis to
substantiate the existence of small-world properties in the financial stock network.

From Table 1, it can be concluded that although the average shortest path of the
intricate network of the financial share market constructed in this article is not significantly
different from that of a stochastic grid, its clustering coefficient is six times that of the
random network, indicating the presence of small-world properties.

Table 1. Comparison of properties between random network and equity market network.

Random Network Financial Stock Market Network

Clustering coefficient 0.10017 0.63178
Average shortest path 1.89992 1.92769

(2) Scale-free properties

Figure 4a shows the degree distribution of junctions in the complex network of finan-
cial shares at a threshold of 0.198. The degree distribution follows a long-tail distribution,
better reflecting the probability changes in nodes with smaller degrees. Figure 4b de-
picts the degree distribution of nodes within the complex network of financial stocks
at a threshold of 0.198, presented on a double logarithmic scale. In Figure 4b, the data
points in the high-degree region (right side) are distributed along a roughly linear trend,
which corresponds to the characteristics of a power-law distribution. In the low-degree
region (left side), the distribution of data points significantly deviates from a straight line.
This indicates that the distribution does not conform to the power-law hypothesis in the
low-degree region. The research results indicate that this complex network cannot be
strictly classified as a scale-free network.



Entropy 2024, 26, 569 9 of 17

Entropy 2024, 26, x FOR PEER REVIEW 9 of 18 
 

 

Table 1. Comparison of properties between random network and equity market network. 

 Random Network Financial Stock Market Network 
Clustering coefficient 0.10017 0.63178 
Average shortest path 1.89992 1.92769 

(2) Scale-free properties 
Figure 4a shows the degree distribution of junctions in the complex network of finan-

cial shares at a threshold of 0.198. The degree distribution follows a long-tail distribution, 
better reflecting the probability changes in nodes with smaller degrees. Figure 4b depicts 
the degree distribution of nodes within the complex network of financial stocks at a 
threshold of 0.198, presented on a double logarithmic scale. In Figure 4b, the data points 
in the high-degree region (right side) are distributed along a roughly linear trend, which 
corresponds to the characteristics of a power-law distribution. In the low-degree region 
(left side), the distribution of data points significantly deviates from a straight line. This 
indicates that the distribution does not conform to the power-law hypothesis in the low-
degree region. The research results indicate that this complex network cannot be strictly 
classified as a scale-free network. 

 
Figure 4. Degree distribution of the points in the complex network of the financial share marketplace; 
Fig. 4(a) shows that when the threshold is 0.198, the degree distribution of nodes in the complex 
network of financial stocks follows the long tail distribution, and fig. 4(b) further investigates 
whether the network satisfies the power law distribution by using the log-log coordinates. 

3.4. Key Nodes in the Complicated Network of the Equity Market 
During the construction of the complex network of financial stocks, the importance 

of each node within the entire network is assessed by analyzing its degrees. Using Python 
software, the degrees of dots within the complex network of  financial stocks are calcu-
lated and ranked in descending order. The top 10 nodes with the highest degrees are se-
lected, as shown in Table 2. 

The data in the table indicate that the node represented by Shandong Haihua has the 
closest connections with other nodes, reaching 1958, followed by Changhong Huayi from 
the utility industry, with a degree of 1875. Overall, the industrial sector accounts for 30% of 
the top ten nodes ranked by degree in the network constructed based on the mutual infor-
mation threshold. The pharmaceutical healthcare, utilities, and transportation sectors each ac-
count for 20% of the top ten nodes, while the media information services sector only makes 
up 10%. However, all ten nodes occupy important positions within the entire network. 

Table 2. Key nodes based on degree. 

Node No. 689 1224 2634 468 1320 1247 1652 2563 1204 2812 

Figure 4. Degree distribution of the points in the complex network of the financial share marketplace;
(a) shows that when the threshold is 0.198, the degree distribution of nodes in the complex network
of financial stocks follows the long tail distribution, and (b) further investigates whether the network
satisfies the power law distribution by using the log-log coordinates.

3.4. Key Nodes in the Complicated Network of the Equity Market

During the construction of the complex network of financial stocks, the importance of
each node within the entire network is assessed by analyzing its degrees. Using Python
software, the degrees of dots within the complex network of financial stocks are calculated
and ranked in descending order. The top 10 nodes with the highest degrees are selected, as
shown in Table 2.

Table 2. Key nodes based on degree.

Node No. 689 1224 2634 468 1320 1247 1652 2563 1204 2812

Stock Shandong
Haihua

Changhong
Huayi

Kanghui
Pharma-
ceuticals

Hongda
Hi-tech

Disen
Shares

Hunan
Investment

Jiangxi
Guangdong
Expressway

Shenzhou
Taiyue

Ningbo
Thermal
Power

Furi Shares

Degree 1958 1875 1855 1843 1832 1712 1645 1625 1521 1268

The data in the table indicate that the node represented by Shandong Haihua has
the closest connections with other nodes, reaching 1958, followed by Changhong Huayi
from the utility industry, with a degree of 1875. Overall, the industrial sector accounts
for 30% of the top ten nodes ranked by degree in the network constructed based on the
mutual information threshold. The pharmaceutical healthcare, utilities, and transportation
sectors each account for 20% of the top ten nodes, while the media information services
sector only makes up 10%. However, all ten nodes occupy important positions within the
entire network.

In complex networks, basic centrality metrics used to measure the importance of points
in undirected networks include degree centrality, betweenness centrality, and closeness
centrality. Betweenness centrality refers to the proportion of edges between two dots in
relation to the entire mesh; a higher betweenness centrality indicates a larger proportion
of such edges, often found in networks of the same type. When nodes in a network are
closer to each other, their betweenness centrality increases. Closeness centrality refers to
the proportion of edges between a node and other nodes in the network; a higher closeness
centrality indicates a larger proportion of such edges. Based on this, the betweenness and
closeness centralities of all nodes in the complex network of financial stocks were calculated,
again selecting the top 10 nodes for focused analysis. The results are presented in Table 3.

It is evident that the industrial sector, represented by Ningbo Thermal Power, continues
to stand out in terms of betweenness and closeness centrality, influencing and controlling
82.1% of the information and risk transmission within this complex network. In the
key nodes based on degree and betweenness centrality, the media information services,
pharmaceutical healthcare, transportation, and utility sectors all hold significant positions,
making these four sectors the most important types of nodes within the stock complex
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network. The industrial sector accounts for 30% of the key nodes based on both degree and
centrality, with media information services at 10%. In the key nodes based on closeness
centrality, the transportation sector accounts for 10%, indicating that these two sectors
occupy a smaller proportion compared to other industries.

Table 3. Crucial nodes based on centrality.

Rank
Betweenness Centrality Closeness Centrality

Node No. Stock Betweenness Node No. Stock Closeness

1 1125 Ningbo Thermal Power 0.821 1224 Changhong Huayi 0.00852
2 1224 Changhong Huayi 0.812 1125 Ningbo Thermal Power 0.00789
3 468 Hongda Hi-tech 0.740 1355 Jiangxi Guangdong Expressway 0.00755
4 689 Shandong Haihua 0.789 1532 Shenzhou Taiyue 0.00657
5 1320 Disen Shares 0.785 689 Shandong Haihua 0.00625
6 3254 Kanghui Pharmaceuticals 0.765 2581 Furi Shares 0.00624
7 1532 Shenzhou Taiyue 0.754 1320 Disen Shares 0.00598
8 1427 Hunan Investment 0.746 2154 Tongfeng Electronics 0.00515
9 1355 Jiangxi Guangdong Expressway 0.723 3254 Kanghui Pharmaceuticals 0.00452

10 2581 Furi Shares 0.700 468 Hongda Hi-tech 0.00324

3.5. Stability of the Intricate Network of Stocks

This section, based on nodes removal, explores the relationship between the ratio of
nodes in the largest connected subgraph (S) and the scale of removed nodes (F), resulting
in the system stability measurement illustrated below. The horizontal axis F represents the
proportion of nodes that are attacked or removed. When F = 0, no nodes are removed; when
F = 1, all nodes are removed. The vertical axis S represents the proportion of the largest
connected subgraph among the remaining nodes for a given F value. When S = 1, all nodes
are connected; when S = 0, there are no connected nodes, indicating a complete disconnection.

Figure 5, respectively, depicts the trend of change in the proportion S of nodes in the
largest connected subgraph to the total number of nodes in the original network under
intentional and random attack strategies within the complex network of financial stocks,
as a function of the proportion F of removed nodes. The graphs indicate that under an
intentional attack strategy, S tends to zero when F is less than 0.87; under a random attack
strategy, S decreases on a macro level as F increases, and as F approaches 1, the proportion of
nodes in the largest connected subgraph, S, tends towards 0, showing the typical scale-free
characteristics of the complex network of financial stocks.
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Figure 5. The trend of change in the proportion of nodes in the largest connected subgraph under
intentional attack and random attacks; (a) shows a deliberate attack on critical nodes. When F ap-
proaches 1, the network connectivity decreases sharply. (b) represents the random selection of nodes for
attack and observes the changes in connectivity. Deliberate attacks are more destructive to the largest
connected subgraph.
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3.6. Stability of the Equity Market Intricate Network at High and Low Thresholds
3.6.1. Stability Analysis of the Share Market Complex System at a High Threshold

In the calculations described above, an optimal threshold range of [0.160, 0.327] is
determined. Under these conditions, following the threshold method’s requirements, all
mutual information values below 0.327 are eliminated, retaining only those above 0.327.
The remaining figures are then converted into a mutual information matrix, resulting in the
high-threshold complex network of the financial stock market as shown below.

As depicted in Figure 6, in the high-threshold network, most nodes exhibit high
clustering, forming a large connected subgraph. This indicates that nodes within this area
share more information and are highly interconnected. When central nodes are attacked,
other nodes connected to this part are also affected. However, a small portion of peripheral
nodes remains isolated due to the high threshold value limiting network connectivity.
These disconnected nodes are unaffected by the central nodes and play a minimal role in
the network.
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Figure 6. High-threshold complex web of the financial stock market.

From Figure 7, it can be observed that under an intentional attack strategy, S gradually
approaches 0 when F is less than 0.61, especially within the range of [0.13, 0.39], where the
decrease in S is more rapid. Under a random attack strategy, S decreases macroscopically
as F increases, and S tends towards 0 as F approaches 0.95, illustrating the typical scale-free
characteristics of the complicated web of financial stocks.
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Figure 7. Attack scenarios on the high-threshold stock market complex network; (a) shows that
after strengthening the standards for node importance or connectivity, under deliberate attack, S will
obviously break and jump. The largest connected subgraph will suddenly split into several small
subgraphs, which will lead to a sharp decline in network connectivity. (b) shows no obvious fracture
phenomenon.

3.6.2. Stability Analysis of the Equity Market Complicated Web at a Low Threshold

Using the optimal threshold range of [0.150, 0.327] obtained through the calculations,
setting 0.150 as a low threshold, all mutual information values below 0.150 are removed,
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keeping only those above 0.150. After converting the remaining figures into a mutual
information matrix and visualizing it with Python software, a low-threshold intricate
network of the financial share market is obtained, as shown in Figure 8.
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Figure 8 reveals that most points in the network cluster together, making the entire
system very dense, with only a few nodes being scattered. These scattered nodes are not
significantly affected during turmoil.

Figure 9 indicates that under an intentional attack strategy, S gradually tends to
zero when F is less than 0.95, especially quickly within the range of [0.85, 0.912], where the
decrease in S is more rapid. Under a random attack strategy, S exhibits a linear decreasing
trend on a macroscopic level as F increases, and as F approaches 1, S tends towards 0.
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Figure 9. Attack scenarios on the low-threshold stock market complex network; (a) shows that under
a low threshold, the network connectivity remains relatively stable despite the deliberate removal of
nodes, and only collapses when most of the nodes are removed. The inset magnifies the details when
F approaches 1, showing the final fracture. (b) shows the impact of random attacks on the network,
where the network connectivity gradually decreases without a sudden structural change.

From the above analysis, several points can be determined: First, the intricate system
possesses small-world and scale-free properties, consistent with the topological
features of both China’s overall equity market system and international stock market
networks [28–30]. Second, from an industry perspective, the top ten stocks include multiple
stocks from industries such as industrial, media information services, pharmaceutical
healthcare, transportation, and utilities. From a corporate perspective, Changhong Huayi
and Kanghui Pharmaceuticals are key nodes within the network, playing a vital role in
risk control. The financial sector or financial institutions are not “at the top”. The results
obtained from the above two perspectives seem to differ from those of many scholars’
research findings [31,32], which may be related to the selection of the research period.
During the expansion and recovery of the pandemic, public demand for pharmaceuticals,
medical care, and health services stimulated rapid industry growth, increasing their in-



Entropy 2024, 26, 569 13 of 17

fluence in the stock market. Furthermore, under an intentional attack strategy, the stock
market complex network exhibits strong fragility; under a random attack strategy, the
network shows greater stability. Finally, the stability of random attacks in low-threshold
networks is slightly stronger than in high-threshold networks, with increased threshold
values enhancing the vulnerability of networks under intentional attack strategies.

3.7. Analyzing Network Stability from the Perspective of Systemic Risk Entropy

To further probe the stability of this intricate web, this section initially calculates the
systemic risk entropy for each year between 2000 and 2022. Intuitively, the systemic risk
entropy of the complex network within China’s major industry stock markets exhibits a
trend of volatile increase, as shown in Figure 10. Compared to the year 2000, the systemic
risk entropy in 2022 has increased nearly 60-fold, indicating that the instability of this
complex network has become increasingly prominent.
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Both the 2008 financial crisis and the recent COVID-19 pandemic are examples of
exogenous shocks. However, the systemic risk entropy following the 2008 financial crisis is
significantly lower compared to that during the COVID-19 pandemic. This complex phe-
nomenon involves multiple factors, which can be primarily considered from the following
two perspectives:

Firstly, regarding the nature and scope of the shocks, the financial crisis was primarily
triggered by structural issues within the financial markets, such as the subprime mortgage
crisis, high-leverage operations of financial institutions, and the misuse of complex financial
products. Although it had a significant impact on the global economy, its effects were
mainly concentrated within the financial markets and specific sectors (e.g., real estate and
financial services). In contrast, the COVID-19 pandemic is a global public health crisis that
has broadly affected all countries and economic sectors. It led to a significant halt in global
economic activities, supply chain disruptions, and a sharp decline in consumer demand.
The breadth and depth of its impact far exceed those of the financial crisis, which also
explains why the systemic risk entropy during the 2008 financial crisis appears relatively
moderate in the graph.

Secondly, from the perspective of market reaction and policy response, following
the 2008 financial crisis, governments and central banks swiftly implemented a series of
countermeasures. Post-crisis, governments and regulatory bodies worldwide strengthened
financial market regulations, introducing stringent regulatory measures and raising capital
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adequacy and liquidity requirements for banks. These measures stabilized the markets to
some extent, reduced uncertainty, and mitigated systemic risk.

Moreover, data analysis reveals that around 2019, the entropy value experienced
its most significant fluctuations, thereby serving as a demarcation point. The changes
are illustrated in Figure 11. This prompted the construction of complex networks for
two distinct periods: 1990–2019 and 2019–2022, under both high- and low-threshold con-
ditions. A longitudinal comparison reveals no substantial changes in the structure of the
high-threshold network around 2019. The vertical comparison reveals that the structure of
the high-threshold network before and after 2019 did not change significantly. This reflects
both the tightest market relationships and the most influential stock pairs. It also implies
that during stress events, this could lead to a “herd effect”, exacerbating market volatility.
It shows that under stress, the market may transmit risk through multiple pathways. In
the low-threshold network after 2019, the connections between nodes became more dense,
the network connectivity increased significantly, and the central nodes became densely
connected (central nodes in their respective networks became more important). This reveals
broader market connections, indicating that a disturbance in one area could quickly spread
throughout the network, increasing systemic risk in the market.
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The equity and currency markets are inextricably linked, and the interconnections
between the cryptocurrency market and the stock market can be facilitated through various
mechanisms, including the transmission of market sentiments, the sharing of investment
liquidity, risk management, and arbitrage opportunities. Consequently, when considering
the specific conditions of the complex network in the stock market, the cryptocurrency
market also warrants attention. Research conducted by S Drożdż et al. has revealed that
the COVID-19 pandemic, as an exogenous shock, impacted the topological structure of
the cryptocurrency market’s complex network: it prompted a shift from a centralized
to a decentralized form in the short to medium term, although this change was less
pronounced on a longer-term scale. In contrast, shifts in the stock market state, such as the
transition from a bull to a bear market, have visibly affected the topological structure across
all scales [33].
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From the perspective of stability, the impact of the COVID-19 pandemic has enhanced
the robustness of the complex network in the cryptocurrency market in the short to medium
term, though its effect is less significant in the long term.

It is worth discussing that transformations and feedback loops may exist between
endogenous and exogenous shocks, where one type of shock triggers a response of another
type, which in turn enhances or alters the initial shock. For instance, in the financial
network, a global financial crisis (an exogenous shock) might lead to tightening credit
markets and a loss of trust among banks (endogenous responses), further deepening the
impact of the initial shock. Alternatively, the spread of information within the network
(an endogenous shock) might provoke changes in public opinion, which could prompt
the government to implement new policy measures (an exogenous shock), thereby again
influencing the flow of information and behavioral patterns within the network. The
interplay of internal and external shocks makes the measures to maintain and enhance
network stability more complex.

4. Conclusions

Complexity science provides theoretical tools for exploring the intrinsic laws of finan-
cial markets [34], and the dynamic characteristics exhibited by various complex systems
bear a high degree of similarity to the features observed in actual financial marketplaces.
This similarity lays the factual foundation for the introduction of complexity science into
financial markets [35]. The complex network of this stock market exhibits striking similari-
ties with other distinctly different networks, such as small-world networks, corroborating
the viewpoints of Kwapień J and Drożdż S [36].

The identification of key nodes within the network reveals that companies with a
strong risk of contagion, namely those occupying significant positions within the entire
network such as Changhong Huayi, Ningbo Thermal Power, and other companies ranked
in the top ten by degree and centrality, can influence the entire stock market and even the
broader financial market if their stock prices undergo dramatic fluctuations. For listed
companies, issuing stocks for financing is merely a phase in achieving development goals.
For sustainable development, on one hand, they should pay attention to the industry dy-
namics of companies associated with them while strengthening risk prevention, clarifying
risk management objectives, and selecting appropriate risk management techniques and
measures based on their characteristics to stabilize the company’s stock price. On the other
hand, the government should continue to control the environmental assessment pressure
on local government officials to urge companies to improve their ESG performance and
reduce operational risks, implementing subsidy policies for outstanding enterprises [37,38].
For investors, it is advisable to consider the risk propagation rules of the share marketplace
cautiously, make reasonable estimates of the correlation between different industries and
their stocks, and adopt a diversified investment strategy to reduce losses.

Network stability analysis exhibits that this network is robust to random aggressive
behavior, indicating that certain random events in the stock marketplaces of important
Chinese industries do not intrinsically affect the overall price fluctuation correlation of the
network. In contrast, intentional attacks can undermine the connectivity integrity of this
network in short order. At the same time, however, the significant rise in systematic risk
entropy suggests an incremental level of uncertainty or disorder in the share marketplace,
which is a wake-up call for the stability of financial markets. In context, it is reasonable to
believe that the global spread of the novel coronavirus (COVID-19), which led to extreme
volatility in the global economy and financial markets in 2019–2022 and was widely linked
with unfavorable factors such as declining business returns, rising unemployment, spread-
ing investor pessimism, supply chain disruptions, and international tensions, forming a
vicious cycle, is the major cause of the market’s systemic instability. The vicious circle is an
important reason for the elevated systemic risk in the market.

In summary, establishing network stability analysis on the recognition of critical nodes
and the entropy of systemic risk is merely a superficial and not exclusive approach and
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method. The crux of the issue lies in how to effectively prevent systemic risks, thereby
enabling the stock market to “feed back” into the economy towards sustainable develop-
ment. To this end, at the macro level, it is imperative to pay closer attention to sudden,
significant events that may threaten the steadiness of the stock marketplace and to promptly
implement prescient market rescue measures [39]. At the micro level, enterprises that hold
significant positions within their respective sectors should make business decisions more
prudently and foster a positive interaction with shareholders to better maintain the stability
of the financial marketplace and, by extension, the stability of a country’s economy.
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