
Citation: Liao, Z.; Liu, T.; He, Y.; Lin,

L. Effective Temporal Graph

Learning via Personalized PageRank.

Entropy 2024, 26, 588. https://

doi.org/10.3390/e26070588

Academic Editor: Adam Lipowski

Received: 19 May 2024

Revised: 26 June 2024

Accepted: 4 July 2024

Published: 10 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Effective Temporal Graph Learning via Personalized PageRank
Ziyu Liao , Tao Liu , Yue He and Longlong Lin *

College of Computer and Information Science, Southwest University, Chongqing 400715, China;
lzy2021xndx@email.swu.edu.cn (Z.L.); taoliu.swu@gmail.com (T.L.); estherr@email.swu.edu.cn (Y.H.)
* Correspondence: longlonglin@swu.edu.cn

Abstract: Graph representation learning aims to map nodes or edges within a graph using low-
dimensional vectors, while preserving as much topological information as possible. During past
decades, numerous algorithms for graph representation learning have emerged. Among them,
proximity matrix representation methods have been shown to exhibit excellent performance in ex-
periments and scale to large graphs with millions of nodes. However, with the rapid development
of the Internet, information interactions are happening at the scale of billions every moment. Most
methods for similarity matrix factorization still focus on static graphs, leading to incomplete sim-
ilarity descriptions and low embedding quality. To enhance the embedding quality of temporal
graph learning, we propose a temporal graph representation learning model based on the matrix
factorization of Time-constrained Personalize PageRank (TPPR) matrices. TPPR, an extension of
personalized PageRank (PPR) that incorporates temporal information, better captures node similari-
ties in temporal graphs. Based on this, we use Single Value Decomposition or Nonnegative Matrix
Factorization to decompose TPPR matrices to obtain embedding vectors for each node. Through
experiments on tasks such as link prediction, node classification, and node clustering across multiple
temporal graphs, as well as a comparison with various experimental methods, we find that graph
representation learning algorithms based on TPPR matrix factorization achieve overall outstanding
scores on multiple temporal datasets, highlighting their effectiveness.

Keywords: dynamic graph representation; time-constrained personalized PageRank; matrix factorization;
link prediction; node classification

1. Introduction

Graph embedding refers to the method of representing the structural attributes of a
graph using low-dimensional vectors [1]. This approach transforms complex network struc-
tural information into compact vector representations, facilitating analysis, processing, and
application of graph structural information across various tasks like node classification [2],
link prediction [3], and graph reconstruction [4]. Various technical methods have been
developed for graph embedding, broadly categorized into traditional methods and those
based on graph neural networks. These methods aim to derive low-dimensional vector
representations from graphs. Additionally, similarity matrix factorization techniques have
shown promising experimental results [5]. While previous research has predominantly fo-
cused on static graphs, today’s online environments are characterized by stacked temporal
graphs. Consequently, there is a pressing need for algorithms capable of accurately and
efficiently characterizing temporal structures. Current approaches in temporal attribute
graph representation learning face challenges. For example, Temporal Graph Convolu-
tional Networks (T-GCN) [6] are limited to handling temporal attribute graph data with
fixed topological structures and struggle to adapt to changing topologies. Dynamic Graph
Convolutional Networks (D-GCN) [7], on the other hand, are suitable only for labeled data,
which is not always practical due to high labeling costs. Traditional graph deep learning
models like Graph Convolutional Networks (GCN) [8] often suffer from over-smoothing
issues, hindering effective feature extraction from networks.

Entropy 2024, 26, 588. https://doi.org/10.3390/e26070588 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26070588
https://doi.org/10.3390/e26070588
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0006-0662-7244
https://orcid.org/0009-0009-1267-3038
https://orcid.org/0000-0002-2194-8146
https://doi.org/10.3390/e26070588
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26070588?type=check_update&version=1

Entropy 2024, 26, 588 2 of 18

In graph embedding learning, Personalized PageRank (PPR) [9] is also a key focus.
PPR aims to learn low-dimensional representations of nodes in a graph while preserving
their similarities, better characterizing the structural features of the graph. However, exist-
ing PPR-based graph embedding learning methods are mostly applied to static graphs, such
as HOPE [10], VERSE [11], and some recent works, which also extend on PPR. Therefore,
research on PPR in dynamic graphs is still incomplete, facing the following major chal-
lenges: (i) Without constraints of time attribute, the random walk sequence <Alice, Lucy,
Tom, Frank> is reasonable in a community contact graph, shown in Figure 1. However,
with added time attributes as shown in Figure 1, interactions occur at different timestamps,
which makes the random walk sequence <Alice, Lucy, Tom, Frank> unreasonable as a
temporal random walk sequence. (ii) In Figure 1, based on the timestamps of interactions,
it is obvious that the likelihood of the temporal walk edge <Chris, Bob, 1> transitioning
to <Bob, Alice, 2> in the next timestamp is greater than transitioning to <Bob, Lucy, 3>.
However, such transition probabilities cannot be reflected in traditional PPR transition
matrices. (iii) Due to the dynamics of temporal graphs, edges that are connected at one
timestamp may not be reachable at the next timestamp, which is known as the dangling
edge problem.

Entropy 2024, 26, x FOR PEER REVIEW 2 of 18

[8] often suffer from over-smoothing issues, hindering effective feature extraction from
networks.

In graph embedding learning, Personalized PageRank (PPR) [9] is also a key focus.
PPR aims to learn low-dimensional representations of nodes in a graph while preserving
their similarities, better characterizing the structural features of the graph. However, ex-
isting PPR-based graph embedding learning methods are mostly applied to static graphs,
such as HOPE [10], VERSE [11], and some recent works, which also extend on PPR. There-
fore, research on PPR in dynamic graphs is still incomplete, facing the following major
challenges: (i) Without constraints of time attribute, the random walk sequence <Alice,
Lucy, Tom, Frank> is reasonable in a community contact graph, shown in Figure 1. How-
ever, with added time attributes as shown in Figure 1, interactions occur at different
timestamps, which makes the random walk sequence <Alice, Lucy, Tom, Frank> unrea-
sonable as a temporal random walk sequence. (ii) In Figure 1, based on the timestamps of
interactions, it is obvious that the likelihood of the temporal walk edge <Chris, Bob, 1>
transitioning to <Bob, Alice, 2> in the next timestamp is greater than transitioning to <Bob,
Lucy, 3>. However, such transition probabilities cannot be reflected in traditional PPR
transition matrices. (iii) Due to the dynamics of temporal graphs, edges that are connected
at one timestamp may not be reachable at the next timestamp, which is known as the
dangling edge problem.

Figure 1. Dynamic local structural graph.

To address the challenges mentioned above, we found that the key lies in how to
represent temporal node similarity effectively. Inspired by temporal constraints on the
original PPR (TPPR [12]), we discovered that such methods for node similarity represen-
tation can lead to more precise node embedding representations in temporal graphs.
Based on the temporal attributes, this method represents the edges of the directed graph,
which better represents the random walk sequence. Specifically, it constructs a temporal tran-
sition matrix by incorporating the connectivity status across different timestamps. TPPR ad-
dresses challenges such as handling dangling edges where the destination of a temporal edge
is uncertain, which are not effectively managed by traditional PPR methods. The algorithm
begins by identifying interacting edges at each timestamp within the temporal graph. Sub-
sequently, we compute TPPR values for individual nodes across the entire temporal span.
Utilizing dynamic programming algorithms, we propagate transition probabilities
throughout the graph. At each timestamp, we calculate the probabilities of nodes reaching
their connected nodes based on previously identified interaction edges, adjusted by the
current timestamp’s transition probabilities. Finally, we derive the TPPR vector for each
node and aggregate these vectors to construct the comprehensive TPPR matrix.

Figure 1. Dynamic local structural graph.

To address the challenges mentioned above, we found that the key lies in how to rep-
resent temporal node similarity effectively. Inspired by temporal constraints on the original
PPR (TPPR [12]), we discovered that such methods for node similarity representation can
lead to more precise node embedding representations in temporal graphs. Based on the
temporal attributes, this method represents the edges of the directed graph, which better
represents the random walk sequence. Specifically, it constructs a temporal transition ma-
trix by incorporating the connectivity status across different timestamps. TPPR addresses
challenges such as handling dangling edges where the destination of a temporal edge is
uncertain, which are not effectively managed by traditional PPR methods. The algorithm
begins by identifying interacting edges at each timestamp within the temporal graph.
Subsequently, we compute TPPR values for individual nodes across the entire temporal
span. Utilizing dynamic programming algorithms, we propagate transition probabilities
throughout the graph. At each timestamp, we calculate the probabilities of nodes reaching
their connected nodes based on previously identified interaction edges, adjusted by the

Entropy 2024, 26, 588 3 of 18

current timestamp’s transition probabilities. Finally, we derive the TPPR vector for each
node and aggregate these vectors to construct the comprehensive TPPR matrix.

By directly performing Single Value Decomposition (SVD) and Nonnegative Matrix
Factorization (NMF) matrix decompositions on the TPPR matrix, we obtained graph em-
beddings and corresponding embedding vectors. Subsequently, we conducted downstream
tasks such as link prediction, node classification, and node clustering [13–17] on multiple
dynamic datasets. We evaluated the task results using specific metrics, reflecting the effec-
tiveness of TPPR-based temporal matrix decomposition. During experiments, we compared
our algorithm with existing temporal graph representation learning algorithms, traditional
temporal graph learning algorithms, and graph neural-network-based algorithms across
various temporal datasets. Through comparison with metrics from experiments, our al-
gorithm demonstrates superior overall performance on dynamic datasets compared to
baseline methods.

2. Related Work
2.1. Static Graph Representation Learning

Static graph representation learning involves learning the structure of nodes, edges,
and the entire graph from static graph data and effectively representing them using low-
dimensional vectors. This technique, referenced in studies [18–20], finds widespread
applications in fields such as social network analysis, bioinformatics, recommendation
systems, and knowledge graphs. Graph embedding algorithms have evolved towards
more scalable methods. Matrix factorization techniques approximate the decomposition of
the adjacency matrix to obtain embeddings. Meanwhile, random-walk-based methods use
Skip Gram to generate embeddings from sequences of random walks, capitalizing on the
graph’s sparsity to reduce time complexity.

There are many existing static graph representation learning methods. Random-walk-
based methods are relatively classic, such as DeepWalk [21], node2vec [22], LINE [23], and
struc2vec [24]. However, most of these are algorithms that modify and improve random
walk strategies based on DeepWalk; Static graph embedding models based on matrix
factorization decompose the feature matrices of node associations and attribute informa-
tion matrices (e.g., SVD), then fuse the decomposed attribute embedding and structural
embedding to generate low-dimensional embedding of the nodes, such as HOPE [10] and
SPE [25]. Additionally, there are methods based on graph neural networks, such as Graph
Convolutional Networks (GCNs) and GATs [26]. However, static graph representation
learning methods still have limitation due to a lack of temporal awareness.

2.2. Temporal Graph Representation Learning

Temporal graph representation learning is a representation learning method for dy-
namic or temporal graphs, dealing with data of nodes and edges changing over time.
Temporal graph representation learning [27–38] has wide applications in various fields
such as traffic network analysis, financial transactions, social networks, and bioinformat-
ics. It enhances graph representation learning from a temporal perspective to address
the shortcomings of static graph representation learning. Similarly, the current direction
of temporal graph representation learning draws on the experience of predecessors and
makes improvements in random walks, matrix factorization, and graph neural networks
regarding temporal attributes.

In random walk methods, Sajjad et al. [39] divided the process of graph embedding
generation into two steps: first, updating random walk sequences on dynamic graphs.
Compared with directly starting random walks from scratch on static snapshots, the up-
dating algorithm maintains the statistical characteristics of random walks. Then, given
the embedding representation of the previous time step and the updated random walk
sequence, the Skip-Gram model is employed to update the embedding representation.
CTDNE [40], on the other hand, addresses the temporal properties of dynamic networks,
capturing temporal dependencies using the Hawkes process to learn the temporal evolu-

Entropy 2024, 26, 588 4 of 18

tion characteristics of the network. By learning low-dimensional representations of nodes
over continuous time, CTDNE can address link prediction and node classification prob-
lems in dynamic networks. Similarly, there are still methods that study temporal graph
representation learning using the Hawkes process and enhance node representations by
incorporating attention mechanisms on this basis [41,42]. In matrix factorization methods,
dynamic graph methods based on matrix factorization use eigenvalue decomposition to
construct high-order similarity matrices of graphs and then use matrix perturbation theory
to update the dynamic information of graphs, such as DANE [43] and DHPE [44]. In
dynamic graph neural network learning, dynamic graph models based on GNNs usually
introduce a cyclic mechanism to update network parameters on the basis of static graph
models, achieving the modeling of dynamic processes, and also ensuring that the generated
low-dimensional embedding effectively retain the dynamic evolution information of the
graph. Examples include DySAT [45]. However, the current research still lacks methods to
address the challenging issues mentioned in Section 1 regarding node similarity.

3. Preliminaries

Given a temporal graph G(V, E, T), where V represents the set of n vertices in graph
G, E represents the set of m edges in graph G, and T represents the collection of timestamp
sequences where interactions occur in the graph, in order to facilitate the description of
temporal edges, each edge is represented as two ordered edges in opposite directions.
Specifically, <u,v,t> is represented as <u,v,t> and <v,u,t>, where u and v are nodes, and t is
the timestamp. Here, head(

⇀
e) denotes the head node of the temporal edge, tail(

⇀
e) denotes

the tail node, and time(
⇀
e) denotes the timestamp of the temporal edge. You can gain a more

intuitive understanding from the following equation:

⇀

eout
u =

⇀
e
∣∣∣head (

⇀
e) = u

⇀

ein
u =

⇀
e
∣∣∣ (tail

⇀
e) = u

The temporal graph maps nodes to a vector of dimension d through a learned function,
under the condition that the sampled nodes satisfy the temporal reachability criterion,
and where d� |V|. f : V → Z, Z = {z1, . . . , zn}, zi ∈ Rd , where V represents the node
matrix, Z represents the embedding matrix, n is the number of nodes, and the vector zi
corresponds to the vector representation of node vi.

4. Methodology

The graph representation learning algorithms based on TPPR proposed in this paper
adds a time constraint compared to the PPR algorithm. It computes the time-constrained
node similarity of this node, named as TPPR value, for each node, and then integrates these
TPPR values into a matrix. This matrix undergoes SVD or NMF matrix decomposition
to obtain graph embedding vectors. This section specifically analyzed four perspectives.
Section 4.1 defines temporal random walks and temporal transition matrices, highlighting
the shortcomings of existing static PPR as mentioned earlier. Sections 4.2 and 4.3 analyze
how we solve the issue of dangling edges to implement TPPR, explaining the combination
of PPR with time to derive TPPR. Section 4.4 demonstrates how to obtain vectors through
SVD and NMF matrix decomposition. Section 4.5 provides an analysis of the algorithm for
TPPR matrix decomposition presented in this paper.

4.1. Temporal Random Walks and Temporal Transition Matrices

In a static graph G (V,E), there are connections between different nodes. Calculating
the similarity between nodes involves computing the personalized PageRank (PPR) [9]
value for each node. The computation of PPR involves passing PPR to other connected
users through random walks, starting from the initial PPR values. We can easily obtain the
following equation:

x = (1− α)x0 + αxM (1)

Entropy 2024, 26, 588 5 of 18

Mij =

{
1

|out(i)| , j ∈ out(i)
0 , else

(2)

In the above formula, x0 represents the initial distribution of PPR values, x represents
the PPR distribution values, α represents the damping factor, M is the transition probability
matrix, Mij represents the transition probability from node i to node j, and out(i) indicates
the out-degree of node i, where i is accessible to j. Given the initial PPR values for each
user, random walks are conducted with a probability of (1 − α) based on the existing user
connections and damping factor.

In addressing the issue of temporal graphs, each node is regarded as a moving entity
and moves within the graph through random walks. Unlike traditional static graphs,
temporal graphs contain temporal information, so the connectivity and attributes of nodes
in the graph may change over time. However, existing PPR random walks lack temporal
coherence, and in a temporal graph, there may be multiple interactions between two points
at different time points, which cannot be interpreted by the transition matrix M of PPR.
Therefore, to more accurately characterize the similarity between nodes in temporal graphs,
we introduced the concepts of temporal random walks and temporal transition matrices.

Definition 1 (Temporal Random Walks [12]). Given that l-hop temporal random walk from
node i to node j with an ordered list of edges, {

⇀
e1,

⇀
e2, . . . ,

⇀
el }. This temporal sequence satisfies the

conditions, head(
⇀
e1

)
= i, tail(

⇀
el) = j, and when 1 ≤ x ≤ l − 1, tail(

⇀
ex) = head(

⇀
ex+1) and time(

⇀
ex)

≤ time(
⇀

ex+1). Here, we use twl and TWu→v
l as sets of l-hop temporal walks and temporal walk

edges from u to v, respectively.

Definition 2 (Temporal transition matrix [12]). Temporal transition matrix between two tempo-
ral edges P∈Rm×m can be computed as follows:

P(
⇀
ei →

⇀
ej) =

g
(

time
(
⇀
ej

)
−time

(
⇀
ei

))
∑→

ek∈N>(
→
ei)

g
(

time
(→

ek

)
−time

(→
ei

)) ,
→
ej ∈ N >

(→
ei

)
0 ,

→
ej /∈ N > (

→
ei)

(3)

In this formula,
(
⇀
ei →

⇀
ej

)
denotes the transition probability from

⇀
ei to

⇀
ej , while

N > (
→
e) =

{
< u, v, t >

∣∣∣u = tail(
→
e), t > time(

→
e)
}

. Here, g(a,b) is a decay function used to

capture the dependency between connections, and
→
ej should satisfy the set of N >

(→
ei

)
. In

this case, we use a linear decay function (other functions such as exponential or logarithmic
functions can also be used). It is noteworthy that P matrix can only be constructed once for
each dataset to perform TPPR calculation. For the l-hop temporal walk twl = {

⇀
e1,

⇀
e2, . . . ,

⇀
el },

the transition probability of the l-hop temporal walk twl is indicated by P(twl). Specifically,

P(tw0) = 0, and when twl = <u,v,t>, P(twl) = 1/|
⇀

eout
u |.

4.2. Handling of Danging Edges

Unlike static graphs, edges in temporal graphs may change over time, leading to
uncertain reachability, which means edges in this state cannot reach any connected edges at
the current time. We call this state as “dangling state”, and edges in this state are referred
to as “dangling edges”. This condition can be expressed using transition probabilities:

∑
out(

→
e i)

l P→
e i
(
→
e i →

→
e j) = 0. To simplify this formula, we have P→

e i
(
→
e i →

→
e i) = 1,

indicating the dangling state. This ensures that the temporal transition matrix P is a
stochastic matrix.

Entropy 2024, 26, 588 6 of 18

Dealing with dangling edges is an inevitable challenge in the context of temporal
graphs. Therefore, when conducting random walks, we take into account the influence of
dangling edges. Combined with Definitions 1 and 2, we provide the following definition:

Definition 3 (l-hop Temporal transition matrix). For l, if there exists an integer l satisfying (i)
when 1 ≤ i ≤ l − 1, time(

→
el

)
< time(

→
el+1

)
and

→
el not a dangling state, (ii)

→
el is a dangling state

and for all integers k,
→
el =

→
el+k, then, we consider Ptw∞ 6= 0.

4.3. Time-Constrained Personalized PageRank

In a temporal graph, the connections between nodes evolve over time. Therefore, to
characterize the similarity between nodes within a temporal graph, we calculate Time-
constrained Personalized PageRank (TPPR) by adding a time constraint to obtain a time-
constrained transition matrix compared with the PPR algorithm. This step is a key point
of the algorithm proposed in this paper. Here, we introduce edge streams to represent
the graph, describing the interactions occurring within each timestamp. This assists us in
extracting information from the temporal graph, as shown in Figure 2.

Entropy 2024, 26, x FOR PEER REVIEW 6 of 18

4.3. Time-Constrained Personalized PageRank
In a temporal graph, the connections between nodes evolve over time. Therefore, to

characterize the similarity between nodes within a temporal graph, we calculate Time-
constrained Personalized PageRank (TPPR) by adding a time constraint to obtain a time-
constrained transition matrix compared with the PPR algorithm. This step is a key point
of the algorithm proposed in this paper. Here, we introduce edge streams to represent the
graph, describing the interactions occurring within each timestamp. This assists us in ex-
tracting information from the temporal graph, as shown in Figure 2.

Figure 2. Edge stream based on dynamic social Figure 1.

Definition 4 (TPPR [12]). Given a dynamic graph G(V,E), node q, and damping factor α, the compu-
tation of a node’s TPPR relative to node q under time constraints can be represented as follows:

 (4)

According to Equation (1), we can equivalently obtain: 𝑝𝑝𝑟෦ (𝛼, 𝑋෪ = 𝛼𝑋෪ + (1 − 𝛼)𝑝𝑝𝑟෦ (𝛼, 𝑋෪)𝑃 (5)

If 𝑋෪ ∈ 𝑅ଵ× and 𝑒 ∈ 𝑒௨௧ሬሬሬሬሬሬሬሬ⃗ , then 𝑋෪(𝑒) = 1/|𝑒௨௧ሬሬሬሬሬሬሬሬ⃗ |.
Unlike the random walk process in traditional static PPR, computing temporal TPPR

involves traversing ordered temporal edges, taking into account not only the connectivity
of nodes but also the times at which these connections occur. (i) 𝑝𝑝𝑟෦ (𝛼, 𝑋෪)(𝑒) reflects
the temporal similarity of 𝑒 to point q. (ii) Since P is a stochastic matrix and 𝑝𝑝𝑟෦ (𝛼, 𝑋෪)
is probability distribution, we can thus easily obtain the equation to calculate the TPPR
value related to node q as ∑ 𝑡𝑝𝑝𝑟(𝑢) = ∑ ∑ 𝑝𝑝𝑟෦ (𝛼, 𝑋෪)(𝑒)⃗ ∈ೠഢሬሬሬሬሬሬሬ⃗௨௨ = 1. The TPPR value is
also a probability distribution, so it is reasonable to interpret the temporal correlation be-
tween point u and point q with 𝑡𝑝𝑝𝑟. After simplification, we use 𝑡𝑝𝑝𝑟(𝑢) to represent 𝑡𝑝𝑝𝑟(𝑢) in the subsequent parts.

Lemma 1 ([12]). Given a temporal graph G(V,E,T), a node q, and a transition probability α, we
have [Proof see [12]] 𝑡𝑝𝑝𝑟(𝑢) = 𝛼(1 − 𝛼)ஶୀ 𝑃(𝑡𝑤ାଵ)௧௪శభ∈்ௐశభ→ೠ (6)

According to Lemma 1, a relatively simple approach is enumerating all timely se-
quential walks from node q to any node u at first, then calculating the transition probabil-
ities from node q to node u by considering the previous time-sequential walks, and finally
obtaining 𝑡𝑝𝑝𝑟(𝑢) through Lemma 1. However, since the sum of the probabilities tends
to infinity, it is impossible to accurately compute 𝑡𝑝𝑝𝑟(𝑢) . Hence, directly applying
Lemma 1 to compute 𝑡𝑝𝑝𝑟(𝑢) is challenging.

When considering the dangling state and Definition 4, we assume that the time-se-
quential walks based on probability α satisfy (i) that they start from node q and (ii) the

)~)(~,()(
~

eXpprutppr qeeq in
u

α ∈
=

Figure 2. Edge stream based on dynamic social Figure 1.

Definition 4 (TPPR [12]). Given a dynamic graph G(V,E), node q, and damping factor α, the
computation of a node’s TPPR relative to node q under time constraints can be represented as follows:

tpprq(u) = ∑→
e ∈→e

in
u

∼
ppr(α, X̃q)(ẽ) (4)

According to Equation (1), we can equivalently obtain:

∼
ppr
(

α,
∼

Xq = α
∼

Xq + (1− α)
∼

ppr
(

α,
∼

Xq

)
P (5)

If
∼

Xq ∈ R1×m and
→
e ∈

→
eout

q , then
∼

Xq

(→
e
)
= 1/|

→
eout

q |.
Unlike the random walk process in traditional static PPR, computing temporal TPPR

involves traversing ordered temporal edges, taking into account not only the connectivity

of nodes but also the times at which these connections occur. (i)
∼

ppr
(

α,
∼

Xq

)(→
e
)

reflects

the temporal similarity of
→
e to point q. (ii) Since P is a stochastic matrix and

∼
ppr
(

α,
∼

Xq

)
is

probability distribution, we can thus easily obtain the equation to calculate the TPPR value

Entropy 2024, 26, 588 7 of 18

related to node q as ∑u tpprq(u) = ∑u ∑→
e ∈

→
ein

u

∼
ppr(α,

∼
Xq)(

→
e) = 1. The TPPR value is also a

probability distribution, so it is reasonable to interpret the temporal correlation between
point u and point q with tpprq. After simplification, we use tppr(u) to represent tpprq(u)
in the subsequent parts.

Lemma 1 ([12]). Given a temporal graph G(V,E,T), a node q, and a transition probability α, we
have [Proof see [12]]

tppr(u) = ∑∞
i=0α(1− α)i∑twi+1∈TWq→u

i+1
P(twi+1) (6)

According to Lemma 1, a relatively simple approach is enumerating all timely sequen-
tial walks from node q to any node u at first, then calculating the transition probabilities
from node q to node u by considering the previous time-sequential walks, and finally
obtaining tppr(u) through Lemma 1. However, since the sum of the probabilities tends to
infinity, it is impossible to accurately compute tppr(u). Hence, directly applying Lemma 1
to compute tppr(u) is challenging.

When considering the dangling state and Definition 4, we assume that the time-
sequential walks based on probability α satisfy (i) that they start from node q and (ii) the
probability of stopping at the current state at each step being α, and continuing to walk
with a probability of (1 − α) and Equation (4). Additionally, we use ut to denote any
ordered time-sequential edge

→
e , where tail(

→
e) = u and time(

→
e) = t. Let D[u][t] represent

the probability that the time-sequential walks stop at ut in a given time-sequential walk,
with at most one dangling state (if any).

Lemma 2 ([12]). Given a temporal graph G(V, T), a node q, and a transition probability α, we have:
tppr(u) = ∑t∈T1

D[u][t] + ∑t∈T2
D[u][t]/α, T1 = { t

∣∣ut is not a dangling state}, T2 = { t
∣∣ut is

dangling state}. [Proof see [12]].

Based on Lemma 2, we derived a method to compute the TPPR for each qualified node
u, which can also be describe as tppr(u). We define the algorithm’s input and output as the
temporal graph and the transition probability α, respectively. Following that, we initialize
the TPPR values for each node related to other nodes as 0, and intermediate variables, D[u],
are also initialized to 0.

The first step involves generating an edge stream representation graph based on the
temporal graph. Then comes steps which are similar to PPR. We propagated the transition
probabilities to the entire graph. Following the dynamic programming paradigm and the
previous generated edge stream representation graph, we calculated the probability of
reaching node u at each time point. Then, we multiplied this probability by the probability
of transitioning from the current time to node v found in the transition probability matrix. If
the starting point of the currently calculated edge was the same as the node where the TPPR
value was being calculated, then the probability of transitioning to node v was determined
by adding the current transition probability to the transition probability divided by the
out-degree of node u. Following that, we added up all the transition probabilities at each
time to obtain the TPPR value for the current node. Above all, we computed the TPPR
vector for each node and combined them all to form the complete TPPR matrix. This matrix
can then be used for downstream tasks through subsequent matrix decomposition. We can
see algorithm for TPPR more clearly from Algorithm 1:

Entropy 2024, 26, 588 8 of 18

Algorithm 1 Compute tppr(G,q,α) [12]

INPUT: temporal graph G, transition probility α

OUTPUT: uεV, compute u’s tppr value related to q

Entropy 2024, 26, x FOR PEER REVIEW 8 of 18

Algorithm 1 Compute tppr(G,q,α) [12]

INPUT: temporal graph G, transition probility α

OUTPUT: uϵV, compute u’s tppr value related to q

1: tppr[q][u] ← 0, D[u] ← 0 for any u ϵ V

2: for u ∈ V do

3: q = u

4: for (u, v, t) in the edge stream of G do

5: for 𝑡ଵ∈ D[u] do

6: D[v][t] = D[v][t] + (1 − α)D[u][𝑡ଵ]P(𝑢௧→ < u, v, t>)

7: if u = q then

8: D[v][t] = D[v][t] + ఈ|ೠሬሬሬሬሬሬሬሬሬ⃗ |

9: for 𝑡ଶ∈D[v] do

10: D[u][t] = D[u][t] + (1 − α)D[v][𝑡ଶ]P(𝑣௧ → < u, v, t >)

11: if v = q then

12: D[u][t] = D[u][t] + ఈ|ೠሬሬሬሬሬሬሬሬሬ⃗ |
13: for u ∈ D do

14: for t ∈ D[u] do

15: if 𝑢௧ is a dangling state then

16: D[u][t] = D[u][t]/α

17: tppr[q][u] = tppr[q][u] + D[u][t]

18: return tppr

4.4. Matrix Factorization
After these steps, we obtained the TPPR matrix containing the transition probabilities

of all nodes relative to each other, and decomposing the node similarity matrix is a classic
method in graph representation learning. The next task is to conduct two classical matrix
decomposition methods, Single Value Decomposition (SVD) and Nonnegative Matrix Fac-
torization (NMF), to decompose the TPPR matrix and obtain embeddings. Additionally,
we use both methods in our experiments and compare and discuss the different effects of
the matrix decomposition.

4.4.1. TPPR-SVD
SVD is a classical matrix decomposition operation that is widely used for embedding

techniques to address high-dimensional datasets. It decomposes a larger matrix into three
different matrices multiplied together: a unitary matrix, a diagonal matrix, and another
unitary matrix. Each matrix contains distinct information and is extensively utilized in
various scenarios such as image compression, image denoising, and pattern recognition.
When SVD decomposition is applied to text information extraction, it decomposes a ma-
trix describing the association between articles and words. The first resulting matrix rep-
resents the categorization of words with rows representing words and columns represent-
ing semantic classes, the second matrix depicts the association between word classes and
article classes, and the last matrix signifies the categorization results of articles with each
column representing an article and each row representing a topic. By analogizing text in-
formation extraction to graph information extraction, similar effects can also be achieved
(Algorithm 2).

Definition 5 (SVD). Given a k-dimensional decomposition of matrix A, and the corresponding
singular vectors, we can obtain the embedding,])(,...,)([11 kkff uu σσ , where)(•f is the
weighted function of singular values.

4.4. Matrix Factorization

After these steps, we obtained the TPPR matrix containing the transition probabilities
of all nodes relative to each other, and decomposing the node similarity matrix is a classic
method in graph representation learning. The next task is to conduct two classical matrix
decomposition methods, Single Value Decomposition (SVD) and Nonnegative Matrix
Factorization (NMF), to decompose the TPPR matrix and obtain embeddings. Additionally,
we use both methods in our experiments and compare and discuss the different effects of
the matrix decomposition.

4.4.1. TPPR-SVD

SVD is a classical matrix decomposition operation that is widely used for embedding
techniques to address high-dimensional datasets. It decomposes a larger matrix into three
different matrices multiplied together: a unitary matrix, a diagonal matrix, and another
unitary matrix. Each matrix contains distinct information and is extensively utilized in
various scenarios such as image compression, image denoising, and pattern recognition.
When SVD decomposition is applied to text information extraction, it decomposes a matrix
describing the association between articles and words. The first resulting matrix represents
the categorization of words with rows representing words and columns representing
semantic classes, the second matrix depicts the association between word classes and
article classes, and the last matrix signifies the categorization results of articles with each
column representing an article and each row representing a topic. By analogizing text
information extraction to graph information extraction, similar effects can also be achieved
(Algorithm 2).

Definition 5 (SVD). Given a k-dimensional decomposition of matrix A, and the corresponding
singular vectors, we can obtain the embedding, [f (σ1)u1, . . . , f (σk)uk], where f (•) is the weighted
function of singular values.

Entropy 2024, 26, 588 9 of 18

A SVD⇒
N

∑
i=1

σius
i vt

i
T (7)

where a hyper-parameter is typically set to the value of 1
2 , commonly in graph represen-

tation learning. This yields the following embedding, [σ1, . . . , σk], which is the singular
values sorted in descending order; [σ1u1, . . . , σkuk] represents the coordinates of the data
subspace, and [v1, . . . , vk] represents the projection of the data onto the signal subspace.

Us = [
√

σ1·us
1, ...,
√

σk·us
k] (8)

Ut =
[√

σ1·vt
1, ...,
√

σk·vt
k
]

(9)

Algorithm 2 TPPR-SVD

INPUT: Matrix TPPR, embedding dimension k
OUTPUT: embedding vector Us, targeting vector Ut

1: Compute Mg, Ml , Mg = I − αP, Ml = (l − α)·I
2:Perform np.linalg.svd, a SVD method provided by numpy, on Mg, Ml to obtain the generalized
singular vectors {σl

1, . . ., σl
k}

and {σg
1 , . . ., σ

g
k }, long with the corresponding singular vectors {vs

1, . . ., vs
k} and

{vt
1, . . ., vt

k}
3:Calculate the singular values {σ1,...,σk} according to Equation (7).
4:Calculate the embedding matrix Us and Ut according to Equations (8) and (9).

4.4.2. TPPR-NMF

NMF is similar to SVD, but it incorporates a non-negativity constraint, ensuring that
all elements of the decomposed matrices are non-negative. Non-negativity enhances the
relevance of data, as negative values are irrelevant to the dataset. This characteristic makes
NMF particularly suitable for datasets with only non-negative signals, such as pixel values
in images, word frequencies in text, and so on. In recommendation systems, NMF provides
a more natural interpretation of the decomposed factors, such as users’ latent interests or
products’ latent attributes. NMF decomposes a matrix into the product of two non-negative
matrices, which enables the discovery of linear representations of non-negative components.
In graph representation learning, NMF can be employed to decompose adjacency matrices
or other network feature matrices, thus obtaining low-dimensional representations of nodes
(Algorithm 3).

Definition 6 (NMF). For a matrix Am∗n, using NMF for matrix factorization decomposes A into
the product of two matrices, Wm∗k and Hk∗n, both non-negative. Specifically, k < min(m, n) and it
takes the form,A ≈W ∗ H.

To find suitable matrices, W and H, we need to optimize a loss function, such as the
square error function (Frobenius norm) or KL divergence. The square error loss function is
represented as L = ‖A−W ∗ H‖2

F, where ‖.‖F denotes the Frobenius norm. By iteratively
applying optimization algorithms like gradient descent or alternating least squares to
minimize the loss function L, we can find the approximate non-negative matrices W and H
that represent A.

In this work, the embedding vectors obtained from the NMF decomposition of the
TPPR matrix are the row vectors in matrix W. As defined in Definition 6, k < min(m, n),
this decomposition achieves dimensionality reduction of the matrix. In the context of NMF,
embedding vectors represent the original data in a lower-dimensional space. Each row in
matrix W corresponds to a data point (e.g., a node in a graph) in the original data matrix A.
These row vectors (i.e., embedding vectors) adeptly capture the local structure and patterns

Entropy 2024, 26, 588 10 of 18

of the original data, mapping them to a lower-dimensional space. This low-dimensional
representation facilitates the extraction of useful features for subsequent machine learning
tasks such as classification, clustering, and prediction.

Algorithm 3 TPPR-NMF

INPUT: Matrix TPPR, embedding dimension k
OUTPUT: Matrix W
1: Initialize parameters, select the dimensionality k of the low-dimensional space, and initialize
matrices W and H.
2: Convergence check: Examine whether the objective function has converged or reached the
maximum number of iterations; if so, stop the iterations
3: Extract embedding vectors: Utilize the row vectors of matrix W as low-dimensional embedding
vectors for subsequent machine learning tasks and data analysis.

4.5. Complexity Analysis

In this section, we analyze the time and space complexity of the Algorithms 1, 2 and 3.

• TPPR: The algorithm’s time complexity primarily arises from the computation of the
TPPR matrix, which involves three nested for loops. The first for loop iterates over all
nodes in the graph, with time-complexity of O(V). The second for loop iterates over
the edge flow representation graph, with a time-complexity of O(E). The third for
loop iterates over the timestamps in the D[u], with a time- complexity of O(V ∗ E ∗ T).
Therefore, the overall time complexity of the algorithm is O(V ∗ E ∗ T). Additionally,
the algorithm requires space to store the TPPR values of each node, resulting in a space
complexity of O(V2).

• SVD: The primary time expense in performing SVD matrix decomposition lies in
decomposing TPPR. This involves calling the np.linalg.svd (tppr) function from the
numpy library, with a time complexity of O(min(m2 ∗ n, m ∗ n2)), where m and n
represent the number of rows and columns of the TPPR matrix, respectively. Since
TPPR is a matrix (with columns and rows both of size V), the time complexity of SVD
is O(V3). In terms of space complexity, the main overhead occurs in storing the left
k singular vectors, U_k = U[:, : k], and the first k rows and columns of the singular
value matrix Σ, as well as the first k non-zero singular values and the elements on the
diagonal, sqrt_sigma_k = sqrt_sigma[: k, : k]. The space complexity is O(V ∗ k).

• NMF: In the Scikit-learn library, NMF uses the coordinate descent optimization algo-
rithm, with a time complexity of approximately O(t ∗ n_components ∗ (m + n)), where
t is the number of iterations; in this case, n_components equals to k. Therefore, the
time complexity is O(t ∗ k ∗ (m + n)). The space complexity mainly depends on the
matrices W and H. The size of matrix W is m ∗ n_components, and the size of matrix H
is n ∗ n_components, resulting in a space complexity of O(k ∗ (m + n)).

5. Experimental Setup

To further evaluate the performance of our algorithm, we conducted experiments on
seven real-world available dynamic graph datasets and compared our algorithms with
other six baseline methods in three directions: node classification, link prediction, and
node clustering.

5.1. Dataset

The soc-sign-bitcoinotc dataset contains anonymous Bitcoin transaction information
from the Alpha Bitcoin website; Soc-sign-bitcoinotc holds anonymous information ex-
change data from the OTC Bitcoin table trading website; Soc-wiki-elec collects election
data for Wikipedia administrators, including historical voting data for administrators after
the last Wikipedia page edit (since 3 January 2008); the Escorts dataset gathers data on
transactions for a certain commodity, where “1” represents positive feedback, “0” repre-

Entropy 2024, 26, 588 11 of 18

sents neutral feedback, and “−1” represents negative feedback; Email-dnc contains email
information from the time of the 2016 United States Democratic National Committee email
leak, recording email transmission information among individuals; Fb-forum records activ-
ity information of individuals in social media forums similar to Facebook; and IA-contact
is a database simulating human social behavior [46]. All of these databases show strong
interactions over time, making them typical temporal graphs, which is suitable for our task.
By applying our algorithm to such datasets for experiments, we can obtain more accurate
results seen in Table 1.

Table 1. Statistics of datasets.

Dataset |V|
|E|

Timestamps Self-
TmaxDynamic

Edge
Static
Edge

Soc-sign-bitcoinotc 5881 35,579 21,492 35,445 1298

Soc-sign-bitcoinalpha 3783 16,863 14,124 1647 494

Soc-wiki-elec 7115 106,985 100,753 101,012 1341

Escorts 10,106 50,412 39,016 1913 448

Fb-forum 899 33,682 7036 33,483 1840

IA-contact 274 28,226 2124 15,662 1529

Email-dnc 1866 31,725 4384 18,682 4122

5.2. Baseline Method

We compare our algorithms TPPR-S and TPPR-N, in reference to the SVD method and
the NMF method applied to the TPPR matrix respectively, with baseline methods, Spe [25],
CTDNE [40], Dynamicnode2vec [47], PMLP [48], ARMA [49], and FAC [50]. Among
them, PMLP, ARMA, and FAC are the methods within the framework of deep learning,
while Spe, CTDNE, and Dynamicnode2vec are traditional graph representation methods.
Our task is to compare our algorithm with these classical dynamic graph algorithms and
latest algorithms.

• SPE [25]: This algorithm generates node embedding vectors by perturbing the graph
structure, introducing perturbations for each node to alter edge relationships. Node
embedding is computed based on the perturbed structure, capturing node neigh-
borhoods and positions. For temporal graphs, feature decomposition based on time
intervals and sub-graph yields embedding. SPE aims to evaluate whether matrix
factorization outperforms traditional methods on temporal graphs.

• CTDNE [40]: CTDNE learns embedding representations with time information from
continuous dynamic graphs using temporal random walks. It follows static graph
methods but orders random walks by edge occurrences’ timestamps. Time information
reduces embedding uncertainty, thereby enhancing CTDNE’s performance over Deep-
walk [21] and node2vec [22] on diverse tasks.

• Dynnode2vec [47]: It utilizes node2vec [22] for embedding and Skip-Gram training on
snapshot G1. For subsequent snapshots, it uses dynamic Skip-Gram and generates
random walk sequences for evolving nodes. Embedding from the previous moment
serves as initial weights, updated with random walks of evolving nodes for the current
moment. By focusing on evolving nodes, dynnode2vec enhances model efficiency as
most node neighborhoods remain unchanged in gradual graph evolution.

• PMLP [48] is an intermediate model that builds upon traditional Graph Neural Net-
works (GNNs) by incorporating Propagation MLP (PMLP), achieving higher training
efficiency while retaining the ability of traditional GNNs to effectively capture complex
graph structure features in node prediction tasks.

Entropy 2024, 26, 588 12 of 18

• ARMA [49] introduces a novel graph convolutional layer that is inspired by the
auto-regressive moving average (ARMA) filter, offering a more flexible frequency
response compared to polynomial filters. This algorithm incorporates ARMA filters in
a recursive and distributed form to obtain an effective training convolutional layer,
resulting in significant improvements in training outcomes.

• FAC [50] explores the learning effects of low-frequency information to investigate
whether GNNs can adaptively learn more information. Based on this, we propose
a novel Frequency Adaptation Graph Convolutional Network (FAGCN), which can
adaptively integrate different signals and conclude that the distinction between high
and low frequencies has a significant effect on graph representation learning.

5.3. Node Classification

Node classification aims to categorize nodes into different labels and classes based
on node attributes and connectivity relationships. In this task, the objective is to predict
the category to which nodes belong using the network topology and node attribute in-
formation. Through selectingnodes for training witha logistic regression classifier, we
evaluate the remaining nodes to obtain Micro-F1 and Macro-F1 scores. After training the
baseline methods and our algorithms TPPR-S and TPPR-N on seven different datasets and
evaluating Macro-F1 and Micro-F1 metrics, the scores of TPPR-S and TPPR-N get superior
overall performance in Figure 3. To achieve more accurate and unbiased results in the
node classification task, we investigat the training rate in the node classification task. By
varying the training rate α from 20% to 80% in the node classification task, we observe
that higher training proportions leads to better performance. To mitigate errors caused by
dataset partitioning, we repeat the calculations 20 times in each experiment, averaging the
results after removing outliers. The corresponding data are presented in Figures 3 and 4.

From Figure 3, among the experiments conducted on seven datasets, our TPPR-S and
TPPR-N algorithms exihibit superior performance, achieving the best results in six of them
and both of them achieving the best results in five of them based on F1-Micro and F1-Macro
metrics. In particular, in financial datasets like Soc-sign-bitcoinalpha and Soc-sign-bitcoinotc,
our metrics outperform those of the other five baseline algorithms by nearly 80%. In the
experiments through varying the training set ratio parameter, the result shown in Figure 4
indicates that a higher training set ratio leads to superior evaluation metrics. Therefore,
for a more concise analysis, we choose 80% as the training ratio with the best metrics for
node classification experiments. Overall, we can conclude that our algorithm continued
to outperform the other six baseline in terms of overall performance when selecting the
optimal training rate.

Entropy 2024, 26, x FOR PEER REVIEW 12 of 18

• Dynnode2vec [47]: It utilizes node2vec [22] for embedding and Skip-Gram training
on snapshot G1. For subsequent snapshots, it uses dynamic Skip-Gram and generates
random walk sequences for evolving nodes. Embedding from the previous moment
serves as initial weights, updated with random walks of evolving nodes for the cur-
rent moment. By focusing on evolving nodes, dynnode2vec enhances model effi-
ciency as most node neighborhoods remain unchanged in gradual graph evolution.

• PMLP [48] is an intermediate model that builds upon traditional Graph Neural Net-
works (GNNs) by incorporating Propagation MLP (PMLP), achieving higher training
efficiency while retaining the ability of traditional GNNs to effectively capture com-
plex graph structure features in node prediction tasks.

• ARMA [49] introduces a novel graph convolutional layer that is inspired by the auto-
regressive moving average (ARMA) filter, offering a more flexible frequency re-
sponse compared to polynomial filters. This algorithm incorporates ARMA filters in
a recursive and distributed form to obtain an effective training convolutional layer,
resulting in significant improvements in training outcomes.

• FAC [50] explores the learning effects of low-frequency information to investigate
whether GNNs can adaptively learn more information. Based on this, we propose a
novel Frequency Adaptation Graph Convolutional Network (FAGCN), which can
adaptively integrate different signals and conclude that the distinction between high
and low frequencies has a significant effect on graph representation learning.

5.3. Node Classification
Node classification aims to categorize nodes into different labels and classes based

on node attributes and connectivity relationships. In this task, the objective is to predict
the category to which nodes belong using the network topology and node attribute infor-
mation. Through selectingnodes for training witha logistic regression classifier, we evalu-
ate the remaining nodes to obtain Micro-F1 and Macro-F1 scores. After training the base-
line methods and our algorithms TPPR-S and TPPR-N on seven different datasets and
evaluating Macro-F1 and Micro-F1 metrics, the scores of TPPR-S and TPPR-N get superior
overall performance in Figure 3. To achieve more accurate and unbiased results in the
node classification task, we investigat the training rate in the node classification task. By
varying the training rate α from 20% to 80% in the node classification task, we observe
that higher training proportions leads to better performance. To mitigate errors caused by
dataset partitioning, we repeat the calculations 20 times in each experiment, averaging the
results after removing outliers. The corresponding data are presented in Figures 3 and 4.

Figure 3. Cont.

Entropy 2024, 26, 588 13 of 18Entropy 2024, 26, x FOR PEER REVIEW 13 of 18

Figure 3. Node classification performance of different baseline methods in different datasets.

From Figure 3, among the experiments conducted on seven datasets, our TPPR-S and
TPPR-N algorithms exihibit superior performance, achieving the best results in six of
them and both of them achieving the best results in five of them based on F1-Micro and
F1-Macro metrics. In particular, in financial datasets like Soc-sign-bitcoinalpha and Soc-sign-
bitcoinotc, our metrics outperform those of the other five baseline algorithms by nearly
80%. In the experiments through varying the training set ratio parameter, the result shown
in Figure 4 indicates that a higher training set ratio leads to superior evaluation metrics.
Therefore, for a more concise analysis, we choose 80% as the training ratio with the best
metrics for node classification experiments. Overall, we can conclude that our algorithm
continued to outperform the other six baseline in terms of overall performance when se-
lecting the optimal training rate.

Figure 3. Node classification performance of different baseline methods in different datasets.

Entropy 2024, 26, x FOR PEER REVIEW 13 of 18

Figure 3. Node classification performance of different baseline methods in different datasets.

From Figure 3, among the experiments conducted on seven datasets, our TPPR-S and
TPPR-N algorithms exihibit superior performance, achieving the best results in six of
them and both of them achieving the best results in five of them based on F1-Micro and
F1-Macro metrics. In particular, in financial datasets like Soc-sign-bitcoinalpha and Soc-sign-
bitcoinotc, our metrics outperform those of the other five baseline algorithms by nearly
80%. In the experiments through varying the training set ratio parameter, the result shown
in Figure 4 indicates that a higher training set ratio leads to superior evaluation metrics.
Therefore, for a more concise analysis, we choose 80% as the training ratio with the best
metrics for node classification experiments. Overall, we can conclude that our algorithm
continued to outperform the other six baseline in terms of overall performance when se-
lecting the optimal training rate.

Entropy 2024, 26, x FOR PEER REVIEW 14 of 18

Figure 4. F1-micro and F1-macro by changing training rate in IA-contact, Soc-sign-bitcoin-alpha, Soc-
sign-bitcoinotc, and Escorts.

5.4. Link Prediction
Link prediction means finding connections that may exist but have not yet been ob-

served with the existing network topology. In this experiment, we combine node embed-
ding representations into edge embedding representations using an operate function.
Then, we transform node embedding representations and edge information into a dataset
for the link prediction task, where positive edge labels are assigned 1 and negative edge
labels are assigned 0. After training through a logistic regression model on the prepro-
cessed training dataset , we can evaluate the trained model on the test set to obtain preci-
sion metrics. To ensure accuracy in the experimental data, each precision metric is trained
20 times and then the averaged-number served as experimental data (Table 2).

Compared the baseline methods with TPPR-S and TPPR-N, and evaluating using
precision scores, we find from Table 3 that our algorithms exhibit better performance on
the aforementioned datasets. Although Dynnode2vec performs better than our algorithms
in link prediction results for datasets Fb-forum, IA-contact, and Wikipedia, across these
seven datasets, our scores in the link prediction task are higher than Dynnode2vec’s.
Moreover, through comparison, it is found that the TPPR-S algorithm outperforms TPPR-
N in link prediction.

Figure 4. Cont.

Entropy 2024, 26, 588 14 of 18

Entropy 2024, 26, x FOR PEER REVIEW 14 of 18

Figure 4. F1-micro and F1-macro by changing training rate in IA-contact, Soc-sign-bitcoin-alpha, Soc-
sign-bitcoinotc, and Escorts.

5.4. Link Prediction
Link prediction means finding connections that may exist but have not yet been ob-

served with the existing network topology. In this experiment, we combine node embed-
ding representations into edge embedding representations using an operate function.
Then, we transform node embedding representations and edge information into a dataset
for the link prediction task, where positive edge labels are assigned 1 and negative edge
labels are assigned 0. After training through a logistic regression model on the prepro-
cessed training dataset , we can evaluate the trained model on the test set to obtain preci-
sion metrics. To ensure accuracy in the experimental data, each precision metric is trained
20 times and then the averaged-number served as experimental data (Table 2).

Compared the baseline methods with TPPR-S and TPPR-N, and evaluating using
precision scores, we find from Table 3 that our algorithms exhibit better performance on
the aforementioned datasets. Although Dynnode2vec performs better than our algorithms
in link prediction results for datasets Fb-forum, IA-contact, and Wikipedia, across these
seven datasets, our scores in the link prediction task are higher than Dynnode2vec’s.
Moreover, through comparison, it is found that the TPPR-S algorithm outperforms TPPR-
N in link prediction.

Figure 4. F1-micro and F1-macro by changing training rate in IA-contact, Soc-sign-bitcoin-alpha,
Soc-sign-bitcoinotc, and Escorts.

5.4. Link Prediction

Link prediction means finding connections that may exist but have not yet been
observed with the existing network topology. In this experiment, we combine node embed-
ding representations into edge embedding representations using an operate function. Then,
we transform node embedding representations and edge information into a dataset for the
link prediction task, where positive edge labels are assigned 1 and negative edge labels are
assigned 0. After training through a logistic regression model on the preprocessed training
dataset, we can evaluate the trained model on the test set to obtain precision metrics. To
ensure accuracy in the experimental data, each precision metric is trained 20 times and
then the averaged-number served as experimental data (Table 2).

Table 2. Link prediction results on precision scores. (The bolded numbers are the ones with the
highest scores in the same dataset).

Algorithm Soc-Bitcoinalpha Soc-Bitcoinotc Email-dnc Fb-Forum IA-Contact Wikipedia Escorts

TPPR-S 0.67521 0.58316 0.67897 0.56097 0.82481 0.52980 0.56328

TPPR-N 0.64506 0.58196 0.66512 0.55719 0.83285 0.51581 0.54841

SPE 0.50674 0.52168 0.57971 0.51578 0.67589 0.52887 0.49567

CTDNE 0.50532 0.50415 0.49069 0.50000 0.49763 0.49467 0.49759

Dynnode2vec 0.60909 0.58120 0.66312 0.61523 0.86627 0.56693 0.54000

FAC 0.4943 0.5031 0.5123 0.5514 0.5181 0.5018 0.4928

PMLP 0.6225 0.5382 0.6637 0.6008 0.6623 0.5899 0.5363

ARMA 0.5001 0.5 0.5 0.5 0.5 0.5 0.5

Compared the baseline methods with TPPR-S and TPPR-N, and evaluating using
precision scores, we find from Table 3 that our algorithms exhibit better performance on
the aforementioned datasets. Although Dynnode2vec performs better than our algorithms
in link prediction results for datasets Fb-forum, IA-contact, and Wikipedia, across these seven
datasets, our scores in the link prediction task are higher than Dynnode2vec’s. Moreover,
through comparison, it is found that the TPPR-S algorithm outperforms TPPR-N in link
prediction.

Entropy 2024, 26, 588 15 of 18

Table 3. Node clustering results on precision scores.

Silhouette/DB Soc-Bitcoinalpha Soc-Bitcoinotc Email-dnc Fb-Forum IA-Contact Wikipedia Escorts

TPPR-S 0.2914/
0.5321

0.1156/
1.9308

0.2466/
1.6749

0.1058/
1.0776

0.1720/
1.3512

0.2236/
0.6366

0.7157/
0.4076

TPPR-N 0.1270/
0.7531

0.1729/
1.0399

0.2514/
1.1206

0.0503/
1.0990

0.2237/
1.0853

0.3085/
0.5085

0.1560/
0.7870

CTDNE 0.3122/
1.1524

0.2952/
1.2414

0.3736/
0.9168

0.3569/
0.9248

0.4265/
0.6743

0.4229/
1.3990

0.3044/
1.3172

Dynnode2vec 0.0695/
3.1459

0.0796/
3.0318

0.2409/
1.8619

0.0295/
4.1131

0.0856/
2.5546

0.0846/
2.5961

0.0470/
3.6478

FAC 0.0896/
2.1195

0.0830/
2.2144

0.0927/
2.0176

0.0692/
2.1991

0.0857/
1.9859

0.0825/
2.1231

0.0845/
2.1877

PMLP 0.3469/
0.8371

0.3060/
0.8715

0.4428/
0.8579

0.3237/
0.9091

0.4661/
0.7063

0.3808/
0.8573

0.3038/
0.8482

5.5. Node Clustering

We employ the K-means [51] algorithm for node clustering experiments. K-means
clustering is a widely used method that partitions data points into K clusters, with each
cluster’s centroid being the mean of all its members. The algorithm iteratively seeks the
optimal cluster centers until convergence is achieved. In our experiment, we use K-means
to generate 10 clusters from node vectors and obtained corresponding cluster labels. We
evaluate the quality of node clustering using two metrics: Silhouette score [52] and Davies–
Bouldin index (DB) [53]. These metrics respectively measure the ratio of the distance of
each sample point to its intra-cluster samples versus the inter-cluster distance and the ratio
of within-cluster distance to between-cluster distance. The results for node clustering are
presented in Table 3.

From the data, we conclude that our method comprehensively outperformed Dynam-
icnode2vec and FAC algorithms. However, it is also evident that the Silhouette scores of
CTDNE and PMLP methods are superior to TPPR-S and TPPR-N algorithms across all
datasets, except the escorts dataset. Notably, TPPR-S achievesthe highest Silhouette value
among all algorithms, specifically in the escorts dataset, indicating significant potential
for TPPR-S in certain specific datasets. In terms of Davies–Bouldin (DB) index values,
our methods perform better than CTDNE and PMLP in three out of seven datasets, com-
parable to these algorithms in others. Considering the comprehensive analysis across
node clustering experiments, our algorithm demonstrate some limitations in this aspect.
However, given our investigation across three distinct experiment types—link prediction,
node clustering, and node classification—it is essential to assess the overall performance
of algorithms. Despite not excelling in node clustering experiments, our methods con-
sistently outperform others in node classification and link prediction experiments across
more than 80% of datasets on average. Therefore, when considering all aspects together,
our TPPR-S and TPPR-N algorithms produce superior embeddings, establishing them as
advantageous approaches.

6. Conclusions

In this work, we propose a temporal graph representation learning framework based
on TPPR matrix factorization. By using TPPR as a time-constrained method that can
calculate the node’s proximity in temporal graphs, we are able to capture the structural
characteristics of temporal graphs better. Additionally, to improve the calculation of node
similarities in temporal graphs, we introduce the concept of temporal transition matrix,
which enables a more effective capture of temporal information. The experimental results
demonstrate the effectiveness of our proposed method in tasks such as node classification,
link prediction, and node clustering. This is sufficient evidence to demonstrate that our

Entropy 2024, 26, 588 16 of 18

proposed algorithmic framework is more effective and accurate in addressing the problem
of dynamic graph representation learning compared to other methods.

Author Contributions: Z.L.: conceptualization, methodology, software, writing—original draft
preparation; T.L.: software, writing—review and editing; Y.H.: supervision, investigation; L.L.:
supervision, instruction, project administration. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was jointly supported by the following projects: (i) Fundamental Research
Funds for the Central Universities under Grant SWU-KQ22028, (ii) University Innovation Research
Group of Chongqing CXQT21005, (iii) the Fundamental Research Funds for the Central Universities
(no. SWU-XDJH202303), and (iv) the High Performance Computing clusters at Southwest University.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

Notation Description
G(V, E) V denotes the set of n vertices within graph G and E denotes

the set of m edges in graph G
α Damping factor, the probability that a node remains stationary

during the random walk process
M, Mij Transition probability matrix, the probability of transitioning from node i to node j
⇀
e Temporal edge
P Temporal probability transition matrix

P
(
⇀
ei →

⇀
ej

)
Transition probability from

⇀
ei to

⇀
ej

q, u Related node
⇀

eout
u ,

⇀

ein
u Head node and tail node of a temporal edge

twl The l-hop temporal random walk sequence
X0 Initial distribution of static PPR
X0 Initial distribution of temporal PPR
ut Node u at time t

References
1. William, L.H.; Rex, Y.; Jure, L. Representation Learning on Graphs: Method and Applications. arXiv 2017, arXiv:1709.05584.
2. Yang, Z.; Cohen, W.; Salakhudinov, R. Revisiting Semi-Supervised Learning with Graph Embeddings. arXiv 2016, arXiv:1603.08861.
3. Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGMOD International

Conference on knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.
4. Leonardo, C.; Christopher, M.; Bruno, R. Reconstruction for Powerful Graph Representation. arXiv 2021, arXiv:2110.00577.
5. Zhang, X.; Xie, K.; Wang, S.; Huang, Z. Learn Based Proximity Matrix Factorization for Node Embedding. In Proceedings of the

27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Virtual, 14–18 August 2021; pp. 2243–2253.
6. Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A temporal graph convolutional network for

traffic prediction. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3848–3858. [CrossRef]
7. Manessi, F.; Rozza, A.; Manzo, M. Dynamic graph convolutional networks. Pattern Recognit. 2020, 97, 107000. [CrossRef]
8. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th Interna-

tional Conference on Learning Representations, ICLR, Toulon, France, 24–26 April 2017; pp. 1–8.
9. Yang, R.; Shi, J.; Xiao, X.; Yang, Y.; Bhowmick, S.S. Homogeneous Network Embedding for Massive Graphs via Reweighted

Personalized PageRank. PVLDB 2020, 13, 670–683. [CrossRef]
10. Ou, M.; Cui, P.; Pei, J.; Zhang, Z.; Zhu, W. Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM

SIGKDD International Conference on Konwledge Discovery and Data Ming, San Francisco, CA, USA, 13–17 August 2016; ACM:
New York, NY, USA, 2016; pp. 1105–1114.

11. Tsitsulin, A.; Mottin, D.; Karras, P.; Müller, E. Verse: Versatile graph embeddings from similarity measures. In Proceedings of the
2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 539–548.

https://doi.org/10.1109/TITS.2019.2935152
https://doi.org/10.1016/j.patcog.2019.107000
https://doi.org/10.14778/3377369.3377376

Entropy 2024, 26, 588 17 of 18

12. Lin, L.; Yuan, P.; Li, R.H.; Zhu, C.; Qin, H.; Jin, H.; Jia, T. QTCS: Efficient Query-Centered Temporal Community Search. VLDB
2024, 17, 1187–1199. [CrossRef]

13. Kumarawadu, P.; Dechene, D.J.; Luccini, M.; Sauer, A. Algorithms for node clustering in wireless sensor networks: A survey.
In Proceedings of the 2008 4th International Conference on Information and Automation for Sustainability, Colombo, Sri Lanka,
12–14 December 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 295–300.

14. El Khediri, S.; Fakhet, W.; Moulahi, T.; Khan, R.; Thaljaoui, A.; Kachouri, A. Improved node localization using K-means clustering
for Wireless Sensor Networks. Comput. Sci. Rev. 2020, 37, 100284. [CrossRef]

15. Lin, L.; Jia, T.; Wang, Z.; Zhao, J.; Li, R. PSMC: Provable and Scalable Algorithms for Motif Conductance Based Graph Clustering.
arXiv 2024, arXiv:2406.07357.

16. He, Y.; Lin, L.; Yuan, P.; Li, R.; Jia, T.; Wang, Z. CCSS: Towards conductance-based community search with size constraints. Expert
Syst. Appl. 2024, 250, 123915. [CrossRef]

17. Lin, L.; Li, R.; Jia, T. Scalable and Effective Conductance-Based Graph Clustering. Proc. AAAI Conf. Artif. Intell. 2023, 37,
4471–4478. [CrossRef]

18. Amina, A.; Mohamed, A.H.T.; Mohamed, B.A. Network representation learning systematic review: Ancestors and current
development state. Mach. Learn. Appl. 2021, 6, 100130.

19. Cai, H.; Zheng, V.W.; Chang KC, C. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE
Trans. Knowl. Data Eng. 2018, 30, 1616–1637. [CrossRef]

20. Chen, F.; Wang, Y.C.; Wang, B.; Kuo, C.C.J. Graph representation learning: A survey. APSIPA Trans. Signal Inf. Process. 2020, 2020, 9.
[CrossRef]

21. Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online Learning of Social Representations. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014;
pp. 701–710.

22. Grover, A.; Leskovec, J. node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD’16), San Francisco, CA, USA, 13–17 August 2016;
pp. 855–864.

23. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. LINE: Large-scale Information Network Embedding. In Proceedings of the
24th International Conference on World Wide Web (WWW’15), Florence, Italy, 18–22 May 2015; pp. 1067–1077.

24. Ribeiro, B.; Silva PH, P.; Martins, F. stru2vec: Learning Node Representations from Structural Identity. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’17), Halifax, NS, Canada, 13–17
August 2017; pp. 385–394.

25. Shaw, B.; Jebara, T. Strucure preserving embedding. In Proceedings of the 26th Annual International Conference on Machine
Learning, Montreal, QC, Canada, 14–18 June 2009; ACM: New York, NY, USA, 2009; pp. 937–944.

26. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. In Proceedings of the
International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018.

27. Barros, C.D.; Mendonça, M.R.; Vieira, A.B.; Ziviani, A. A survey on embedding dynamic graphs. ACM Comput. Surv. (CSUR)
2021, 55, 1–37. [CrossRef]

28. Kazemi, S.M.; Goel, R.; Jain, K.; Kobyzev, I.; Sethi, A.; Forsyth, P.; Poupart, P. Representation learning for dynamic graphs:
A survey. J. Mach. Learn. Res. 2020, 21, 1–73.

29. Joakim, S.; Bogdan, G.; Katarzyna, M. Foundations and modelling of dynamic networks using dynamic graph neural networks:
A survey. IEEE Access 2021, 2021, 79143–79168.

30. Yu, Y.; Lin, L.; Liu, Q.; Wang, Z.; Ou, X.; Jia, T. GSD-GNN: Generalizable and Scalable Algorithms for Decoupled Graph Neural
Networks. In Proceedings of the 2024 International Conference on Multimedia Retrieval, Phuket, Thailand, 10–14 June 2024.

31. Lin, L.; Yuan, P.; Li, R.H.; Wang, J.; Liu, L.; Jin, H. Mining Stable Quasi-Cliques on Temporal Networks. IEEE Trans. Syst. Man
Cybern. Syst. 2022, 52, 3731–3745. [CrossRef]

32. Lin, L.; Yuan, P.; Li, R.H.; Jin, H. Mining Diversified Top-r Lasting Cohesive Subgraphs on Temporal Networks. IEEE Trans. Big
Data 2022, 8, 1537–1549. [CrossRef]

33. Zhang, Y.; Lin, L.; Yuan, P.; Jin, H. Significant Engagement Community Search on Temporal Networks. In Proceedings of the
Database Systems for Advanced Applications (DASFAA), Virtual Event, 11–14 April 2022; pp. 250–258.

34. Zhu, C.X.; Lin, L.L.; Yuan, P.P.; Jin, H. Discovering Cohesive Temporal Subgraphs with Temporal Density Aware Exploration.
J. Comput. Sci. Technol. 2022, 37, 108. [CrossRef]

35. Lin, Z.; Tao, J. CoarSAS2hvec: Heterogeneous Information Network Embedding with Balanced Network Sampling. Entropy 2022,
24, 276. [CrossRef] [PubMed]

36. Ran, Y.; Xu, X.-K.; Jia, T. The maximum capability of a topological feature in link prediction. PNAS Nexus 2024, 3, 113. [CrossRef]
37. Wu, C.; Wang, Y.; Jia, T. Dynamic Link Prediction Using Graph Representation Learning with Enhanced Structure and Temporal

Information. In Proceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design
(CSCWD), Rio de Janeiro, Brazil, 24–26 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 279–284.

38. Zhang, T.; Fang, J.; Yang, Z.; Cao, B.; Fan, J. Tatkc: A temporal graph neural network for fast approximate temporal Katz centrality
ranking. In Proceedings of the ACM on Web Conference WWW’ 2, Singapore, 13–17 May 2024; pp. 527–538.

https://doi.org/10.14778/3648160.3648163
https://doi.org/10.1016/j.cosrev.2020.100284
https://doi.org/10.1016/J.ESWA.2024.123915
https://doi.org/10.1609/aaai.v37i4.25568
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1017/ATSIP.2020.13
https://doi.org/10.1145/3483595
https://doi.org/10.1109/TSMC.2021.3071721
https://doi.org/10.1109/TBDATA.2021.3058294
https://doi.org/10.1007/s11390-022-2431-z
https://doi.org/10.3390/e24020276
https://www.ncbi.nlm.nih.gov/pubmed/35205570
https://doi.org/10.1093/pnasnexus/pgae113

Entropy 2024, 26, 588 18 of 18

39. Sajjad, H.P.; Docherty, A.; Tyshetsky, Y. Efficient representation learning using random walks for dynamic graphs. arXiv 2019,
arXiv:1902.01346.

40. Nguyen, G.H.; Lee, J.B.; Rossi, R.A.; Ahmed, N.K.; Koh, E.; Kim, S. Continuous-time dynamic network embedding. In Proceedings
of the Web Conference, Lyon, France, 23–27 April 2018; ACM: New York, NY, USA, 2018; pp. 969–976.

41. Zuo, Y.; Liu, G.; Lin, H.; Guo, J.; Hu, X.; Wu, J. Embedding temporal network via neighborhood formation. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018;
pp. 2857–2866.

42. Lu, Y.; Wang, X.; Shi, C.; Yu, P.S.; Ye, Y. Temporal network embedding with micro-and macro-dynamics. In Proceedings of the 28th
ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 469–478.

43. Li, J.; Dani, H.; Hu, X.; Tang, J.; Chang, Y.; Liu, H. Attributed network embedding for learning in a dynamic environment.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017;
ACM: New York, NY, USA, 2017; pp. 387–396.

44. Zhu, D.; Cui, P.; Zhang, Z.; Pei, J.; Zhu, W. High-order proximity preserved embedding for dynamic networks. IEEE Trans. Knowl.
Data Eng. 2018, 30, 2134–2144. [CrossRef]

45. Sankar, A.; Wu, Y.; Gou, L.; Zhang, W.; Yang, H. DySAT:deep neural representation learning on dynamic graphs via self-attention
networks. Proceeding of the 13th ACM International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7
February 2020; ACM: New York, NY, USA, 2020; pp. 519–527.

46. Rossi, R.A.; Ahmed, N.K. The Network Data Repository with Interactive Graph Analytics and Visualization. AAAI 2015. Available
online: https://networkrepository.com/ (accessed on 18 May 2024).

47. Manhavi, S.; Khoshraftar, S.; An, A.J. Dynnode2vec:scalable dynamic network embedding. In Proceedings of the 2018 IEEE
International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3762–3765.

48. Yang, C.; Wu, Q.; Wang, J.; Yan, J. Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and
MLPs. arXiv 2023, arXiv:2212.09034.

49. Bianchi, F.M.; Grattarola, D.; Livi, L.; Alippi, C. Graph Neural Networks with convolutional ARMA filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2022, 44, 3496–3507. [CrossRef]

50. Bo, D.; Wang, X.; Shi, C.; Shen, H. Beyond Low-frequency Information in Graph Convolutional Networks. arXiv 2021,
arXiv:2101.00797. [CrossRef]

51. Scikit-Learn Documentation: Clustering with KMeans. Available online: https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.KMeans.html (accessed on 18 May 2024).

52. Řezanková, H.A.N.A. Different approaches to the silhouette coefficient calculation in cluster evaluation. In Proceedings of the
21st International Scientific Conference AMSE Applications of Mathematics and Statistics in Economics, Kutná Hora, Czech
Republic, 29 August–2 September 2018.

53. Mughnyanti, M.; Efendi, S.; Zarlis, M. Analysis of determining centroid clustering x-means algorithm with davies-bouldin index
evaluation. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 725, p. 012128.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TKDE.2018.2822283
https://networkrepository.com/
https://doi.org/10.1109/TPAMI.2021.3054830
https://doi.org/10.1609/aaai.v35i5.16514
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

	Introduction
	Related Work
	Static Graph Representation Learning
	Temporal Graph Representation Learning

	Preliminaries
	Methodology
	Temporal Random Walks and Temporal Transition Matrices
	Handling of Danging Edges
	Time-Constrained Personalized PageRank
	Matrix Factorization
	TPPR-SVD
	TPPR-NMF

	Complexity Analysis

	Experimental Setup
	Dataset
	Baseline Method
	Node Classification
	Link Prediction
	Node Clustering

	Conclusions
	References

