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Abstract: While collecting training data, even with the manual verification of experts from crowd-
sourcing platforms, eliminating incorrect annotations (noisy labels) completely is difficult and expen-
sive. In dealing with datasets that contain noisy labels, over-parameterized deep neural networks
(DNNs) tend to overfit, leading to poor generalization and classification performance. As a result,
noisy label learning (NLL) has received significant attention in recent years. Existing research shows
that although DNNs eventually fit all training data, they first prioritize fitting clean samples, then
gradually overfit to noisy samples. Mainstream methods utilize this characteristic to divide training
data but face two issues: class imbalance in the segmented data subsets and the optimization conflict
between unsupervised contrastive representation learning and supervised learning. To address these
issues, we propose a Balanced Partitioning and Training framework with Pseudo-Label Relaxed
contrastive loss called BPT-PLR, which includes two crucial processes: a balanced partitioning process
with a two-dimensional Gaussian mixture model (BP-GMM) and a semi-supervised oversampling
training process with a pseudo-label relaxed contrastive loss (SSO-PLR). The former utilizes both
semantic feature information and model prediction results to identify noisy labels, introducing a
balancing strategy to maintain class balance in the divided subsets as much as possible. The latter
adopts the latest pseudo-label relaxed contrastive loss to replace unsupervised contrastive loss,
reducing optimization conflicts between semi-supervised and unsupervised contrastive losses to
improve performance. We validate the effectiveness of BPT-PLR on four benchmark datasets in the
NLL field: CIFAR-10/100, Animal-10N, and Clothing1M. Extensive experiments comparing with
state-of-the-art methods demonstrate that BPT-PLR can achieve optimal or near-optimal performance.

Keywords: deep neural networks; noisy labels; pseudo-label relaxed contrastive loss; Gaussian
mixture model

1. Introduction

Large-scale, accurately labeled image data are one of the key prerequisites for the
success of deep neural networks (DNNs) in numerous computer vision (CV) tasks, such
as image captioning [1], image classification [2], segmentation [3,4], etc. However, collect-
ing these large-scale, high-quality annotated datasets requires significant manpower and
resources. The current data collection process mainly involves scraping data from search
engines, forums, and other websites and then relying on the help of a large number of anno-
tation experts on crowdsourcing platforms (Amazon Mechanical Turk, etc.) to cross-check
and correct the tags. This process is time-consuming and becomes more challenging as
the dataset size increases, leading to partially inaccurate annotations (noisy labels) even
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after verification. A wealth of research has shown that due to the over-parameterization
of DNNs, they attempt to fit labels for all samples, including noisy labels, severely com-
promising the generalization performance of DNNs. Therefore, existing research focuses
on collecting data without relying on manual annotation and assisting DNNs in learning
from noisy datasets. This aims to prevent overfitting to noisy samples while maintaining
performance levels close to those achieved when learning from clean datasets, known as
noisy label learning (NLL) research.

Existing research indicates that although DNNs eventually fit all samples, they initially
fit the predominant clean-label samples in the dataset and gradually overfit the noisy-
labeled samples [2,5]. This memorization characteristic of DNNs results in clean samples
having smaller losses in the early stage, while noisy samples exhibit larger losses, hence
termed the small-loss criterion [5], widely employed in methods learning from noisy labels.
Centered around the memorization characteristic of DNNs and the small-loss criterion,
existing NLL methods can be categorized into three types: robust training loss, label
correction, and sample selection. The first two methods will be introduced in the next
section. Due to the superior performance of recent sample selection methods, it is crucial
to conduct relevant research. Our method can also be categorized in this direction. Early
sample selection techniques utilize the small-loss criterion, selecting samples with smaller
cross-entropy losses during training as a subset of clean labels for supervised training.
However, these methods perform inferiorly due to the inadequate utilization of training
data compared with other types of methods. With further advancement in NLL research,
some sample selection methods have begun utilizing various loss distribution estimation
methods (i.e., GMM, the beta mixed model) to partition training data based on the small-
loss criterion, retaining observed labels of samples with smaller losses (labeled samples)
and discarding labels of samples with larger losses (unlabeled samples). Subsequently,
semi-supervised learning (SSL) techniques and contrastive representation learning (CRL)
techniques are introduced to deeply train the partitioned training subsets and improve
performance. Existing sample selection methods based on SSL techniques mostly derive
from DivideMix, differing significantly in data partitioning techniques and semi-supervised
training strategies aimed at enhancing model robustness. Although these methods have
achieved certain results, their performance still has room for further improvement due
to issues such as class imbalance in the partitioned subsets and optimization conflicts
between contrastive representation losses and supervised losses. Although PLReMix has
addressed some of these issues, there are still some challenges remaining. Compared to
the original DivideMix, PLReMix primarily introduces a dual-component GMM based
on sample semantic and category information for data partitioning during the sample
selection process. Subsequently, the robust training process integrates the new pseudo-
label relaxed contrastive loss (PLR) with existing SSL techniques. According to our analysis,
this method faces two main issues: (1) During actual training, it is challenging for the model
to completely avoid the influence of noisy labels in the early stages, resulting in many clean
samples being mislabeled as noisy, especially in high-noise scenarios where PLReMix tends
to generate a large number of false positives as depicted in Figure 3 under 90% symmetric
noise and 40% and 49% asymmetric noise scenarios. (2) In the SSL training process, the
number of model iterations per epoch depends on the size of the current labeled set. In
high-noise scenarios, however, the number of labeled samples is much smaller than the
unlabeled ones (as shown in Figure 5), preventing the model from fully learning the data
distribution and thereby limiting performance improvements.

To address the issue in existing sample selection methods, we propose a framework
named BPT-PLR (Balanced Partitioning and Training framework with Pseudo-Label Re-
laxed contrastive loss). This framework follows the structural design of existing sample
selection methods based on SSL techniques such as DivideMix [6], PLReMix [7], Lon-
gReMix [8], and C2MT [9], but introduces two key processes: a balanced partitioning pro-
cess with a two-dimensional Gaussian mixture model (BP-GMM) and a semi-supervised
oversampling training process with a pseudo-label relaxed contrastive loss (SSO-PLR).
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Similar to PLReMix, our method employs a dual-component GMM during the BP-GMM
process to model both the semantic and class information of samples. However, as shown
in Figure 3, the divided labeled set is not entirely reliable. Furthermore, to mitigate the
impact of class imbalance on model performance, we adopt a class-level balanced selection
strategy to ensure that the number of samples in each class of the filtered labeled subset
is as close as possible. Additionally, while CRL can enable the model to learn intrinsic
semantic information of data independent of noisy labels, aiding in selecting samples
containing noisy labels, it conflicts with the supervised loss (e.g., CE) when cooperating
with SSL techniques. Therefore, the SSO-PLR process combines PLR with SSL techniques,
obtaining more reliable negative pairs by checking whether the top K indices of predic-
tion probabilities between different samples have an empty intersection. This preserves
resistance to noisy labels and avoids conflicts with supervised loss. As mentioned above,
the number of labeled samples is much smaller than the unlabeled ones. Therefore, we
introduce oversampling techniques to overcome the problem of existing sample selection
methods failing to fully exploit feature information from unlabeled samples during the SSL
process. We validate its effectiveness on four benchmark datasets in the NLL domain, and
extensive experiments demonstrate that compared with state-of-the-art (SOTA) methods,
BPT-PLR can achieve similar or better test performances. The source code is available
at https://github.com/LanXiaoPang613/BPT-PLR (accessed on 5 July 2024). Our main
contributions are as follows:

1. We propose an improved end-to-end training framework called BPT-PLR (Balanced
Partitioning and Training framework with Pseudo-Label Relaxed contrastive loss)
to address issues of noisy label learning (NLL) in DNNs, such as class imbalance in
partitioned subsets and optimization conflicts between CRL losses and supervised
losses. This framework enhances DNNs’ robustness to noisy labels and achieves
superior performance.

2. We introduce a novel class-level balanced selection method based on a two-dimensional
Gaussian mixture model (GMM). This method first models both the semantic and class
information of the data using a two-dimensional GMM and then utilizes a class-level
balanced selection strategy based on the distribution of samples to partition the data.
This ensures that the labeled subset after partitioning maintains class balance, thereby
alleviating the impact of the long-tail issue on model accuracy.

3. We incorporate the existing PLR loss into a semi-supervised learning (SSL) framework
following previous work but further leverage it through oversampling techniques.
This process enhances the model’s learning of semantic information from both labeled
and unlabeled samples, thereby improving test performance.

4. We demonstrate the effectiveness of BPT-PLR through extensive experiments on
several classic datasets in the NLL field. Additionally, we validate the robustness of
the two key processes proposed through ablation experiments.

The structure of this paper is outlined as follows: In Section 2, we introduce some
existing research relevant to the method proposed in this paper. Section 3 is dedicated to
introducing our method, while Section 4 provides a detailed explanation of the experiments
and comparisons. Finally, we conclude in Section 6.

2. Related Works

This section mainly introduces recent research in the fields of noisy label learning
(NLL) and contrastive representation learning (CRL).

2.1. Recent Research on NLL

Robust training loss. Due to the widely used cross-entropy (CE) loss in classification
tasks causing DNNs to be prone to overfitting noisy labels, leading to poor generalization
performance, many studies deliberately design losses that are insensitive and underfitting
to noisy labels to substitute for cross-entropy during training. Since Natarajan et al. [10]
proved that if the loss function satisfies the symmetry condition, it is robust to label noise,

https://github.com/LanXiaoPang613/BPT-PLR
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many studies were conducted around it. For instance, Zhang et al. [11] have demon-
strated that while the Mean Absolute Error (MAE) exhibits robustness to noisy labels
under symmetry conditions, this robustness can increase training difficulty and decrease
model performance. Therefore, they combined CE with MAE to propose Generalized Cross
Entropy (GCE) loss, which possesses not only the advantage of CE’s rapid convergence
but also the robustness of MAE to noisy labels. Similarly, inspired by [12], Oaraei et al. [13]
proposed a convex surrogate of the unbiased 0–1 loss for content recommendation and
multimedia search tasks, which typically encounter issues of class imbalance and missing
labels [14]. Additionally, inspired by the symmetric Kullback–Leibler (KL) divergence,
Wang et al. [15] introduced Symmetric Cross-Entropy (SCE) loss and theoretically demon-
strated its robustness to noisy labels under certain conditions. Zhang et al. [16] proposed a
novel loss function called Mixup, which interpolates between any two samples according
to a beta distribution and then computes the CE loss for the interpolated sample. This
method has been widely adopted in the field of NLL. Recently, Ye et al. [17] integrated
activation loss functions with strategies like supplementary label learning to devise a
normalized negative loss function [18], replacing the MAE loss used in active–passive loss.
This approach enables the model to focus more on learning clean samples. Additionally,
Jain et al. presented a propensity-scored loss for extreme multi-label learning, which is
useful for addressing tagging tasks and has the potential to be expanded to the task of
pseudo-label generation in NLL research. However, as these functions are designed to
underfit noisy labels, they also underfit a portion of clean samples that are difficult to
distinguish, resulting in poor performance.

Label correction. The label correction process primarily leverages the memorization
characteristic of DNNs, where after a certain time of pre-training, model predictions are
used to replace observed labels of samples to alleviate the impact of noisy labels on model
performance. The joint optimization framework [19] directly utilizes model prediction
to replace original labels, which cannot finely update each sample, leading to model
performance fluctuations. Yi et al. [20] proposed the PENCIL framework to continuously
correct labels based on the gradients generated when each sample participates in loss
computation and backpropagation, thus alleviating the fluctuation. Building upon this,
Zhang et al. [2] introduced Mixup [16] and balance terms to enhance the label correction
capability further and ref. [21] proposed a novel label correction framework for feature-
dependent label noise. Additionally, Xu et al. [22] introduced contrastive prototypical
loss to maximize the distance between the class cluster and the data point and assist in
the label correction process. Similarly, Huang et al. [23] employed supervised contrastive
learning techniques to guide the label correction process, achieving certain improvements.
Wang et al. [24] proposed an end-to-end dynamic correction method for NLL, which utilizes
the knowledge from past epochs to combat label noise. However, these methods exhibit
performance fluctuations when faced with real-world datasets, thus casting doubt on their
practical utility.

Sample selection. The early sample selection methods only select samples with smaller
losses for training to mitigate the impact of noisy labels. For example, Co-teaching [25]
employs two networks to alternately select small loss samples for training, while CJC-
net [26] eliminates noisy labels through cross-training and learning rate oscillation strategies.
As research progresses, DivideMix [6] and ELR [27] pioneers combine SSL techniques
with sample selection methods to fully utilize the information carried by both clean and
noisy samples, achieving significant progress. Subsequently, Karim et al. [28] introduced
unsupervised CRL and Jensen–Shannon divergence (JSD) into semi-supervised sample
selection methods to further boost performance. Zhang et al. [29] proposed a new sample
selection and weighting method called Hyper-spherical Margin Weighting (HMW) and
embedded it into [28]. Feng et al. [30] applied optimal transport theory to the sample
selection process. Li et al. [31] adopted different dynamic thresholds for selecting clean,
challenging, and noisy samples, combined with semi-supervised learning techniques to
improve performance. Additionally, Zhang et al. [9] further improved DivideMix by
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introducing cross-to-merge training strategies and median balance strategies to enhance
performance. Cordeiro et al. [8] decomposed the sample selection and robust training
processes of DivideMix into two steps for targeted optimization, achieving certain progress.
Sun et al. [32] simplified the sample selection problem into a clustering problem and
introduced twin contrastive clustering to resolve it. Deng et al. [33] proposed SLRLNL to
separate noisy labels from hard yet clean samples to improve model robustness.

2.2. Recent Research on CRL

CRL is a representative self-supervised learning technique that can learn feature
representations independent of labels. During training, positive and negative examples
from a batch of data need to be constructed to calculate the InfoNCE loss. SimCLR [34]
uses two strong data augmentations for each sample as positives, while considering other
samples as negatives to compute InfoNCE, thus requiring larger batch sizes. Meanwhile,
MoCo [35] utilizes a momentum encoder and a queue to generate negatives for samples,
reducing the batch size. Additionally, Khosla et al. [36] extended self-supervised CRL to
a fully supervised setting by leveraging label information, where samples of the same
class are treated as positives and samples of different classes are treated as negatives.
Li et al. [37] calculated the moving average low-dimensional embeddings of each class
to obtain category prototypes and utilized these prototypes to perform CRL. Due to the
capability of CRL to enable models to learn semantic information independent of labels
in the data, it holds great potential for application in the NLL field. However, the labels
of samples in noisy datasets are unreliable, resulting in fewer applications of supervised
CRL [38]. Instead, many NLL methods introduce unsupervised CRL techniques to enhance
the robustness of models to noisy labels [39]. However, ref. [7] demonstrated conflicting
optimization between the contrastive loss computed using unsupervised CRL and the
supervised loss computed using model output values and observed labels. This conflict
limits further improvement in model testing accuracy. Therefore, they define reliable
negative pairs as those where the intersection of the top K indices of predicted probabilities
for any sample and the top K indices of a given sample is empty and utilize these negative
pairs to compute CRL, reducing the optimization conflict between contrastive loss and
supervised loss. However, PLReMix [7] requires using different types of similar PLR losses
for different types of datasets (for example, using Flat PLR for CIFAR [40] and using native
PLR for Clothing1M [41]), and the performance varies significantly. Although our method
adopts the proposed PLR loss, we successfully overcome these challenges by introducing
two key processes.

3. Algorithm

Common DNNs for classification tasks typically consist of a feature extractor f (·, θ)
and a classifier h(·, φ), where θ and φ are the corresponding learnable parameters. The
feature extractor generates high-dimensional features z = f (x, θ) for any input x, while the
classifier produces model predictions h(z, φ) based on z. Therefore, with the assumption
of training a k-class classification network on a dataset D = {(xi, yi)}N

i=1 containing N
samples, xi ∈ RH×W represents the i-th training instance and yi = [k] = {1, 2, . . . , k} is the
corresponding ground-truth (GT) label. Most classification tasks are performed using the
CE loss as shown in Equation (1), minimizing Lce to fit the DNN to all given labels.

Lce = −
1
N

N

∑
i=1

log(p(yi|xi )), (1)

where p(yi|xi ) is the yi-th component of the prediction p(xi) = softmax(h( f (xi, θ), φ)) for
the input xi. However, when there are mislabeled samples in the dataset, i.e., yi ̸= ỹi

(let D̃ = {(xi, ỹi)}N
i=1 and ỹi = [k] denote the noisily labeled dataset and noisy label),

from the perspective of gradient contribution [29,30], it has been shown that samples with
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noisy labels carry greater weight compared with those with clean labels as convergence
progresses, rendering this paradigm unreliable [27]. Therefore, NLL emerges.

An overview of the proposed framework is shown in Figure 1. Our framework is
similar to the existing sample selection with SSL techniques, employing two identical
DNNs that are trained alternately. Like PLReMix [7], each DNN comprises a feature
extractor f

(
·, θ(m)

)
and a classifier h

(
·, φ(m)

)
for semi-supervised classification tasks, along

with an additional projection head g
(
·, ϕ(m)

)
to map high-dimensional features z to low-

dimensional embedding q. Here, θ(m), φ(m), and ϕ(m) are the corresponding parameters,
and m ∈ {0, 1} denotes the network index. We pre-train both models using CE loss. To
address asymmetric noise scenarios, we introduce an additional penalty term [6,9,30,31]
based on the prediction confidence to promote a more uniform loss distribution, facilitating
GMM modeling. This penalty term for the m-th model is given as follows:

Lp = − 1
N

N

∑
i=1

p(m)(xi) · log
(

p(m)(xi)
)

. (2)

Here, p(m)(xi) = softmax
(

h
(

f
(

xi, θ(m)
)

, φ(m)
))

is the softmax prediction of the m-th
network for the input xi. In the next two sections, we will provide a detailed explanation of
the two key processes discussed in this article, i.e., BP-GMM and SSO-PLR.
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Figure 1. Overall framework of the BPT-PLR. (a) Overall process: The training data are fed into
two networks, A and B, for loss computation. In each network, the extracted features are used to
calculate prototype loss together with class prototypes, while the output predictions are used to
compute classification loss and observed labels. Subsequently, the BP-GMM process (i.e., Section 3.1)
utilizes the semantic and label information carried by these two losses to balance the partitioning
of the training data. In this process, the labeled subset X and the unlabeled subset U partitioned
by network A are used by network B for the SSO-PLR process (i.e., Section 3.2), and vice versa.
(b) Network structure: Each network consists of a feature extractor f = f (·, θ(m)), a projection head
g = g(·, ϕ(m)), and a classifier h = h(·, φ(m)), where θ(m), ϕ(m), and φ(m) are the corresponding parameters,
and m ∈ {0, 1} denotes the network index (e.g., m = 0 represents network A).

3.1. Balanced Partitioning Process

After the warm-up stage, at the beginning of each epoch, we first divide the entire
dataset D̃ into a labeled set X(m) and an unlabeled set U(m) through this process for each
network m ∈ {0, 1}. In the labeled set X(m), the original label of each sample is considered
to be nearly correct, so we retain its label; whereas, in the unlabeled set U(m), the original
label of each sample is deemed incorrect, thus we remove its label to alleviate model
overfitting. Then, we separately calculate the classification cross-entropy (CCE) loss and
the prototype cross-entropy (PCE) loss for each sample under the two models to fit a two-
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component two-dimensional GMM. We use the GMM to estimate the posterior probability
of samples being clean labels. Figure 2 illustrates the BP-GMM process.
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Figure 2. An overview of the BP-GMM process. Firstly, similar to PLReMix, a 2D GMM model is
constructed based on the classification and prototype losses of all samples to estimate the posterior
probability of each sample belonging to clean labels. Unlike PLReMix, to reduce the number of false
positive samples in the labeled set and achieve a more balanced category distribution, class-level
balanced selection is conducted based on the estimated probabilities to ensure the sample quantities
of each class in the labeled subset X are close, ultimately resulting in the labeled subset X and the
unlabeled subset U.

Assuming we currently compute two types of losses based on model m, then the CCE
is the de-mean of Equation (1) (e.g., L(m)

ce,i = − log(p(yi|xi ))); the CCE measures how well
the network fits sample labels, which is consistent with Equation (1), except that the GT
label yi is replaced by the observed label ỹi. Modeling the CCE of each sample using GMM
can fully utilize the class information they carry. Furthermore, the PCE represents the
semantic-level potential category probability distribution between the low-dimensional

embedding q(m)
i of the sample xi and all class prototypes

{
Q(m)

c

}k

c=1
under network m.

Here, Q(m)
c is the prototype of the c-th class and is defined as the mean center of low-

dimensional embeddings with the same semantic information. The initialization and
update methods are detailed in Equations (18) and (21) of Section 3.3. Here, we assume that

all class prototypes
{

Q(m)
c

}k

c=1
for the current epoch have been obtained. Consequently,

the PCE of instance xi is denoted as

L(m)
pro,i = −

k

∑
c=1

~
yi log

(
d(m)

i

)
. (3)

Here,
~
yi is the one-hot representation of the observed label ỹi and d(m)

i =
{

d(m)
i,c

}k

c=1

denotes the normalized cosine similarity matrix. Subsequently, the c-th component of d(m)
i ,

can be calculated according to Equation (4):

d(m)
i,c =

exp
(

q(m)
i ·Q(m)

c /0.1
)

k
∑

j=1
exp

(
q(m)

i ·Q(m)
j /0.1

) (4)

Here, d(m)
i,c represents the distance between the embedding q(m)

i and Q(m)
c , which is adopted

from [7,37]. In an ideal scenario, under the influence of a proficient feature extractor
f
(
·, θ(m)

)
and projection head g

(
·, ϕ(m)

)
, the mapping embeddings of samples with similar

semantic information should form a cluster, with the center of this cluster representing
the corresponding class prototype. In such a case, if the given label ỹi for instance pair
(xi, ỹi) ∈ D̃ does not match its GT label yi, then its distance d(m)

i,ỹi
corresponding to the
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observed label should be smaller than d(m)
i,yi

. Consequently, the prototype cross-entropy loss
for this instance would be greater than that for other instances with the same observed
label where the observed label matches the true label. Therefore, the semantic information
carried by training data can also be fully employed by fitting GMM to the PCE loss.

After obtaining these two types of losses based on model m, a two-component two-

dimensional GMM is trained to fit the distribution S(m) =
{

s(m)
i

}N

i=i
=

{(
L(m)

ce,i , L(m)
pro,i

)}N

i=1
.

Since samples with clean labels typically have smaller losses, it has been confirmed in the
literature [6–9] that the mean center of the loss distribution formed by them is closer to 0
compared to noisy samples. Therefore, following the small-loss criterion, after modeling
the GMM, we choose the component with the smallest mean from the two components
and utilize the corresponding Gaussian model to estimate the posterior probability of
each sample having a clean label. Here, we denote the posterior probability of this pair
(xi, ỹi) ∈ D̃ as w(m)

i . According to Equation (5), the posterior probabilities of samples for
each class are sorted in descending order, and the sorted set of posterior probabilities at the

class level is denoted as
{

W(m)
c

}k

c=1
,

W(m)
c = sort

({
w(m)

i

∣∣∣ỹi = c, (xi, yi) ∈ D̃
})

. (5)

Here, sort(·) is the sorting function in descending order, and only the samples with observed
labels {ỹi}N

i=1 belonging to category c will be sorted into W(m)
c . Subsequently, we determine

whether the posterior probability of all samples exceeds the predefined threshold τs ∈ [0, 1],
and we count the number of samples exceeding τs as N(m)

c :

N(m)
c =

N

∑
i=1

1
(

w(m)
i ≥ τs

)
. (6)

Here, 1(·) is an indicator function that returns 1 only when the condition (e.g., w(m)
i ≥ τs)

is met. We perform sample selection at the class level, as shown in Equations (6) and (7),

and only the top
{

R(m)
c

}k

c=1
samples from W(m)

c are selected for the labeled set X(m):

X(m) =
{(

xi, ỹi, w(m)
i

)∣∣∣w(m)
i ∈W(m)

c

[
0 : R(m)

c

]
, ∀(xi, ỹi) ∈ D̃ and ỹi = c

}k

c=1
. (7)

Here, R(m)
c represents the selected labeled samples within the c-th class and can be denoted

as follows:

R(m)
c =


N(m)

c
k

, i f
N
∑

i=1
1(ỹi = c) ≤ N(m)

c
k

N
∑

i=1
1(ỹi = c), otherwise

. (8)

The unlabeled set U(m) is obtained as follows:

U(m) =
{(

xi, w(m)
i

)∣∣∣w(m)
i ∈W(m)

c

[
0 : R(m)

c

]
, ∀(xi, ỹi) ∈ D̃\X(m)

}k

c=1
. (9)

Previous methods [6–9] that used 1d-GMM or 2d-GMM to estimate posterior probabil-
ities for sample partitioning have overlooked the class imbalance in the labeled subsets after
the selection process. We propose a method called BP-GMM, which combines a balancing
partition mechanism with a 2d-GMM to address this issue. As shown in Figure 3, we
present the number of true positive (TP) and false positive (FP) samples within each class of
the labeled subsets partitioned using BP-GMM and several representative methods (such as
PLReMix [7], UNICON [28], and LongReMix [8]). From Figure 3, it is evident that BP-GMM
not only maintains class balance in the partitioned labeled subsets but also increases the
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number of true positive samples in each class. Although UNICON also addresses class
imbalance, resulting in balanced samples after selection, its use of Jensen–Shannon diver-
gence (JSD) to partition based solely on class information neglects semantic information.
Even so, in the selected labeled subset, the number of TP samples is significantly lower
compared with the results obtained using our method, except for the 50%-sym. scenario,
where the results of the two methods are close.
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Figure 3. Efficiency comparison of sample selection methods using the CIFAR10 dataset at 100 epochs
with different proportions of noisy labels. (a) Comparison using CIFAR10 dataset with 50% symmetric
noisy labels. TP refers to clean samples correctly selected into the labeled set, while FP refers to
noisy samples mistakenly included in the labeled set. L, P, U, and O represent LongReMix [8],
PLReMix [7], UNICON [28] and our method, respectively. (b) Comparison using CIFAR10 dataset
with 40% asymmetric noisy labels. (c) Comparison using CIFAR10 dataset with 90% symmetric noisy
labels. (d) Comparison using CIFAR10 dataset with 49% symmetric noisy labels.

After partitioning the labeled subsets and the unlabeled subsets based on two models
using the BP-GMM process, as illustrated in Figure 1a, the two subsets divided by the m-th
model will be utilized in the SSL training of the (1-m)-th model in the SSO-PLR process.
Similarly, the m-th model employs the two subsets divided by the (1-m)-th model for SSL
training. Through this co-teaching strategy, the accumulation of error flows for each model
is significantly alleviated [6,25,26]. The following section will explain the SSO-PLR process
and the initialization and updating methods of class prototypes.
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3.2. Semi-Supervised Oversampling Training Process

In this section, we illustrate the details of the SSO-PLR process. As shown in Figure 1a,
we alternately train two models. Assuming the current training is for the m-th network,
the two subsets, X(1−m) and U(1−m), that it uses are derived from the partition results of
the (1−m)-th network. As illustrated in Figure 4, we employ an SSL framework similar
to the previous sample selection methods [6–9] but with the addition of an oversampling
strategy and PLR loss to further enhance the robustness and classification performance of
the networks.
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Figure 4. An overview of the SSO-PLR process. First, we sample a mini-batch of size b from the
labeled dataset X and set the sampling count t to 1. Then, we sample a mini-batch of the same size
from the unlabeled dataset U. Pseudo-labels are generated for both batches, followed by a Mixup
operation to enhance the model’s generalization performance. Next, we compute the PLR loss and
SSL loss and perform backpropagation. In this process, different from PLReMix, we introduce an
oversampling mechanism to fully exploit feature information from unlabeled samples during the SSL
process. If the sampling count t for the labeled dataset has not reached the maximum sampling times
of the original dataset (|X|+ |U|)/b, even if we have completed sampling the entire labeled dataset,
we resample the labeled subset and increment t, continuing training to learn the remaining samples
in the unlabeled subset. Training stops for the current epoch e only when t ≥ (|X|+ |U|)/b.

SSL loss. Taking the labeled subset X(1−m) as the primary sampling target, we

first sample a mini-batch Bt
l =

{(
xi, ỹi, w(1−m)

i

)}b

i=1
of size b from it and a mini-batch

Bt
ul =

{(
xi, w(1−m)

i

)}b

i=1
of the same size from the unlabeled subset U(1−m). Here, t

represents the count of batch sampling from the labeled set X(1−m) in the current epoch
e. As depicted in Figure 2, although the majority of samples in the labeled subset are
clean, it unavoidably introduces some instances with noisy labels, leading to incomplete
label reliability. Additionally, the original labels of samples in the unlabeled subset are
unreliable. Hence, after applying weak augmentation wk(·) twice to each input xi in the
two mini-batches, we generate pseudo-labels ŷi for them using Equation (10).

ŷi = sp
(

w(1−m)
i · ~

yi + w(1−m)
i ·

(
p(m)(wk(xi)) + p(m)(wk(xi))

))
, ∀

(
xi, ỹi, w(1−m)

i

)
∈ Bt

l

ŷi = sp
(

1
∑

h=0

(
p(h)(wk(xi)) + p(h)(wk(xi))

))
, ∀

(
xi, w(1−m)

i

)
∈ Bt

ul

(10)
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Here,
~
yi is the one-hot representation of ỹi and sp(·) is a sharpen function used in previous

works. The calculation of this sharpen function is as follows:

sp(yi) =
(yi)

T

k
∑

j=1

(
yij

)T
, (11)

where yij is the j-th component of the soft label yi and T is the sharpening coefficient
that is preset to 0.5. Next, we apply two rounds of strong augmentation (i.e., stg(·)) to
each input xi from Bt

l and Bt
ul , respectively, and concatenate the augmented results in

sequence to form two new batches Bt
l,stg =

{(
xstg

i , ŷi

)∣∣∣xstg
i = stg(xi), ∀

(
xstg

i , ŷi

)
∈ Bt

l

}
and Bt

ul,stg =
{(

xstg
i , ŷi

)∣∣∣xstg
i = stg(xi), ∀

(
xstg

i , ŷi

)
∈ Bt

ul

}
. We then apply the Mixup [16]

operation to each pair from the union of Bt
l,stg to improve the models’ generalization and

robustness, which is shown as follows:(
x′i, ŷ′i

)
= λ ·

(
xstg

i , ŷi

)
+ (1− λ) ·

(
xstg

i , ŷj

)
. (12)

Here, the Mixup operation results for the input pair
(

xstg
i , ŷi

)
are denoted as

(
x′i, ŷ′i

)
, where

λ is a dynamic value randomly sampled from the beta distribution Beta(β) with a prede-
fined factor β and j represents a random permutation of the indices in Bt

l,stg and Bt
ul,stg.

Hence, we can denote the results in Equation (12) from two batches Bt
l,stg and Bt

ul,stg as

Bt
l,mix =

{(
x′i, ŷ′i

)∣∣∣xstg
i ∈ Bt

l,stg

}
and Bt

ul,mix =
{(

x′i, ŷ′i
)∣∣∣xstg

i ∈ Bt
ul,stg

}
, respectively. Sub-

sequently, we compute the semi-supervised loss for each pair from Bt
l,mix and Bt

ul,mix as
follows:

L(m)
ssl = − 1∣∣∣Bt

l,mix

∣∣∣ · ∑
(x′i ,ŷ

′
i)∈Bt

l,mix

(
ŷ′i · log

(
p(m)

(
x′i
)))

︸ ︷︷ ︸
supervised loss

+
λu∣∣∣Bt

ul,mix

∣∣∣ · ∑
(x′i ,ŷ

′
i)∈Bt

ul,mix

∥∥∥ŷ′i − p(m)
(
x′i
)∥∥∥2

2︸ ︷︷ ︸
unsupervised loss

−1
k
· log

 1∣∣∣Bt
l,mix ∪ Bt

ul,mix

∣∣∣ ∑
x′i∈Bt

l,mix∪Bt
ul,mix

p(m)
(
x′i
)

︸ ︷︷ ︸
regularzation loss

. (13)

PLR loss. Currently, some sample selection methods not only employ Equation (13)
to train networks but also utilize additional unsupervised CRL techniques to learn each
pair from Bt

ul . In unsupervised CRL, each sample’s two transformations are treated as
positive pairs, while transformations of all other samples in the batch serve as negative
pairs. By leveraging InfoNCE [34,35], the similarity of positive embeddings is enhanced,
while that of negative embeddings is diminished. However, in the batch, there might be
some negative embeddings that align with the GT labels of the positive embeddings. In
such cases, unsupervised CRL attempts to increase the distance between these negative
embeddings and the positive embeddings, leading to a conflict with the optimization goal
in Equation (13). Ref. [7] has demonstrated that this conflict significantly affects network
performance. Therefore, this paper introduces PLR loss to help the feature extractor
better learn from unlabeled information without disturbing the classifier. For the input x′i,
following the method described in reference [7], we construct a reliable negative sample set
Ot

i (illustrated in Equation (14)) by removing instances from the union of Bt
l,mix and Bt

ul,mix
that have the same potential GT labels as x′i. Given the model’s prediction p(m)(xi) (without
augmentation and Mixup operation) for input x′i (it is the result of Mixup operation for xi,
the same index as xi in the dataset D̃), we first determine the top n indices with the highest
prediction probabilities of p(m)(xi) and their corresponding observed labels ỹi, denoted
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as topi
n = argmax

n

{
p(m)(c|xi )

}k

c=1
∪ ỹi. Then, we include all instances from the union of

Bt
l,mix and Bt

ul,mix in Ot
i according to Equation (14).

Ot
i =

{
j
∣∣∣topi

n ∩ topj
n = , ∀j ∈

{
1, 2, . . . ,

∣∣∣Bt
l,mix

∣∣∣+ ∣∣∣Bt
ul,mix

∣∣∣}\i}. (14)

Subsequently, we compute the PLR loss using vanilla InfoNCE based on this negative
sample set:

Lplr = − ∑
x′i∈Bt

l,mix∪Bt
ul,mix

exp
(〈

q(m)
i , q(m)

+

〉
/τp

)
exp

(〈
q(m)

i , q(m)
+

〉
/τp

)
+ ∑j∈Ot

i
exp

(〈
q(m)

i , q(m)
j

〉
/τp

) . (15)

The final optimization objective of SSO-PLR is:

L = Lssl + Lplr. (16)

Oversampling. Existing semi-supervised sample selection methods sample a labeled
mini-batch from X(1−m) with a predefined batch size b during training, then sample an
unlabeled mini-batch from U(1−m) with the same size. After the Mixup operation, CRL
loss (if any) and SSL loss are computed and backpropagated. Training of the current epoch
e ends immediately when all labeled samples have been sampled, i.e., t ≜

∣∣∣X(1−m)
∣∣∣/b.

However, in most noisy scenarios, due to the much larger size of the unlabeled subset
partitioned U(1−m) by sample selection methods compared with the labeled subset X(1−m)

(as shown in Figure 5), training is interrupted before many unlabeled samples are sampled,
causing the model to miss the opportunity to learn from a large amount of unlabeled
sample information [8].

Consequently, as shown in Figure 4, we introduce an oversampling mechanism. If
the current sampling count t has not reached the maximum sampling times of the original
dataset (|X|+ |U|)/b, we continue sampling from the labeled and unlabeled sets, and
training for the current epoch only stops when all unlabeled samples have been trained at
least once. Resampling the clean data subset not only allows the model to learn information
carried by all unlabeled samples but also reduces the boundary for vicinal risk minimization
(as shown in Theorem 8 of [42], Section 5.4 of [8]), thereby enhancing the accuracy and
robustness of semi-supervised classification.
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3.3. Calculation of Class Prototypes

We maintain a class prototype set
{

Q(m)
c

}k

c=1
for each model m = {0, 1}. Let us

assume the current model is the m-th one. After a certain number of training iterations
(usually more than 10 epochs), this network has preliminarily converged and demonstrates
basic classification performance. As class prototypes are defined as the mean centers of
low-dimensional embeddings with the same semantic information, these embeddings form
clusters around their corresponding class prototypes. Following prior research [7,37], at
the end of the warm-up, we partition all samples from the whole noisy dataset D̃ into k

subsets
{

D̃c

}k

c=1
based on their observed labels {ỹi}N

i=1, which is shown in Equation (17):

D̃c =
{
(xi, ỹi)

∣∣∣ỹi = c, ∀(xi, ỹi) ∈ D̃
}

(17)

Then, for each subset D̃c, the low-dimensional embeddings extracted by the feature extrac-
tor f

(
·, θ(m)

)
and the projection head g

(
·, ϕ(m)

)
are accumulated and averaged to form

the corresponding class prototype Q(m)
c , as expressed below:

Q(m)
c = ∑

xi∈D̃c

g
(

f
(

xi, θ(m)
)

, ϕ(m)
)

. (18)

At the end of each epoch after warm-up, we update all class prototypes
{

Q(m)
c

}k

c=1
using the momentum updating method. First, we utilize the predictions p(m)(xi) of the
model m and the similarity d(m)

i measured by Equation (4) for estimating the latent GT
labels:

δi = α · p(m)(xi) + (1− α) · d(m)
i , (19)
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where δi is the estimated latent label for the input xi and α = 0.5 is a predefined coefficient to
control the contribution of predictions for estimated labels. This process aims to maximize
the utilization of information from both label and feature spaces. Subsequently, we utilize
Equation (20) to determine the true classes of samples and select high-confidence samples
to update class prototypes, aiming to further mitigate the impact of noisy samples on class
prototype updates.

ypro
i =

{
arg max δi, ifmax(δi) > υ

arg max p(m)(xi), otherwise
. (20)

Here, υ = 0.8 is a fixed threshold for performing label correction. Consequently, we update
the class prototypes Q(m)

ypro
i

using the embedding q(m)
i and the estimated hard label ypro

i ,

which is shown as follows:

Q(m)
c ← Norm

ς ·Q(m)
c + (1− ς) ·mean

 ∑
xi∈D̃

1
(

ypro
i = c

)
· q(m)

i

. (21)

Here, ς = 0.99 is the momentum coefficient, Norm(·) represents the normalization
function, and mean(·) is the mean function.

It should be noted that momentum updates are not performed during the warm-up
stage (only initializing the class prototypes for each network according to Equation (18)
after warm-up). After the SSO-PLR training process of each network, we sequentially
execute the momentum update process for class prototypes as described in Equation (21).

3.4. Pseudo-Code

The pseudo-code of our method is illustrated in Algorithm 1, and an overall framework
is shown in Figure 1.

Algorithm 1: Training process pseudo-code representation

Input: two networks m = 0 and m = 1; the warm-up epochs Ew; the total training epochs Etot; batch size b; learning rate lr;
thresholds τs and υ; epoch counter e = 0; sampling counter t = 0;
while e < Etot do:

if e < Ew:
//enable Equation (2) only in the presence pf asymmetric noise labels
pretrain the two networks on the whole dataset D̃ using Equations (1) and (2);
if e = (Ew − 1):

initialize class prototypes
{

Q(m)
c

}k

c=1
for each network using Equation (18); //It is the same as PLReMix

end if
else:

re-initialize the sampling counter t = 0;
//execute the BP-GMM process using from Equation (3) to Equation (9)
//for network m = 0
perform coarse data division using two-dimensional GMM (Equation (3) to Equation (4)); //It is the same as PLReMix
perform the proposed class-level balanced selection on the coarse division results using (Equations (5)–(9)); //It is

different from PLReMix
generate labeled subset X(0) and unlabeled subset U(0);
//for network m = 1
perform coarse data division using two-dimensional GMM (Equations (3) and (4)); //It is the same as PLReMix
perform the proposed class-level balanced selection on the coarse division results using (Equations (5)–(9)); //It is

different from PLReMix
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generate labeled subset X(1) and unlabeled subset U(1);
//execute the SSO-PLR process
for network m = 0 to 1:

if t <
(∣∣∣X(1−m)

∣∣∣+ ∣∣∣U(1−m)
∣∣∣)/b: //oversampling strategy, it is different from PLReMix

sampling a labeled mini-batch Bt
l and an unlabeled mini-batch Bt

l from X(1−m) and U(1−m),
respectively;

perform label-refinement and co-guessing operation using Equation (10); //generate pseudo labels for all samples
do Mixup augmentation for two mini-batches using Equation (12); //enhance model generalization

and robustness
calculate the SSL loss and PLR loss through Equations (13) and (15);
perform backpropagation according to Formula (14) to update all parameters of current network;
t ++; //the increment of t

end if //all the unlabeled samples are completely sampled
end for
//update all the class prototypes, it is the same as PLReMix
for network m = 0 to 1:

estimate latent GT labels based on current network using Equations (19) and (20);
perform momentum updates for the class prototypes belonging to the current network using Equation (21);

end for
e ++; //the increment of epoch counter e

end while
Output: two robust networks m = 0, 1; two labeled subsets X(m) with relatively low noise rates.

4. Experiments
4.1. Datasets and Experimental Settings

Following previous research, such as [6–9,30,31], etc., we validated the performance of
our approach on two synthetic noisy datasets (i.e., CIFAR-10 and CIFAR-100) and two real-
world noisy datasets (i.e., Animal-10N and Clothing1M). The experiments covered various
noise scenarios, and both coarse-grained and fine-grained datasets were validated. For the
backbone (i.e., feature extractor f and classifier h) used in each dataset, we introduce an
additional projection head g comprising two linear layers and one normalization layer. This
head aims to transform the features outputted by the penultimate layer of the backbone
network into a low-dimensional space of dimension 128, aiming to obtain a more compact
embedding. The summary of the datasets used in this paper is demonstrated as follows:

CIFAR-10 [40]. The basic information of this dataset is shown in Table 1. Since all
labels in the dataset are accurate (clean), we consider two types of synthetic noise labels:
symmetric and asymmetric. By artificially synthesizing noisy labels, we can simulate sce-
narios such as label errors or confusion in the real world, thereby evaluating and improving
the robustness of NLL methods in noisy environments. Symmetric noise randomly flips
the labels of r% (i.e., noise rate) samples from each class to all other classes in a uniform
distribution. Asymmetric noise simulates label confusion scenarios, mainly by flipping r%
truck class samples to automobile, r% bird class samples to airplane, interchanging samples
between the cat and dog categories, etc. We considered five symmetric noise scenarios,
where r% takes values of 20%, 50%, 80%, and 90%, as well as four asymmetric noise scenar-
ios, where r% takes values of 10%, 20%, 30%, 40%, and 49%. To ensure a fair comparison
with previous methods, we employed the PreAct ResNet-18 [43] as the backbone. Table 2
shows the experimental settings of the method in this paper. To illustrate the robustness
of our approach, we employed nearly identical parameter configurations across all noise
scenarios. Despite prior studies suggesting that the parameter λu should vary depending
on noise rates and types, we opted for a fixed value of λu = 30. The only exception occurred
in low noise rate scenarios, such as 20%-sym. And 10% to 30%-asym., etc., where we set
λu = 0. This approach aligns with common sense, as lower noise rates should correspond
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to weaker regularization capabilities for unlabeled samples. Additionally, the learning rate
lr linearly decays to 2 × 10−4 within the first 380 epochs and remains fixed thereafter. We
decrease the n used in topi

n from 3 to 2 after 40 epochs.

Table 1. Overview of the datasets.

Name Class Number Training Number Testing Number Original Size Cropped Size

CIFAR-10 10 50K 10K 32 × 32 32 × 32

CIFAR-100 100 50K 10K 32 × 32 32 × 32

Animal-10N 10 50K 5K 64 × 64 64 × 64

Clothing1M 14 1M 10K 256 × 256 224 × 224

Table 2. The experimental settings of our method.

Dataset CIFAR-10 CIFAR-100 Clothing1M Animal-10N

Backbone PreAct ResNet-18 ResNet-50 VGG19-BN/9-layer CNN

lr 0.02 0.02 0.01 0.01

Optimizer SGD SGD SGD SGD

Weight decay 5 × 10−4 5 × 10−4 1 × 10−3 1 × 10−3

Momentum 0.9 0.9 0.9 0.9

b 64 64 64 128

Ew 10 30 5 30

Etot 400 400 80 200

β 4 4 0.5 4

CIFAR-100 [40]. The basic information of this dataset is also shown in Table 1. Follow-
ing previous studies, we still consider both symmetric and asymmetric noise labels in this
dataset. The generation of symmetric noisy labels is consistent with CIFAR-10 while the
generation of asymmetric noisy labels involves flipping r% of samples from each category
to the next similar category within its superclass. We considered r = 20, 50, 80, and 90 for
symmetric noise scenarios and 10, 20, 30, and 40 for asymmetric scenarios. Table 2 shows
the experimental settings in this paper. The λu is still fixed as 30, except for 10% -asym.
And 90%-sym., where λu = 0 and 150, respectively. The adjustment of the learning rate lr
is the same as CIFAR-10, comprehensively demonstrating the robustness of our method.
The setting of n is the same as CIFAR-10.

Animal-10N [44]. This is a fine-grained real-world noise dataset, comprising 10 classes
of animal data. The noise rate of this dataset is approximately 8%. The basic information
is outlined in Table 1. The Vgg-19N [45] is utilized as the backbone. Table 2 shows the
experimental settings in this paper. To illustrate the robustness of our approach, we
employed nearly identical parameters to CIFAR-10 and set λu to 0. The learning rate lr
was reduced by 10 and 100 after 80 and 140 epochs, respectively. The setting of n was the
same as CIFAR-10. Additionally, to ensure a fair comparison with some co-teaching-based
methods, we also present experimental results based on the 9-layer CNN [25,26]. The
hyperparameter settings of this backbone are identical to those of VGG-19N, demonstrating
that our approach is insensitive to model architecture.

Clothing1M [41]. This is also a real-world noise dataset with nearly 38.4% noisy
labels, comprising 14 categories of clothing images. Table 1 illustrates the summary of this
set. ResNet-50 [43] pretrained with the ImageNet dataset is the backbone. Table 2 shows
the experimental settings in this paper. Due to our adherence to previous methods that
randomly balanced sampled 64K data for training in each epoch, during training, we added
PLR loss to pre-train the projection head and feature extractor. Additionally, we performed
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model performance calibration using CE loss every 5 epochs. The hyperparameters were
the same as Animal-10N. The learning rate lr was reduced by 10 per 40 epochs. We
decreased the n from 3 to 2 and 1 after 15 and 30 epochs, respectively, which is also the
same as [7].

4.2. Experiments on Synthetic Noisy Datasets

This section illustrates the performance variations in BPT-PLR on the CIFAR-10 and
CIFAR-100 across various noise types and rates and compares our method with vari-
ous SOTA methods from 2018 to 2024. All the results of our method are the means of
two independent experiments.

4.2.1. Results on CIFAR-10

Following the validation methodology established in the NLL field, we demonstrate
the robustness and generalization of our method on CIFAR-10 using synthetic symmetric
and asymmetric noisy labels. Table 3 presents the comparison of our method and some
SOTA methods on CIFAR-10 with various noise types and rates. To demonstrate our
approach’s robustness, we provide the average test accuracy of the last 10 epochs (denoted
as the last) and the best test accuracy across all epochs (denoted as the best). The results
reported are the means of two independent experiments. Firstly, as evident from the results
of the standard CE method in Table 3, the DNN trained solely on CE loss was not able to
withstand noisy labels, leading to performance degradation. Secondly, we list the results of
certain representative NLL methods with outstanding performance from 2018 to 2022, such
as co-teaching, DivideMix, ELR+, UNICON, Mixup, and PENCIL. To thoroughly illustrate
the robustness of our method, we specifically compare it with recent NLL methods, includ-
ing LongReMix, OT-Filter, DISC, ScanMix, C2MT, SLRLNL, RL, PLReMix, and HMW+.
Table 3 shows that many SOTA methods achieve excellent and comparable performance
under low noise rates, regardless of symmetric or asymmetric noise scenarios (e.g., from
20% to 50% symmetric noise, and 40% asymmetric noise). Nevertheless, our method still
achieves optimal performance and significantly outperforms these methods. For instance,
in the 20% symmetric/40% asymmetric noise scenario, our method surpasses UNICON,
LongReMix, OT-Filter, DISC, ScanMix, C2MT, and PLReMix by margins of 1.0%/1.56%,
0.7%/0.96%, 1.0%/0.51%, 0.9%/1.06%, 1.0%/1.96%, 0.5%/2.7%, and 0.37%/0.55%, respec-
tively. While HMW+ is an improvement based on the UNICON framework, its accuracy did
not significantly improve compared with the source framework. In contrast, our method
outperforms PLReMix by a noticeable margin. This clearly demonstrates the effectiveness
of the two key steps introduced in our approach.

As the noise ratio increases, the superiority of our method becomes increasingly
evident. For example, in scenarios with 90% symmetric/49% asymmetric noise, our method
outperforms UNICON, LongReMix, OT-Filter, DISC, ScanMix, and PLReMix by margins of
3.27%/1.9%, 13.2%/5.2%, 3.5%/1.06%, 39%/16.9%, 3%/0.96%, and 2.1%/3.4%, respectively.
These methods exhibit varying degrees of overfitting in the 49% asymmetric noise scenario,
as indicated by the substantial gaps between the last and best results, such as 6.6% for
LongReMix, 0.9% for OT-Filter, 3.7% for DISC, and 31% for PLReMix. However, our
method demonstrates excellent robustness, with a difference of only 0.17%. PLReMix
uses flat NCE instead of non-flat NCE to design a flat PLR loss specifically for CIFAR-10
and CIFAR-100, aiming to improve the accuracy of the algorithm, hence referred to as
Flat-PLReMix here. However, our approach only employs the original PLR loss across
all datasets to demonstrate its robustness. Nevertheless, the performance of our method
on CIFAR-10 still significantly surpasses that of Flat-PLReMix. This clearly demonstrates
the effectiveness of the two key processes (i.e., BP-GMM and SSO-PLR) proposed in this
paper. Furthermore, since many methods only provide results for the 40% asymmetric
noise scenario, to thoroughly demonstrate the robustness of our method, we report the
results of these methods in the 10% to 30% asymmetric noise scenarios based on publicly
available code and compare them with our method. The experimental results further



Entropy 2024, 26, 589 18 of 29

confirm the effectiveness of our method. Finally, in Figure 4, we present the test accuracy
curves of our method and some SOTA methods. It can be observed from the figures that
our method maintains steady progress, demonstrating its effectiveness in resisting noisy
labels as training progresses. Combining Figure 6 with Figures 3 and 5, it is evident that our
proposed BP-GMM process divides the data into labeled subsets, with sizes closer to the
true clean rate. Within the labeled subset, there are more TP samples for each category, while
the number of FP samples is relatively low. As a result, we achieve better test performances.
Since the SSO-PLR technique proposed in this paper combines oversampling strategies
with PLR loss to extract more information from unlabeled samples, it enhances multiple
learning on clean samples, accelerating convergence speed (i.e., the steeper test accuracy
curves in Figure 6c,d) and enhancing final test results.

Table 3. The comparison of test accuracies (%) using CIFAR-10 across various noisy scenarios. The
best accuracies are shown in bold. Underlines indicate reproduced results. “†“ denotes that the
backbone is ResNet-32.

Methods
The Comparison of Test Accuracies (%) on CIFAR-10

Symmetric Noise Asymmetric Noise

20% 50% 80% 90% 10% 20% 30% 40% 49%

Standard CE 86.8 79.4 62.9 42.7 88.8 86.1 81.7 76.1 -
Co-teaching [25] (18) 86.5 76.1 25.4 - 87.2 - 84.7 75.7 -
Mixup [16] (18) 95.6 87.1 71.6 52.2 93.3 88.0 83.3 77.7 -
PENCIL [20] (19) 92.4 89.1 77.5 58.2 93.1 92.9 92.6 91.6 -

DivideMix [6] (20)
last 95.7 94.4 92.9 75.4 - - - 92.1 76.3
best 96.1 94.6 93.2 76.0 - - - 93.4 84.7

ELR+ [27] (20) 95.8 94.8 93.3 78.7 95.4 94.7 94.7 93.0 -
UNICON [28] (22) 96.0 95.6 93.9 90.8 95.3 - 94.8 94.1 87.1

LongReMix [8] (23) last 96.0 94.8 93.3 79.1 95.4 94.1 93.5 94.3 77.8
best 96.3 95.1 93.8 79.9 95.6 94.6 94.3 94.7 84.4

OT-Filter [30] (23)
last - - - - 95.2 94.9 94.5 - 87.7
best 96.0 95.3 94.0 90.5 95.6 95.2 94.9 95.1 88.6

DISC [31] (23)
last - - - 32.3 96.2 95.7 95.2 - 69.0
best 96.1 95.1 84.7 55.8 96.3 95.8 95.3 94.6 72.7

ScanMix [39] (23) 95.7 93.9 92.6/93.5 90.3 - - - 93.4 87.1

RL † [24] (23)
last - 90.57 - 61.72 93.80 93.51 93.05 92.31 -
best - 90.73 - 62.32 94.21 93.86 93.23 93.57 -

TPCR † [32] (24) 93.2 - 86.9 - - 93.3 92.3 91.0 -

Flat-PLReMix [7] (24)
last 96.46 95.36 94.84 91.54 - - - 94.72 55.1
best 96.63 95.71 95.08 91.93 - - - 95.11 86.2

C2MT [9] (24)
last 96.1 94.8 92.8 - 95.1 93.0 93.5 92.6 -
best 96.5 95.0 93.4 - 95.4 94.3 94.1 92.9 -

SLRLNL [33] (24) 92.5 - 78.9 - - 93.1 92.5 92.0 -
HMW+ [29] (24) 93.5 95.2 93.7 90.7 93.5 - 94.7 93.7 -

BPT-PLR (Ours)
last 96.89 96.03 95.45 93.84 96.61 96.49 95.63 95.51 89.49
best 97.00 96.16 95.66 94.07 96.76 96.68 95.82 95.66 89.66

4.2.2. Results on CIFAR-100

To further highlight the advantages of our method, we validate our approach on the
CIFAR-100 dataset with varying synthetic noisy labels, which is the same as previous SOTA
methods. Table 4 provides a comparison of our method with some SOTA methods on this
dataset. Consistent with the experiments on CIFAR-10, we also present both the “last” and
“best” results. Firstly, from the testing results of CE, co-teaching, Mixup, and PENCIL in
scenarios where the noise ratio is greater than or equal to 30%, regardless of symmetric or
asymmetric noise, it can be observed that as the number of classes increases, the impact of
noisy labels on the model becomes more severe. DNNs trained with these methods almost
lose discriminative ability and are replaced by random guessing (i.e., the test accuracies
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of these methods are below 50%). Furthermore, recent SOTA methods such as DivideMix,
UNICON, DISC, LongReMix, RL, C2MT, PLReMix, and HMW+ have achieved significant
improvements on CIFAR-100 across varying noise scenarios. However, in most scenarios,
our method still shows improvements over these methods. For instance, in low-noise-
rate scenarios, specifically 20%-sym. And 20%-asym., our method leads by 1.55%/9.5%,
0%/0.84%, 0.1%/0.64%, 1.85%/-, 0.06%/−0.68%, 1.35%/1.2%, 0.9%/-, and 2.2%/2.4%,
respectively. Notably, RL utilizes a deeper ResNet-34 for training on this set, while the
difference in the results between PreAct ResNet-18 and ResNet-34 for PENCIL shows that
as the model gets deeper, the test performance improves. Nevertheless, our method still
achieves comparable or slightly superior results to RL, indicating its advantage. Similar to
observations on CIFAR-10, as the noise ratio increases, our method continues to maintain
optimal (e.g., in 50%-sym., 80%-sym., 10%, and 30%-asym. Scenarios) or near-optimal
results (e.g., second only to ScanMix in the 90%-sym. Scenario), except for the 40%-asym.
Scenario. In this case, our method lags behind RL, OT-Filter, DISC, etc., by nearly 2.2%.
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Figure 6. The comparison of test accuracy (%) curves between some SOTA methods and our method
using CIFAR-100. (a) Test accuracy curves of our method across varying symmetric noise rates.
(b) Test accuracy curves of our method across varying asymmetric noise rates. (c) The comparison of
test accuracy between five STOA methods (i.e., DivideMix, UNICON, LongReMix, PLReMix, and
C2MT) and our method in the scenario of 80% symmetric noise. These methods were originally set to
train for 300 epochs, while our method followed the parameter settings of PLReMix, which are set to
400 epochs. (d) The comparison of test accuracy between these STOA methods and our method in
the scenario of 30% asymmetric noise.
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Table 4. The comparison of test accuracies (%) on CIFAR-100 across various noisy scenarios. The best
accuracies are shown in bold. Underlines indicate reproduced results. “†“ denotes that the backbone
is ResNet-34. “x/x” means the last/best accuracies.

Methods
Test Accuracy (%) on CIFAR-100

Symmetric Noise Asymmetric Noise

20% 50% 80% 90% 10% 20% 30% 40%

Standard CE 62.0 46.7 19.9 10.1 68.1 63.6 53.5 44.5
Co-teaching [25] (18) 49.2 35.1 5.7 - 54.1 - 49.6 43.7
Mixup [16] (18) 67.8 57.3 30.8 14.6 72.4 65.1 57.6 48.1
PENCIL [20] (19) 69.4 57.5 31.1 15.3 76.1 68.9 59.3 48.3
PENCIL † [20] (19) 73.86 - - - 75.93 74.70 72.52 63.61
DivideMix [6] (20) 76.9/77.3 74.2/74.6 59.6/60.2 31.0/31.5 69.5 69.2 68.3 51.0
ELR+ [27] (20) 77.6 73.6 60.8 33.4 77.4 75.5 75.1 74.0
UNICON [28] (22) 78.9 77.6 63.9 44.8 78.2 - 75.6 74.8
OT-Filter [30] (23) 76.7 74.6 61.8 42.8 - - - 76.5
DISC [31] (23) 78.8 75.2 57.6 - 78.1/78.4 77.5/77.2 76.3/76.8 76.5
LongReMix [8] (23) 77.5/77.9 74.9/75.5 61.7/62.3 30.7/34.7 - - - 54.9/59.8
ScanMix [39] (23) 76.0/77.0 75.4/75.7 65.0/66.0 58.2/58.5 - - - -
RL † [24] (23) 78.79 - 49.81 - 79.72 79.20 79.04 76.50
TPCR † [32] (24) 74.8 - 53.1 - - 77.2 75.4 71.3
C2MT [9] (24) 76.5/77.5 73.1/74.2 57.5/57.7 - 77.1/77.8 77.3/77.7 74.5/75.7 -
SLRLNL [33] (24) 69.4 - 32.6 - - 72.5 71.9 69.7
Flat-PLReMix [7] (24) 77.78/77.95 77.31/77.78 68.76/68.41 49.44/50.17 - - - -
HMW+ [29] (24) 76.6 75.8 63.4 43.4 76.6 - 76.3 72.1

BPT-PLR
(Ours)

last 78.66 77.77 69.06 49.49 78.68 78.30 78.52 73.95
best 78.85 78.02 69.31 49.85 79.04 78.54 78.82 74.30

Our analysis suggests that the main issue lies in these methods adjusting hyperparam-
eters dynamically based on noise types and ratios, while we maintain nearly consistent
parameter settings across all experiments. Additionally, as the asymmetric noise ratio on
CIFAR-100 rises to 40%, the number of clean and noisy samples per class becomes almost
equal (300:200), posing a challenge to calculating a reliable negative set for PLR loss. It
is one of our focal points for future research. Despite this, our method still achieves sub-
optimal performance compared with UNICON, far outperforming LongReMix, SLRLNL,
HMW+, and others. Moreover, such extreme cases are rare in real-world scenarios, as
most datasets have a large number of samples per class (greater than 1000), resulting in a
significant gap between the numbers of clean and noisy samples per class, even with large
categories and high noise ratios. Therefore, we can conclude that our method is suitable
for most noisy scenarios with a large number of categories and demonstrates good robust-
ness and classification performance. Similarly, in Figure 7, we present the test accuracy
curves of our method and some SOTA methods. It can be observed from the figures that
our method maintains steady progress, demonstrating its effectiveness in resisting noisy
labels as training progresses. Combining the results of Figure 5c,d, it can be seen that the
sizes of the unlabeled subsets we partitioned (referred to as noisy label sets) are closer to
the true noise rates. The analysis combining Figures 3 and 5 clearly shows that both the
BP-GMM process and the SSO-PLR process still have a certain effect on noisy datasets with
a larger number of categories. Therefore, the test curve of our method is steeper and higher
compared with the test accuracy curves of several SOTA methods shown in Figure 7c,d.
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4.3. Experiments on Real-World Noisy Datasets

We have conducted extensive experiments on the CIFAR-10 and CIFAR-100 datasets,
demonstrating the effectiveness of our method. In this section, we apply it to two real-world
noise datasets crawled from websites to further validate its performance. We conducted
experiments on the Animal-10N and Clothing1M datasets, and the experimental analysis
is below.

4.3.1. Results on Animal-10N

Since SOTA methods mainly employ two network architectures (e.g., 9-layer CNN
and VGG-19N) for Animal-10N evaluation, we simultaneously provided the test results of
the BPT-PLR method based on these two networks in Table 5. Additionally, we reported
the results of LongReMix and PLReMix using publicly available code on this dataset. Due
to PLReMix utilizing the original PLR loss on real-world noisy datasets in the reference, it
is denoted as N-Flat-PLReMix (non-flat PLReMix). From the table, it is evident that our
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method achieved the best performance across two network architectures. Our method
outperforms TCC-net and C2MT by 4.0% and 2.5%, respectively, on the 9-layer CNN, and
surpasses OT-Filter, DISC, LongReMix, C2MT, SLRLNL, and HMW+ by at least 1% on
Vgg-19N. Although the best accuracy of PLReMix is close to ours (with a difference of
approximately 0.3%), its last accuracy significantly lagged behind our method (with a
difference of approximately 0.75%).

Table 5. A comparison of test accuracies (%) on Animal-10N. The best accuracies are shown in bold.
Underlines indicate reproduced results. “x/x” means the last/best accuracies. “†“ denotes that the
backbone is ResNet-34.

Methods Test Accuracy (%)

Training with 9-layer CNN

Standard 82.68
Co-teaching [25] (18) 82.43

JoCoR [46] (20) 82.82
TCC-net [47] (23) 83.22

C2MT [9] (24) 84.30/84.76

Ours
last 86.79
best 87.20

Training with Vgg-19N

Mixup [16] (18) 82.7
SELFIE [44] (19) 81.8

DivideMix [6] (20) 85.35/86.20
OT-Filter [30] (23) 85.5

DISC [31] (23) 87.1
LongReMix [8] (23) 86.88/87.22

TPCR † [32] (24) 87.39
C2MT [9] (24) 85.8/85.9

SLRLNL [33] (24) 86.4
N-Flat-PLReMix [7] (24) 87.27/88.0

HMW+ [29] (24) 86.5

BPT-PLR (Ours)
last 88.02
best 88.28

Through the comparison experiments on Animal-10N, we further illustrated the two
advantages of our method: maintaining stable and excellent performance across various
noise scenarios and being insensitive to model structures, thus being compatible with
most DNN networks. In Figure 8, we present the test accuracy curves of our method and
some reproduced methods on this dataset. Similar to Figures 6 and 7, we still find that
the test accuracy curve of our proposed method is steeper and higher than existing SOTA
methods, which fully demonstrates its effectiveness in dealing with real-world fine-grained
noisy datasets.

4.3.2. Results on Clothing1M

Table 6 presents the experimental results on the Clothing1M dataset. From the table,
it can be observed that our method performs slightly worse than existing state-of-the-art
methods. The core issue lies in adopting almost identical hyperparameter settings as those
used on the Animal-10N dataset. Additionally, due to our adherence to the PLReMix
approach, we randomly sample 64K data points for training at each epoch. Consequently,
the BP-GMM process faces potentially different training sets in each epoch, diminishing the
coherence of balanced partitioning. This inconsistency affects both the partition accuracy
and subsequent PLR loss computation, resulting in a slight decrease in performance.
Furthermore, while PLReMix slightly outperforms our approach, this advantage stems from
its selective use of flat PLR and non-flat PLR tailored to different datasets. In contrast, we
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employed the same non-flat PLR loss across all datasets. Despite this, we still achieved near-
excellent performance, trailing the SOTA method (i.e., PLReMix, OT-Filter, and C2MT) by
only approximately 0.1–0.2%. Considering that the Clothing1M dataset contains 1 million
training samples, this performance gap can be considered negligible. Furthermore, we still
outperformed many recent methods such as UNICON, DISC, and SLRLNL. Therefore, our
proposed method is applicable to large-scale noisy datasets.
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4.4. Ablation Study

In this section, we conduct an ablation analysis on several key modules proposed
in this paper to fully demonstrate their efficacy. Compared with the original PLReMix
method, this paper mainly introduces two key processes: BP-GMM and SSO-PLR. In
BP-GMM, we combine balanced partitioning with a two-dimensional GMM and perform
sample selection based on both label and semantic information. Therefore, in the ablation
experiments, we regard the balanced partitioning module as a key module, abbreviated
as BP. Similarly, in SSO-PLR, we treat oversampling techniques and PLR loss as two key
modules, abbreviated as OS and PLR, respectively. We present the ablation experiment
results on several key modules in Table 7. If the BP and OS columns are marked as “✗” in
the corresponding experiment result row, it indicates that the corresponding module was
not used in that experiment, and vice versa. The PLR column is slightly different; if marked
as “✗”, it indicates that we used the original CRL loss for both labeled and unlabeled
samples, meaning the reliable negative class set Ot

i (Equation (14)) was not constructed;
otherwise, it indicates the use of non-flat PLR loss (just utilized in all datasets, unlike
PLReMix, where flat and non-flat PLR losses are dynamically employed based on dataset
types). Analyzing the results in Table 7, we draw the following conclusions:

Table 7. Ablation studies of our method. The best accuracies are shown in bold and we report
last/best results where “✗” indicates the module is not employed while “✓“ indicates the opposite.
“BP” represents a balanced partitioning module, and “OS” represents an oversampling module. The
column “PLR” indicates the usage of CRL loss if it is “✗”; otherwise, the PLR loss described in this
paper is employed. “✗” represents the mean results between 80%-sym. And 40%-asym. Row #4
indicates the original PLReMix. Each result comes from one experiment.

Noise Types
Modules Last/Best Test Accuracy (%)

CIFAR-10

Rows BP OS PLR 80%-sym. 40%-asym. Average
Accuracy

1 ✗ ✗ ✗ 94.94/95.10 88.28/88.61 91.61/91.86
2 ✓ ✗ ✗ 95.14/95.31 94.67/94.78 94.91/95.04
3 ✗ ✓ ✗ 10.00/94.82 88.99/89.19 50.00/92.01
4 ✗ ✗ ✓ 94.72/94.98 79.94/94.55 87.33/94.77
5 ✓ ✓ ✗ 95.83/95.99 94.68/94.90 95.26/95.45
6 ✓ ✗ ✓ 95.06/95.18 95.37/95.54 95.22/95.36
7 ✗ ✓ ✓ 95.78/95.88 90.58/90.85 93.18/93.37
8 ✓ ✓ ✓ 95.77/95.95 95.51/95.69 95.64/95.82

The effect of each module. From Rows #1 to #4 in Table 7, it is evident that using
each module individually (such as Row #2 for BP, Row #3 for OS, and Row #4 for PLR)
improved the average testing accuracy compared with the original method (i.e., Row #1)
and also increased the risk of model overfitting. For instance, in Rows #3 (80%-sym.) and
#4 (40%-asym.), the last results significantly lag behind the best, indicating the overfitting of
DNNs in the later stages of training. This suggests that while individual modules enhance
the model’s robustness, their stability still needs improvement.

The effect of combining BP and OS. Although using OS alone may lead to model
overfitting, we have demonstrated that combining it with BP results in mutual influence
between the two modules, significantly enhancing the model’s robustness and consistently
improving testing accuracy. By comparing Rows #1 and #5, we observed that in two distinct
noise scenarios, the combination of BP and OS improved performance by 0.9%/0.89% and
6.4%/6.3%, respectively. Additionally, the average testing accuracy increased by 3.2%/3.6%.
This clearly underscores the necessity of utilizing both BP and OS modules simultaneously.
Subsequently, comparing the results of using both BP and OS (Row #5) with those of using
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BP or OS alone (Rows #2 or #3), we found that introducing OS benefits the BP operation,
further enhancing the performance of the model.

The effect of combining BP and PLR. Similar to the performance of OS, using PLR
alone can lead to overfitting in scenarios with noisy labels. However, experiments in
Row #6 demonstrated that combining PLR with BP can overcome this issue and consistently
enhance the model’s robustness. Comparing the results of Rows #1 and #6, it is evident that
in two different noise scenarios, this combination improves performance by approximately
0.1%/0.1% and 7%/7% compared with the original method. Additionally, the average
testing accuracy Is Increased by 3.2%/3.6%. Furthermore, by comparing the results of
Row #5 with Rows #2 or #4, we further confirm the necessity of combining BP and PLR.

The effect of combining OS and PLR. Similar to the experimental analysis above,
when OS and PLR are combined, the testing performance of DNNs is significantly im-
proved compared with the original method. Comparing the results of Rows #1 and #7,
the combination improves performance by approximately 0.8%/0.7% and 2.3%/2.2%,
respectively. Compared with Rows #3 and #4, although the improvement in testing perfor-
mance of the two combinations is negligible, they mitigate the overfitting issues caused
by using these two components separately, demonstrating the necessity of using OS and
PLR simultaneously.

The effect of combining BP, OS, and PLR. Finally, we compare the results of using all
three components introduced in this paper (i.e., the BPT-PLR framework, Row #8) with the
optimal results from several other ablation experiments (i.e., Row #5). It was found that
our method successfully overcame various issues mentioned above. It not only applies
to scenarios with both asymmetric and symmetric noise but also enables the model to
consistently maintain robustness and achieve optimal performance. Although our method
performed slightly worse by 0.1% compared with using only BP and OS in the symmetric
noise scenario, it outperformed other models by approximately 0.8% in the asymmetric
noise scenario, resulting in a better average outcome than that of the experimental method.
This fully demonstrates the necessity of using all three components simultaneously.

These experiments have analyzed the impact of each component introduced in this
paper on the model’s testing performance in different noise scenarios. Through quantitative
analysis, we found that the more components introduced, the more stable the model’s
robustness. When all components are used simultaneously, we can obtain nearly optimal
results, demonstrating the necessity of the framework proposed in this paper. Furthermore,
Figure 9 presents the results of each ablation experiment in the form of testing accuracy
curves, providing a more visual comparison of the changes in accuracy. Clearly, the BPT-
PLR framework proposed in this paper (i.e., Row #8) maintains stable performance and
achieves the best testing accuracies. Furthermore, it is evident that Rows #3 (using only OS)
and #4 (using only PLR) in Figure 9a,b, during the late stages of training, begin to overfit
on samples with noisy labels, resulting in a dramatic decline in test performance. This
also explains the significant difference between the “last” and “best” results corresponding
to these two methods in Table 7. This further illustrates the necessity of simultaneously
utilizing the three modules proposed in this paper for the BPT-PLR method.
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5. Discussion

We validated the effectiveness of our proposed method through extensive experiments
on four benchmark datasets. The comparative experiments shown in Tables 3 and 4
demonstrate the superior performance of our method on synthetic noise datasets, indicating
its applicability to both fine-grained and coarse-grained noisy datasets. We illustrate the
necessity of the proposed BP-GMM process in Figure 3, showing that it can improve the
balance of labeled subsets after partitioning, increase the number of TP samples, and
maintain or even reduce the FP samples. Additionally, we elaborated on the necessity
of oversampling techniques in the SSL-based sample selection framework, as shown in
Figure 5. Finally, in Tables 5 and 6, we provide the results of our approach on two real-world
noisy datasets and compare them with several SOTA methods, further demonstrating the
effectiveness of our framework. Moreover, we verified the robustness of our method to
network structures and demonstrated its applicability to most DNN models, showcasing
its broad utility. In Figures 6–8, we compare the test accuracy curves of our method with
those of several SOTA methods, revealing not only a faster convergence rate (steeper
curve) but also higher test performance. Combining the contents of Figures 3 and 5 further
emphasized the necessity of the proposed two key processes. Finally, through extensive
ablation experiments, we affirmed the effectiveness of several core modules utilized in
the proposed key processes. From the ablation experiments, it is evident that although
individual modules may not consistently improve the model’s test performance, when used
together, they mutually enhance and stabilize the model’s test performance, underscoring
the indispensability of these key modules.

Naturally, BPT-PLR has some limitations. For instance, as shown in Table 4, our
method does not outperform existing methods in handling 40% asymmetric noise and 90%
symmetric noise. Although such extreme noise scenarios are uncommon in practice, we
still consider them as a focus for future research. Additionally, while we significantly out-
performed existing methods on Animal-10N, we only marginally matched SOTA methods
on Clothing1M, failing to surpass them completely. This indicates that while our method
demonstrates certain robustness against various noise datasets, the robustness level is not
consistently stable, which is also a point of consideration for future work. Finally, we plan
to extend the two key processes proposed in this paper to the Out-of-Distribution (OOD)
sample detection domain.
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6. Conclusions

As over-parameterized deep neural networks (DNNs) attempt to fit all samples, in-
cluding noisy labels, they tend to overfit, which compromises their generalization ability. In
this paper, we propose a balanced partitioning and training framework with pseudo-label
relaxed contrastive loss (BPT-PLR) to address the challenge of noisy label learning. It aims
to reduce the impact of noisy labels on DNNs and improve classification performance.
BPT-PLR leverages two crucial processes: balanced partitioning with a two-dimensional
Gaussian Mixture Model (BP-GMM) and semi-supervised oversampling training with
pseudo-label relaxed contrastive loss (SSO-PLR). BP-GMM identifies noisy labels based
on semantic and class information, while SSO-PLR combines PLR with SSL techniques
to improve model robustness and avoid conflicts with supervised losses. We validate the
effectiveness of BPT-PLR on four benchmark datasets in the NLL domain, demonstrat-
ing its optimal or near-optimal performance compared with SOTA methods. We hope
this work will inspire further research on sample selection methods for NLL via these
two key processes.
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