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Abstract: With the rapid development of artificial intelligence and Internet of Things (IoT) technolo-
gies, automotive companies are integrating federated learning into connected vehicles to provide
users with smarter services. Federated learning enables vehicles to collaboratively train a global
model without sharing sensitive local data, thereby mitigating privacy risks. However, the dynamic
and open nature of the Internet of Vehicles (IoV) makes it vulnerable to potential attacks, where attack-
ers may intercept or tamper with transmitted local model parameters, compromising their integrity
and exposing user privacy. Although existing solutions like differential privacy and encryption
can address these issues, they may reduce data usability or increase computational complexity. To
tackle these challenges, we propose a conditional privacy-preserving identity-authentication scheme,
CPPA-SM2, to provide privacy protection for federated learning. Unlike existing methods, CPPA-SM2
allows vehicles to participate in training anonymously, thereby achieving efficient privacy protection.
Performance evaluations and experimental results demonstrate that, compared to state-of-the-art
schemes, CPPA-SM2 significantly reduces the overhead of signing, verification and communication
while achieving more security features.

Keywords: federated learning; Internet of Vehicles; authentication; certificateless-based cryptography

1. Introduction

With the rapid development of intelligent transportation systems and Internet of
Things (IoT) technology, the Internet of Vehicles (IoV) has become an essential component
of smart cities [1]. IoV enables real-time sharing of traffic information and intelligent
coordination of vehicles through communication between vehicles and between vehicles
and infrastructure. Additionally, with the advancement of machine learning technology,
many automotive companies are leveraging machine learning in the IoV to provide more
intelligent and efficient services to users [2]. By collecting a large amount of vehicle
data to train models, they offer applications such as autonomous driving and traffic flow
prediction [3]. However, traditional centralized model training requires gathering vehicle
data to the central server for training. Since this vehicle data often contains a significant
amount of personal information, such as driving habits, travel routes, home and work
locations, many users are concerned about privacy breaches and are reluctant to send
their data to the central server [4]. Moreover, recent data security regulations prohibit
automotive companies from collecting user data without authorization. To address these
privacy concerns, federated learning (FL) has emerged as a solution [5]. FL is a decentralized
machine learning approach where multiple clients (such as smartphones, vehicles or other
devices) collaboratively train a shared model under the orchestration of a central server
while keeping the data localized [6]. Instead of sending raw data to a central server, each
client processes the data locally and only shares the model updates (like gradients or
parameters) with the central server. The server then aggregates these updates to form a
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global model. Currently, FL has been widely applied in various IoV scenarios, such as
trajectory prediction, advanced driver-assistance systems and traffic flow prediction and
management [7].

Although FL addresses the issue of data silos, researchers have found that without
proper protection of the transmitted model parameters, attackers can still infer privacy
information about user data [8]. Additionally, during the aggregation of parameters by the
central server, there is a risk that the server may attempt to infer original data information
from the uploaded model parameters. Moreover, due to the open nature of the IoV, attackers
can easily eavesdrop on and manipulate messages transmitted between vehicles, gaining
access to the vehicles’ real identities and further tracking their behaviors, posing a threat to
user privacy [9].

To address the issue of privacy leakage in federated learning, existing solutions are
mainly categorized into differential privacy (DP) [10–12] and encryption techniques [13–18].
DP protects the privacy of original data by adding random noise to model parameters.
Wei et al. [10] proposed a differential privacy-based federated learning framework, which
achieves different levels of differential privacy protection by adding artificial noise to client
parameters before aggregation. Zhao et al. [11] combined DP with federated learning,
proposing four localized differential privacy mechanisms to perturb gradients generated by
vehicles, thereby preventing privacy leakage. Zhou et al. [12] achieved high-level privacy
protection by adding noise and theoretically proved the convergence of their algorithm.
Although DP-based solutions have been extended to all machine learning algorithms in
deep learning, the added random noise can degrade model accuracy and extend the model
convergence time. Encryption-based solutions can be divided into homomorphic encryp-
tion and secure multiparty computation (SMC). Zhou et al. [13] combined differential
privacy, blinding and Paillier homomorphic encryption to resist model attacks and achieve
secure aggregation of model parameters. Ma et al. [14] proposed a dual-trapdoor homo-
morphic encryption scheme, ShieldFL, which can defend against model poisoning attacks
and protect privacy. They also introduced a secure cosine similarity method for Byzantine-
robust aggregation. Hijazi et al. [15] introduce four different fully homomorphic encryption
(FHE)-based methods for FL, which securely transmit model parameters in encrypted
form, thereby enhancing robust privacy and security protection. Zhang et al. [16] present
a lightweight dual-server secure aggregation protocol based on secret sharing, achieving
both privacy protection and Byzantine robustness. A typical example is secret sharing.
This method reduces computational overhead compared to homomorphic encryption but
increases the number of communication rounds and communication overhead, thereby
hindering the training efficiency of federated learning. Furthermore, encryption-based
solutions prevent the cloud server from directly accessing plaintext local model parameters
during aggregation. This hinders integration with Byzantine-robust federated learning
defense mechanisms [17,18], as existing Byzantine-robust defense mechanisms focus on
computing similarities directly on plaintext model parameters. Therefore, it is necessary
to research a privacy-preserving federated learning solution suitable for the IoV that can
balance efficiency and practicality.

To ensure the authenticity and integrity of communication data in the IoV, many
identity-authentication protocols have been proposed [19]. Currently, existing identity-
authentication protocols in the IoV can be primarily categorized into three types: public key
infrastructure-based (PKI-based) [20], identity-based (ID-based) [21–24] and certificateless-
based [25–28]. PKI-based identity-authentication protocols bind a vehicle’s identity to its
public key through digital certificates. Vehicles use their private keys to sign messages,
and verifiers use the public keys from the vehicle’s digital certificates to verify the sig-
natures. The main drawback of this method is the significant storage and maintenance
overhead associated with managing a large number of digital certificates and certificate
revocation lists. Identity-based authentication protocols directly use the vehicle’s identity
information as the public key, thereby avoiding the overhead of certificate management and
maintenance. Zhao et al. [22] proposed an identity-based federated learning collaborative
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authentication protocol for shared data, achieving efficient anonymous authentication
and key agreement between vehicles and other entities. Zhang et al. [23] proposed an
ID-based conditional privacy-preserving identity-authentication scheme that does not re-
quire bilinear pairings or hash-to-point operations, enabling efficient vehicle authentication.
Kanchan et al. [24] proposed a federated learning algorithm based on group signatures,
enhancing the protection of node identities. Although ID-based identity-authentication
schemes can achieve efficient vehicle authentication, they have the issue of key escrow.
Therefore, certificateless identity-authentication schemes have been proposed as a promis-
ing solution. However, this approach has a key escrow problem, as the Trusted Authority
(TA) has full control over the vehicle’s private keys and can generate legitimate signatures
for any vehicle. To address the key escrow issue, certificateless authentication protocols
have been proposed. In these protocols, a vehicle’s private key consists of two parts: one
part is a secret value selected by the vehicle itself, and the other part is a partial private key
generated by TA. Lin et al. [25] proposed a certificateless authentication and key agreement
protocol for IoV based on blockchain. This protocol utilizes the decentralized architec-
ture of blockchain to achieve decentralized trusted third-party services, thus mitigating
issues such as single-point failure and the risk of trusted third-party disclosure. It aims to
achieve efficient authentication between vehicles. Jiang et al. [26] proposed a certificateless
anonymous identity-authentication scheme, which aims to anonymize the relationship be-
tween terminal identities and data. However, the use of bilinear pairing operations affects
authentication efficiency. Ma et al. [27] extended Jiang’s work by proposing a certificate-
less identity-authentication scheme that does not require bilinear pairing operations and
supports batch verification. However, this scheme lacks dynamic member-management
capabilities, and the pseudonyms generated by vehicles cannot be dynamically updated.
Currently, most existing certificateless authentication protocols use bilinear pairing op-
erations or do not support batch verification, leading to low authentication efficiency.
Additionally, most certificateless authentication protocols are independently designed and
are not integrated with existing international standard cryptographic algorithms, making
them inconvenient for practical application and widespread adoption. Therefore, it is
necessary to study an efficient authentication protocol to establish a secure communication
environment for the IoV.

To address the aforementioned challenges, we propose a conditional privacy-preserving
authentication scheme called CPPA-SM2, which provides secure authentication and privacy
protection for vehicle communication and federated learning in the IoV. Specifically, it is based
on the fact that if vehicles send messages and participate in training anonymously, even if
attackers or the cloud server obtain the plaintext local model parameters and infer some data
information, they cannot associate this information with a specific real vehicle identity, thus
achieving privacy protection. Our main contributions are as follows:

• We propose a Conditional Privacy-Preserving Authentication scheme, CPPA-SM2, and
integrate it with federated learning. Vehicles participate in federated learning training
anonymously, obfuscating the link between local model parameters and the vehicle’s
real identity, thus achieving privacy protection. Unlike existing privacy-preserving
federated learning schemes, it does not require time-consuming encryption operations
or add random noise that affects model performance. It maintains the efficiency
of federated learning and has the potential to be integrated with Byzantine-robust
defense mechanisms.

• CPPA-SM2 is a certificateless identity-authentication scheme based on Elliptic Curve
Cryptography, SM2 and the Chinese Remainder Theorem. It can verify the authenticity
and integrity of the local model parameters uploaded by vehicles and supports batch
verification. Unlike existing certificateless identity-authentication schemes, it integrates
with the standard SM2 digital signature algorithm, facilitating practical application.
Dynamic member management is achieved through the Chinese Remainder Theorem.
When a malicious vehicle is detected in the system, TA can use the system master secret
key to trace its real identity and then revoke it from the federated learning system.



Entropy 2024, 26, 590 4 of 23

• We conducted a security proof and an informal security analysis of the CPPA-SM2
scheme. Additionally, we evaluated its performance through experiments and com-
pared it with other schemes. The experimental results show that CPPA-SM2 can
achieve efficient and secure authentication for vehicles while providing privacy pro-
tection for federated learning.

The remainder of this paper is organized as follows. Section 2 presents the notation
definitions, mathematical background, system model, threat model, security model and
design objectives. Section 3 details the implementation of the CPPA-SM2 scheme. Section 4
provides the correctness and security proof of the CPPA-SM2 scheme along with an informal
security analysis. Section 5 evaluates the performance of the CPPA-SM2 scheme and
compares it with other schemes. Section 6 concludes the paper.

2. Preliminaries

In this section, we mainly introduce the preliminary knowledge, system model, threat
model, security model and design goals. The relevant symbols used in this paper are
explained in Table 1.

Table 1. Notations and definitions used.

Notations Definition

λ Security parameter
s System master secret key

Ppub System public key
(pkTA, skTA) TA’s public and private key pair

(pkRSU , skRSU) RSU’s public and private key pair
Vi The i-th vehicle
K Group key

(β, Dpub) Group public key
(Xi, Yi) Vehicle Vi’s full public key
(xi, yi) Vehicle Vi’s full private key

ski Vehicle Vi’s secret key
RIDi Vehicle Vi’s real identity

PIDi = (PIDi,1, PIDi,2) An pseudo-identity of vehicle Vi
Ti Current timestamp
Ta Arrival time
∆T The validity period of the pseudo-identity
TK The validity period of the group key

H1, H2, H3, H4, H5 Five one-way hash functions
sgki The signature key for vehicle Vi
|| Concatenation operation

SIG Signature algorithm
Wt

i The local model parameters of vehicle Vi in round t
Wt

RSUj
The local model parameters aggregated by RSUj in round t

Wt+1
global The global model for round t + 1

2.1. Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) [23,28] is a theorem of number theory that
allows one to solve systems of simultaneous congruences with different moduli. It asserts
that if one knows the remainders of the division of an integer by several pairwise coprime
integers, then one can determine uniquely the remainder of the division of that integer by
the product of these integers, under certain conditions.

Let sk1, sk2, . . . , skn be pairwise co-prime positive numbers and l1, l2, . . . ln be any given
n positive integers. Then, CRT asserts that the following simultaneous congruence equation

X ≡ l1 mod sk1, X ≡ l2 mod sk2, . . . , X ≡ ln mod skn (1)



Entropy 2024, 26, 590 5 of 23

has a unique solution X module θ, where θ = sk1sk2 · · · skn = ∏n
i=1 ski, and the X can be

obtained by the following equation:

X =
n

∑
i=1

liaibi(modθ), (2)

where ai = θ/ski and bi = (ai)
−1modski.

2.2. Elliptic Curve Cryptosystem

Consider a finite field Fp determined by a prime number p. Let E(Fp) be a set of elliptic
curve points over Fp defined by the equation y2 = x3 + ax + b mod p, where a, b ∈ Fp and
(4a3 + 27b2) mod p ̸= 0. The elliptic curve E(Fp) includes both scalar multiplication and
point addition operations. G is an additive cyclic group with order q. The Elliptic Curve
Discrete Logarithm Problem (ECDLP) is defined as follows: Given two random points
P, Q ∈ G on elliptic curve E(Fp), where Q = xP, x ∈ Z∗q , it has been proven that calculating
x from Q is computationally difficult. In other words, it is infeasible to find x in polynomial
time with a non-negligible probability [29,30].

2.3. SM2 Digital Signature Algorithm

The SM2 digital signature algorithm [31] is a public key cryptographic algorithm based
on elliptic curve cryptography, developed by the Chinese State Cryptography Administra-
tion. It is part of the Chinese National Standards (GB/T 32918.1-2016) [32] and is widely
used for secure communications in China. The SM2 digital signature algorithm consists of
three main phases: Key Generation, Signature Generation and Signature Verification.

• Key Generation (params)→ (dA, PA) : Assume the signer of the message is user A.
TA chooses the elliptic curve parameters param = (p, a, b, q, G), selects a random
integer dA ∈ [1, n− 1] as the private key and calculates the public key PA = dAG for
user A.

• Signature Generation (params, m, dA)→ σA : Given a message m. A computes ZA =
H(lenIDA ||IDA||a||b||G||PA) and eA = H(ZA||m), where lenIDA represents two bytes
converted from the bit length of user A’s identity IDA, a and b are elements in Fp that
define an elliptic curve over E(Fp), G denotes the base point in the elliptic curve group
G and PA denotes user A’s public key. Then, A randomly chooses kA ∈ [1, n − 1],
calculates KA = kA · G = (x1, y1) and rA = (eA + x1) mod q. Finally A calculates
sA = (kA − rA · dA)/(1 + dA) mod q, where dA denotes user A’s private key. User A’s
signature on the message m is σA = (rA, sA).

• Signature Verification (params, m, σA, PA)→ true or f alse : Assume the verifier of
the signature σA is user B. Given user A’s signature σA = (rA, sA) on message
m, if rA /∈ [1, n − 1] or sA /∈ [1, n − 1] , B outputs false and exits. Then B com-
putes ZA = H(lenIDA

∣∣∣∣IDA
∣∣∣∣a∣∣∣∣b∣∣∣∣G∣∣∣∣PA) , eA = H(ZA||m) and calculates tA = (rA +

sA) mod q. If tA = 0, B outputs false and exits. Finally, B calculates sAG + tAPA =
(x′

1
, y′

1
) = K′A and R = (eA + x′1) mod q. If R = rA, B outputs true; otherwise, it

outputs false.

2.4. System Model

In the IoV, a federated learning system primarily includes four entities: a trusted
authority (TA), cloud server (CS), roadside units (RSUs) and vehicles, as shown in Figure 1.

TA: This is a trusted third party, typically the traffic-management department. It is
primarily responsible for system initialization, registration of vehicles and RSUs, generating
related keys for them and managing identities. In this paper, when a malicious vehicle
uploads false local model parameters or forges identity information, the TA can trace its
real identity and revoke it from the system.

Vehicles: These are the data owners and participants in federated learning. They use their
locally collected data to train the global model received from CS, and then upload the local
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model parameters. In this paper, vehicles participate in federated learning using pseudonyms,
sign the locally trained model parameters and then send them to the nearby RSU.

RSUs: These verify the authenticity and integrity of the local model parameters
uploaded by vehicles. They use the FedAvg algorithm [5] to perform local aggregation on
these parameters to obtain local aggregation results, which are then uploaded to the cloud
server for global aggregation. Additionally, they broadcast the global model issued by TA
to the vehicles within their communication range.

CS: Upon receiving the local aggregation results uploaded by RSUs, CS uses FedAvg
to perform global aggregation to obtain the global model for the next round of training.
The new global model is then distributed to the vehicles to begin the next training round.
Through multiple iterations, the performance of the global model can be improved, enabling
the cloud server to utilize the results for practical predictions, judgments and applications.
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2.5. Threat Model and Security Model

In the threat model, CS and RSUs are considered honest-but-curious. This means
they will honestly follow the protocol to verify vehicle identities and the authenticity and
integrity of model parameters, and they will aggregate local models to obtain the global
model [33]. However, they are curious about the private data owned by the vehicles
and may attempt to recover the vehicles’ original data and reveal their true identities by
analyzing the received model parameters. Therefore, they might pose a threat to vehicle
privacy. Vehicles may be malicious and can launch free-riding attacks and data-poisoning
attacks by uploading false model parameters. They may also forge identities and signatures
to attempt to have fake messages successfully authenticated by RSUs. Additionally, they
might try to infer the privacy information of other vehicles. Attackers can fully control the
wireless communication channels between vehicles, RSUs, TA and CS. They can intercept
messages on the channel, tamper with messages, replay old messages and attempt to
impersonate other vehicles to send messages [34].

Based on the aforementioned threats and the certificateless signature security
model [27,28,30], our proposed security model is as follows. The hash functions used
in this model are assumed to be random oracles.
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In the security model, we consider two types of adversaries, AI and AI I . AI can
launch public key-replacement attacks but cannot access system master secret key s. AI I
can access the system master secret key but cannot perform public key-replacement attacks.
Both types of adversaries will engage in two separate games with the challenger C.

Game 1: This security game is executed between AI and C. C initializes the system
using the security parameter λ generating system master secret key s and system public
parameters param. C secretly keeps s and sends the public parameters to AI . AI can
perform the following queries.

- Hash queries: Upon receiving a query from AI , C returns the corresponding hash
values to AI .

- Partial-Private-Key-Extract-queries: Upon receiving a query with a pseudonym PIDi,
C returns the partial private key yi of the vehicle to AI .

- Public-Key-Extract-queries: Upon receiving a query with a pseudonym PIDi, C returns
the public key (Xi, Yi) of the vehicle to AI .

- Secret-Value-Extract-queries: Upon receiving a query with a pseudonym PIDi, C
returns the secret value xi of the vehicle to AI .

- Public-Key-Replace-queries: Upon receiving a query with (PIDi, (X′i , Y′i )), C replaces
public key with the new public key (X′i , Y′i ).

- Sign queries: After receiving a query fromAI with {PIDi,1, PIDi,2, Mi, Ti}, C responds
with a signature σi.

- Forgery: OnceAI has completed the desired queries, it outputs
{

M∗i , PID∗i,1, PID∗i,2, T∗i , σ∗i

}
under the pseudo identity PID∗

i
. AI wins the game if the following conditions are met:

- σ∗i passes verification.
- Partial-Private-Key-Extract-queries oracle has not received the request with PID∗i .

- Sign queries oracle has not received the request with
{

M∗i , PID∗i,1, PID∗i,2, T∗i
}

.

Definition 1. CPPA-SM2 is existentially unforgeable under adaptive chosen-identity and chosen-
message attacks if no polynomial-time adversary AI can win the above game with non-negligible
advantage.

Game 2: This security game is executed between AI I and C. C initializes the system
using the security parameter λ generating system master secret key s and system public
parameters param. C sends them to AI I .

- Query: AII can perform all the queries from Game 1 except for Public-Key-Replace-queries.

- Forgery: OnceAII has completed the desired queries, it outputs
{

M∗i , PID∗i,1, PID∗i,2, T∗i , σ∗i

}
under the pseudo identity PID∗

i
. AII wins the game if the following conditions are met:

- σ∗i passes verification.
- Secret-Value-Extract-queries oracle has not received the request with PID∗i .

- Sign queries oracle has not received the request with
{

M∗i , PID∗i,1, PID∗i,2, T∗i
}

.

Definition 2. CPPA-SM2 is existentially unforgeable under adaptive chosen-identity and chosen-
message attacks if no polynomial-time adversary AI I can win the above game with non-negligible
advantage.

2.6. Design Goals

Under the security model, CPPA-SM2 primarily has the following design goals:
Anonymity and Privacy-Preserving: CPPA-SM2 should protect the privacy of vehicles

participating in federated learning training. No entity other than TA should be able to infer
the true identity of the vehicles.

Authenticity and Integrity: CPPA-SM2 should ensure that the local model parameters
received by RSUs are from legitimate vehicles and that they have not been tampered with
during transmission.
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Un-linkability: Attackers cannot link any two messages sent by the same vehicle.
Un-forgeability: Attackers cannot forge signatures of other vehicles on messages,

allowing RSUs to successfully verify the signatures.
Non-repudiation: Once a vehicle uploads local model parameters and they are authen-

ticated, the vehicle cannot deny its contribution to the global model.
Forward Security: When a vehicle joins a group, it cannot access communications that

occurred before its joining, meaning it cannot participate in previous federated learning
training processes of the group.

Backward Security: When a vehicle leaves the group or is revoked by the TA, it cannot
participate in the current model training process or access communications that occur after
its departure from the group.

In addition to achieving the aforementioned security goals, CPPA-SM2 should also
have efficient authentication efficiency and lower communication overhead to adapt to the
communication environment of IoV. In particular, when a large number of vehicles participate
in federated learning training, RSUs should be able to authenticate them in batches.

3. The Proposed Scheme

In this section, we present a certificateless conditional privacy-preserving identity-
authentication protocol based on CRT and the SM2 digital signature algorithm, named
CPPA-SM2. CPPA-SM2 aims to provide privacy protection for vehicles participating in
federated learning. It consists of five phases: system initialization, registration, message
sign, message verification and group member management. First, TA initializes the system
and publishes the system’s public parameters. Then, vehicles and RSUs register with
TA before participating in communications. Through registration, they obtain the public
and private keys required for subsequent communications. In the message signing phase,
vehicles train a model based on their local datasets and then sign the local model parameters
before sending them to RSU. RSU, upon receiving the local model parameters from nearby
vehicles, verifies the signatures and aggregates the verified local model parameters to
obtain a local aggregation result. RSU then sends this local aggregation result to CS for
global aggregation, resulting in the next round of the global model. If a malicious vehicle
is detected uploading malicious model parameters or forging signatures, TA can trace its
identity and revoke it from the system. The overall workflow of CPPA-SM2 is illustrated in
Figure 2 and Protocol 1. The details of the scheme are as follows.

Protocol 1 CPPA-SM2

1⃝ System Initialization
For TA:
1: Use λ to generate two large prime numbers p and q.
2: Randomly select s ∈ Z∗q and calculates Ppub = s · G.
3: Choose five one-way hash functions Hi = {0, 1}∗ → Z∗q , i = 1, 2, 3, 4, 5 .

4: Publish param =
{

p, q, E(Fp), G,G, Z∗q , Ppub, H1, H2, H3, H4, H5

}
.

2⃝ Registration
For each vehicle:
1: Vi randomly selects xi ∈ Z∗q , calculates Xi = xi · G and send (RIDi, Xi) to TA.
2: Upon receiving (RIDi, Xi), TA calculates hi = H1(Xi||Ppub) , yi = s · hi, Yi = yi · G and randomly selects ski ∈ Z∗q . Then, TA
sends yi, Yi and ski to Vi.
3: Vi sets (Xi, Yi), (xi, yi) and ski.
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Protocol 1 CPPA-SM2

For each RSU:
1: RSUj sends IDRSUj to TA.
2: TA generates a pair of public and private keys (skRSUj , pkRSUj ) and sends them to RSUj.
3. RSUj sets (skRSUj , pkRSUj ).
For TA:
1: Calculate θ = ∏n

i=1 ski, ai = θ/ski, bi = (ai)
−1 mod ski and set ci = ai · bi, u =

n
∑

i=1
ci.

2: Randomly pick a group key K ∈ Z∗q and calculate the group public key β = K · u and Dpub = K · G.
3: Sign β, Dpub and the K’s valid period TK using its private key skTA and broadcast the information{

β, Dpub, SIGskTA (β||Dpub||TK)
}

to vehicles and RSUs in Cn.

3⃝ Message Sign
For each vehicle:
1: Vi trains the global model Wt

global using its local dataset Di to obtain the local model parameters Wt
i .

2: Vi randomly selects ci ∈ Z∗q to generate a pseudo identity PIDi = (PIDi,1, PIDi,2), where PIDi,1 = ci · G and
PIDi,2 = RIDi ⊕ H2(ci · Ppub).
3: Vi calculates Zi = H3(lenPIDi,2 ||PIDi,2||a||b||G||Xi) , φi = H4(PIDi,1||Ti) and sgki = yi + Zi · K + xi · φi.
4: Vi randomly selects ki ∈ Z∗q , calculates Ki = ki · G = (x1, y1) ei = H5(Zi||Wt

i |Ti) , ri = ei + x1 mod q and

si = (1 + sgki)
−1 · (ki − ri · sgki) mod q.

5. Vi obtains the signature σt
i
= (ri, si) of Wt

i and sends messages
{

Wt
i
, σt

i
, (Xi, Yi), PIDi, Ti

}
to the nearby RSUj.

4⃝ Message Verification
For each RSU:
1: Upon receiving the messages

{
Wt

i
, σt

i
, (Xi, Yi), PIDi, Ti

}
from Vi, RSUj first checks the validity of timestamp. If ∆T ≥ Ta − Ti,

where Ta represents the arrival time, continues; otherwise, discards.
2: RSUj calculates Zi = H3(lenPIDi,2 ||PIDi,2||a||b||G||Xi) , ei = H5(Zi||Wt

i
∣∣∣∣Ti) , φi = H4(PIDi,1||Ti) , ti = ri + si mod q and

K′
i
= (x′1, y′1) = si · G + ti · [Yi + Zi · Dpub + φi · Xi].

3: RSUj checks the equality of R = ei + x′1 = ri for authentication and validity.
4: RSUj uses the FedAvg algorithm to locally aggregate the verified local model parameters {Wt

1
, Wt

2
, . . . , Wt

n
}, producing a local

aggregation result Wt
RSUj

← FedAvg(Wt
i , n) .

5: RSUj signs this result with its private key and sends messages {Wt
RSUj

, SIGskRSUj
(Wt

RSUj
)} to CS.

For CS:
1: CS performs a global aggregation on the verified local aggregation results {Wt

RSU1
, Wt

RSU2
, . . . , Wt

RSUm
} to obtain the global

model Wt+1
global ← FedAvg(Wt

RSUj
, m) .

2: CS signs the global model with its private key and sends messages {Wt+1
global , SIGskCS (W

t+1
global)} to the vehicles within the

communication group via RSUs.
5⃝ Group Member Management

Trace:
1: TA uses the system’s master private key s to recover the vehicle’s true identity RIDi = PIDi,2 ⊕ H2(s · PIDi,1).
Revoke:
1. TA first removes ci related to Vi from u by computing u′ = u− ci.
2: TA randomly selects a new group key K′ ∈ Z∗q , calculates new group public keys β′ = K′ · u′ and D′pub = K′ · G, and broadcasts
the updated information {β′, D′pub, SIGskTA (β′||D′pub||TK′ )} to vehicles and RSUs in Cn.
Add:
1. TA randomly selects a new group key K′ ∈ Z∗q and calculates θ′ = θ · fi, a′i = θ′/ fi, b′i = (a′i)

−1 mod ski, c′i = a′
i
· b′

i
and

u′ =
n
∑

i=1
c′i .

2. TA computes new group public keys β′ = K′ · u′ and D′pub = K′ · G, and broadcasts the updated information
{β′, D′pub, SIGskTA (β′||D′pub||TK′ )} in Cn.
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3.1. System Initialization

TA uses a security parameter λ to generate two large prime numbers p and q, where
p > q, q ≤ ⌈p/4⌉. Let E(Fp) denote an elliptic curve over the finite field Fp and G
denote a base point on the elliptic curve E(Fp) with order q. Let G be an additive cyclic
group generated by G. TA randomly selects s ∈ Z∗q as the system master secret key and
calculates the system public key Ppub = s ·G. Then, TA chooses five one-way hash functions
Hi = {0, 1}∗ → Z∗q , i = 1, 2, 3, 4, 5 . TA secretly holds s and publishes the system’s public

parameters param =
{

p, q, E(Fp), G,G, Z∗q , Ppub, H1, H2, H3, H4, H5

}
.

3.2. Registration

In the registration phase, both vehicles and RSUs need to register with TA to obtain
the relevant keys for subsequent communications. We assume that TA is fully trusted and
that the entire registration phase is conducted over a secure channel, eliminating the risk of
privacy leaks and security attacks.

3.2.1. Vehicle Registration

For a vehicle Vi with its real identity RIDi, it first randomly selects xi ∈ Z∗q as its
secret value and calculates Xi = xi · G as its first part of the public key. Then, Vi sends
(RIDi, Xi) to TA. Upon receiving (RIDi, Xi), TA calculates hi = H1(Xi||Ppub) , yi = s · hi
and Yi = yi · G, where yi and Yi serve as Vi’s partial private key and the second part of the
public key. In addition, TA randomly selects a prime number ski ∈ Z∗q as a secret key for
Vi. Completing these computations, TA returns yi, Yi and ski to Vi. Upon receiving yi, Yi
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and ski, Vi sets (xi, yi) as its full private key, (Xi, Yi) as its full public key and uses ski for
subsequent group communications.

3.2.2. RSU Registration

For a roadside unit RSUj with its identity IDRSUj, TA generates a pair of public and
private keys (skRSUj , pkRSUj). Then, TA distributes them to RSUj. Here, we assume that all
vehicles know the public keys of TA and RSUs.

3.2.3. Group Key Generate

To ensure that the uploaded local model parameters come from legitimate vehicles
and to support efficient group communication, TA constructs a communication group Cn
for them based on the secret keys ski of n vehicles and CRT. TA first calculates θ = ∏n

i=1 ski,

ai = θ/ski and bi = (ai)
−1 mod ski. TA sets ci = ai · bi, u =

n
∑

i=1
ci, where i = 1, 2, . . . , n.

Then, TA randomly picks a group key K ∈ Z∗q and calculates the group public key β = K · u
and Dpub = K · G. TA signs β, Dpub and the K’s valid period TK using its private key skTA
and broadcasts the information {β, Dpub, SIGskTA(β||Dpub||TK)} to vehicles and RSUs in
Cn. Once receiving the broadcast information, any authorized vehicle in Cn can obtain K by
performing a modulus operation K ≡ β mod ski according to CRT.

3.3. Message Sign

In the t− th round of training, the vehicle Vi trains the global model Wt
global using its local

dataset Di to obtain the local model parameters Wt
i , i.e., Wt

i ←Wt
global − η∇L(Wt

global, Di) .
Before sending the local model parameter Wt

i to the nearby RSUj, the vehicle Vi signs it as
follows to ensure the authenticity and integrity of Wt

i .
Vi randomly selects ci ∈ Z∗q to generate a pseudo identity PIDi = (PIDi,1, PIDi,2),

where PIDi,1 = ci · G and PIDi,2 = RIDi ⊕ H2(ci · Ppub). Then, Vi calculates Zi = H3
(lenPIDi,2 ||PIDi,2||a||b||G||Xi), φi = H4(PIDi,1||Ti) and signature key sgki = yi + Zi · K +
xi · φi, where lenPIDi,2 represents two bytes converted from the bit length of PIDi,2, a
and b are elements in Fp that define an elliptic curve over E(Fp) and Ti represents the
current timestamp. Next, Vi randomly selects ki ∈ Z∗q and calculates Ki = ki · G =

(x1, y1) ei = H5(Zi||Wt
i |Ti) , ri = ei + x1 mod q and si = (1 + sgki)

−1 · (ki − ri · sgki) mod q.
For simplicity, we omit the notation t of PIDi, Zi, φi, sgki, Ki, ei, ri and si. Finally, Vi
obtains the signature σt

i
= (ri, si) of Wt

i and sends messages {Wt
i
, σt

i
, (Xi, Yi), PIDi, Ti} to

the nearby RSUj.

3.4. Message Verification
3.4.1. Single Message Verification

Upon receiving the messages {Wt
i
, σt

i
, (Xi, Yi), PIDi, Ti} from Vi, RSUj first checks the

validity of the timestamp. If ∆T ≥ Ta − Ti, where Ta represents the arrival time, it contin-
ues; otherwise, it discards. Then RSUj calculates Zi = H3(lenPIDi,2 ||PIDi,2||a||b||G||Xi) ,
ei = H5(Zi||Wt

i ||Ti) , φi = H4(PIDi,1||Ti) , ti = ri + si mod q and K′
i
= (x′1, y′1) = si · G +

ti · [Yi + Zi · Dpub + φi · Xi]. Finally, RSUj checks the equality of R = ei + x′1 = ri for
authentication and validity.

3.4.2. Batch Messages Verification

When receiving a batch of messages
{

Wt
1, σt

1, (X1, Y1), PID1, T1
}

, {Wt
2, σt

2, (X2, Y2),
PID2, T2}, . . .,

{
Wt

n, σt
n, (Xn, Yn), PIDn, Tn

}
from the vehicles {V1, V2, . . . , Vn}, RSUj first

checks the validity of timestamp Ti, where i = 1, 2, . . . , n. If Ti is valid, it continues; other-
wise, it discards. To prevent confusion attacks while ensuring non-repudiation, CPPA-SM2
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uses a set of small exponents {v1, v2, . . . , vn} for batch verification [23,35], where vi ∈ [1, 2t]
and t is a small integer. Next, RSUj calculates

(x′1, y′1) =
n

∑
i=1

(vi · si) · G +
n

∑
i=1

(vi · ti ·Yi) +
n

∑
i=1

(vi · ti · Zi) · Dpub +
n

∑
i=1

(vi · ti · φi · Xi), (3)

and checks whether R =
n
∑

i=1
(vi · ei) + x′1 =

n
∑

i=1
(vi · ri) holds or not. If true, all messages are

valid; otherwise, some of these messages are invalid. The detection algorithm for invalid
message signatures has been proposed in [36]. The details of this algorithm are beyond the
scope of this paper.

3.4.3. Local Model Aggregation

RSUj uses the FedAvg algorithm to locally aggregate the verified local model parame-
ters

{
Wt

1
, Wt

2
, . . . , Wt

n

}
, producing a local aggregation result Wt

RSUj
← FedAvg(Wt

i , n) ,

where i ∈ [1, n] and n denotes the number of vehicles participating in the training
within the RSUj’s range. It then signs this result with its private key and sends mes-
sages {Wt

RSUj
, SIGskRSUj

(Wt
RSUj

)} to CS. Upon receiving the local aggregation result Wt
RSUj

from RSUs, CS verifies its validity. It then performs a global aggregation on the ver-
ified local aggregation results

{
Wt

RSU1
, Wt

RSU2
, . . . , Wt

RSUm

}
to obtain the global model

Wt+1
global ← FedAvg(Wt

RSUj
, m) , where j ∈ [1, m] and m denotes the number of RSUs. CS

signs the global model with its private key and sends messages {Wt+1
global , SIGskTA(W

t+1
global)}

to the vehicles within the communication group via RSUs.

3.5. Group Member Management
3.5.1. Trace

When RSUj detects that a vehicle Vi has uploaded malicious local model parameters
or has engaged in identity forgery, it sends the vehicle’s pseudonym PIDi to TA. TA
then uses the system’s master private key s to recover the vehicle’s true identity RIDi =
PIDi,2 ⊕ H2(s · PIDi,1).

3.5.2. Revoke

Upon obtaining the true identity RIDi of the malicious vehicle Vi, TA can completely
remove it from the federated learning system by revoking its legitimate information from
the group. TA first removes ci related to Vi from u by computing u′ = u− ci. Then, TA ran-
domly selects a new group key K′ ∈ Z∗q , calculates new group public keys β′ = K′ · u′ and
D′pub = K′ · G and broadcasts the updated information {β′, D′pub, SIGskTA(β′||D′pub||TK′)}
to vehicles and RSUs in Cn. Upon receiving {β′, D′pub, SIGskTA(β′||D′pub||TK′)}, the re-
maining vehicles in Cn can use their secret key sk j to compute the updated group key
K′ = β′ mod sk j. Since u′ no longer contains the legitimate information of Vi, it cannot
compute the new group key K′. When a vehicle leaves the communication group Cn, TA
can also revoke it in this way.

3.5.3. Add

When a vehicle Vi applies to join the federated learning system, TA randomly selects
a new group key K′ ∈ Z∗q and calculates θ′ = θ · fi, a′i = θ′/ fi, b′i = (a′i)

−1 mod ski,

c′i = a′
i
· b′

i
and u′ =

n
∑

i=1
c′i. Then, TA computes new group public keys β′ = K′ · u′ and

D′pub = K′ · G, and broadcasts the updated information {β′, D′pub, SIGskTA(β′||D′pub||TK′)}
in Cn. Upon receiving {β′, D′pub, SIGskTA(β′||D′pub||TK′)}, vehicles in Cn, it calculates the
updated group key K′ = β′modski.
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4. Correctness and Security Proof and Analysis

In this section, we first provide a proof of correctness for the proposed scheme. Then,
under the random oracle model, we prove the security of the scheme. Finally, we conduct
an informal security analysis of the scheme.

4.1. Correctness Proof

The correctness verification of the single message signature is ensured by
Equations (4) and (5).

K′
i
= (x′1, y′1) = si · G + ti · [Yi + Zi · Dpub + φi · Xi]

= si · G + (ri + si)[Yi + Zi · Dpub + φi · Xi]
= si · G + ri · [Yi + Zi · Dpub + φi · Xi] + si · [Yi + Zi · Dpub + φi · Xi]
= si · G(1 + yi + Zi · K + φi · xi) + ri · G(yi + Zi · K + φi · xi)

= (1 + sgki)
−1 · (ki − ri · sgki) · G · (1 + sgki) + ri · G · (sgki)

= (1 + sgki)
−1 · ki · G · (1 + sgki)− (1 + sgki)

−1 · ri · sgki · G · (1 + sgki) + ri · G · (sgki)
= ki · G− ri · sgki · G + ri · G · (sgki)
= ki · G
= Ki = (x1, y1)

(4)

R = ei + x′1 = ri = ei + x1 (5)

The correctness verification of the batch message signatures is ensured by
Equations (6) and (7).(

n
∑

i=1
vi · K′i

)
= (x′1, y′1) =

(
n
∑

i=1
vi · si

)
· G +

(
n
∑

i=1
vi · ti · [Yi + Zi · Dpub + φi · Xi]

)
=

(
n
∑

i=1
vi · si

)
· G +

(
n
∑

i=1
vi · (ri + si) · [Yi + Zi · Dpub + φi · Xi]

)
=

(
n
∑

i=1
vi · si

)
· G +

(
n
∑

i=1
vi · ri · [Yi + Zi · Dpub + φi · Xi]

)
+

(
n
∑

i=1
vi · si · [Yi + Zi · Dpub + φi · Xi]

)
=

(
n
∑

i=1
vi · si · G(1 + yi + Zi · K + φi · xi)

)
+

(
n
∑

i=1
vi · ri · G(yi + Zi · K + φi · xi)

)
=

(
n
∑

i=1
vi · (1 + sgki)

−1 · (ki − ri · sgki) · G · (1 + sgki)

)
+

(
n
∑

i=1
vi · ri · G · (sgki)

)
=

(
n
∑

i=1
vi · ki · G

)
−
(

n
∑

i=1
vi · ri · sgki · G

)
+

(
n
∑

i=1
vi · ri · G · (sgki)

)
=

(
n
∑

i=1
vi · ki · G

)
=

(
n
∑

i=1
vi · Ki

)
= (x1, y1)

(6)

R =

(
n

∑
i=1

vi · ei

)
+ x′1 =

(
n

∑
i=1

vi · ri

)
=

(
n

∑
i=1

vi · ei

)
+ x1 (7)

Based on the signing and verification process, if the local model parameter Wt
i and

signature σt
i
= (ri, si) transmitted by the vehicle Vi have not been tampered with and the

signature σt
i
= (ri, si) is generated using the legitimate vehicle’s private key, then according

to (4)–(7), RSU can correctly compute that Ki = ki · G = (x1, y1) = K′i , thereby making
R = ei + x′1 = ri = ei + x1.

The correctness of legitimate vehicles in Cn obtaining the correct group key K is
ensured by Equation (8).
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β(mod ski)
= K · u(mod ski)
= K · (a1 · b1 + . . . + an · bn)(mod ski)
= K · ai · bi(mod ski)
= K

(8)

When vehicle Vi is revoked from the group Cn by TA, since u′ = u− ci = (a1 · b1 +
. . . + an · bn)− ai · bi, the revoked vehicle will be unable to obtain the correct group key
according to Equation (9).

β′(mod ski)
= K′ · u′(mod ski)
= K′ · (a1 · b1 + . . . + an · bn − ai · bi)(mod ski)
̸= K′

(9)

4.2. Security Proof

The security of CPPA-SM2 relies on the ECDLP. In the random oracle model, if there
exist adversaries AI and AI I who can win games 1 and 2 with non-negligible probabilities,
respectively, then there exists a probabilistic polynomial-time simulator that can solve the
ECDLP with non-negligible probability.

Theorem 1. CPPA-SM2 is existentially unforgeable under adaptive chosen-identity and chosen-
message attacks against AI with the assumption that ECDLP is hard to resolve.

Proof of Theorem 1. Let C be the solver of the ECDLP. Suppose that AI can succeed in
forging a valid signature by interacting with C. C utilizes AI to solve the ECDLP. Here, we
give an ECDLP instance {G, G′ = g · G}. C executes the simulation to compute g through
interacting with AI as follows.

- Setup: On input {G, G′}, C sets Ppub = G′ and returns {p, q, E(Fp), G, Z∗q , Ppub, H1, H2,
H3, H4, H5} to AI . AI selects PIDi = (PIDi,1, PIDi,2) as a target vehicle. In addition,
C maintains five lists L = {PIDi,1, PIDi,2, xi, yi, Xi, Yi}, LH1 = {hi, Xi, Ppub}, LH3 =
{Zi, len(PIDi,2), PIDi,2, a, b, G, Xi}, LH4 = {φi, PIDi,1, Ti}, LH5 = {ei, Zi, Mi, Ti}, which
are empty initially.

- Query: AI can adaptively make the following queries:
- H1-queries: After receiving the queries from AI with {Xi, Ppub}, C checks whether

{Xi, Ppub} exists in LH1 . If it does, C returns hi to AI . Otherwise, C selects hi ∈ Z∗q
randomly and adds {hi, Xi, Ppub} to LH1 . Then, C returns hi to AI .

- H3-queries: When receiving the queries with {len(PIDi,2), PIDi,2, a, b, G, Xi} fromAI , C
checks whether {len(PIDi,2), PIDi,2, a, b, G, Xi} exists in LH3 . If it does, C returns Zi to
AI . Otherwise, C selects Zi ∈ Z∗q randomly and adds {Zi, len(PIDi,2), PIDi,2, a, b, G, Xi}
to LH3 . Then, C returns Zi toAI .

- H4-queries: Upon receiving the queries from AI with {PIDi,1, Ti}, C checks whether
{PIDi,1, Ti} exists in LH4 . If it does, C returns φi to AI . Otherwise, C selects φi ∈ Z∗q
randomly and adds {φi, PIDi,1, Ti} to LH4 . Then, C returns φi to AI .

- H5-queries: Upon receiving the queries from AI with {Zi, Mi, Ti}, C checks whether
{Zi, Mi, Ti} exists in LH5 . If it does, C returns ei to AI . Otherwise, C selects ei ∈ Z∗q
randomly and adds {ei, Zi, Mi, Ti} to LH5 . Then, C returns ei to AI .

- Partial-Private-Key-Extract-queries: After receiving the queries from AI with PIDi =
(PIDi,1, PIDi,2), C checks whether {PIDi,1, PIDi,2, xi, yi, Xi, Yi} exists in L. If it does,
C returns yi to AI . Otherwise, C selects hi ∈ Z∗q randomly, computes yi = s · hi,
Yi = yi · G. Then, C sets xi = Xi = ⊥. After that, C adds {PIDi,1, PIDi,2, xi, yi, Xi, Yi}
into L and returns yi to AI .

- Public-Key-Extract-queries: After receiving the queries fromAI with PIDi = (PIDi,1, PIDi,2),
C checks whether {PIDi,1, PIDi,2, xi, yi, Xi,Yi} exists in L. If it does, C returns (Xi,Yi) toAI.
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Otherwise, C does the Partial-Private-Key-Extract-queries to obtain yi. Then, C selects
x ∈ Z∗q randomly and computes Xi = x · G, xi = x, Yi = yi · G. After that, C adds
{PIDi,1, PIDi,2, xi, yi, Xi,Yi} into L and returns (Xi,Yi) toAI.

- Secret-Value-Extract-queries: After receiving the queries fromAI with PIDi = (PIDi,1, PIDi,2),
C checks whether {PIDi,1, PIDi,2, xi, yi, Xi,Yi} exists in L. If it does, C returns xi to AI.
Otherwise, C does the Public-Key-Extract-queries to obtain (xi, Xi,Yi). After that, C adds
{PIDi,1, PIDi,2, xi, yi, Xi,Yi} into L and returns xi toAI.

- Public-Key-Replace-queries: After receiving the queries fromAI with
{

PIDi,1, PIDi,2, X′i,Y
′
i
}

,
C checks whether {PIDi,1, PIDi,2, xi, yi, Xi,Yi} exists in L. If it does, C sets Xi = X′i, Yi = Y′i ,
xi = yi = ⊥ and updates {xi, yi, Xi,Yi} into L. Otherwise, C sets Xi = X′i, Yi = Y′i ,
xi = yi = ⊥ and adds {PIDi,1, PIDi,2, xi, yi, Xi,Yi} to L.

- Sign queries: After receiving the queries from AI with {PIDi,1, PIDi,2, Mi, Ti}, C
retrieves the lists L, LH1 , LH3 , LH4 , randomly selects vi ∈ Z∗q , wi ∈ Z∗q , oi ∈ Z∗q and
sets si = vi, ti = wi, ei = oi, Ki = (x1, y1) = si · G + ti[Yi + Zi · Dpub + φi · Xi],
ri = ei + x1modq. C returns σi = (ri, si) toAI and adds H1{ei, Zi, Mi, Ti} into LH5 . For
the output σi = (ri, si) of the signature oracle satisfies K′

i
= (x′

1
, y′

1
) = si · G + ti[Yi +

Zi · Dpub + φi · Xi], R = ei + x′1modq = ri.
- Forgery: After all queries have been completed,AI outputs a forged tuple {M∗i , PID∗i,1,

PID∗i,2, T∗i , σ
∗(1)
i }. C verifies whetherKi

∗ = (x′1, y′1) = s∗i ·G + t∗i (Yi + Z∗i ·Dpub + φ∗i ·
Xi), R∗ = e∗i + x

′∗
1 modq = r∗i holds. If it does not hold, C terminates the simulation.

Otherwise, C replays the above process by choosing different H1, H3 and H4 based
on forking lemma. AI will output three other distinct valid signatures σ

∗(2)
i , σ

∗(3)
i

and σ
∗(4)
i .

Finally, we can obtain four equations as below.

ki = s∗(j)
i + t∗(j)

i
(g · hi + Z∗(j)

i
· K + φ∗(j)

i
· xi), where j = 1, 2, 3, 4. (10)

In the above four equations, ki, g, K and xi represent the discrete logarithms of Ki,
Ppub, Dpub and Xi, respectively, which are not known to C. C can obtain the four unknown
values by solving the above four linear independent equations, where g is the solution of
ECDLP. □

Theorem 2. CPPA-SM2 is existentially unforgeable under adaptive chosen-identity and chosen-
message attacks againstAI Iwith the assumption that ECDLP is hard to resolve.

Proof of Theorem 2. Let C be the solver of the ECDLP. Suppose that AI I can succeed in
forging a valid signature by interacting with C. C utilizes AI I to solve the ECDLP. Here, we
give an ECDLP instance {G, G′ = g · G}. C executes the simulation to compute g through
interacting with AI I as follows.

- Setup: On input {G, G′}, C sets Ppub = s ·G and returns {p, q, s, E(Fp), G, Z∗q , Ppub, H1, H2,
H3, H4, H5} toAI I . AI I selects PID∗

i
= (PID∗

i,1
, PID∗

i,2
) as a target vehicle. In addition,

C maintains five lists L = {PIDi,1, PIDi,2, xi, yi, Xi, Yi}, LH1 = {hi, Xi, Ppub}, LH3 = {Zi,
len(PIDi,2), PIDi,2, a, b, G, Xi}, LH4 = {φi, PIDi,1, Ti}, LH5 = {ei, Zi, Mi, Ti}, which are
empty initially.

- Query: C responds to -Hi-queries (i = 1, 3, 4, 5), Partial-Private-Key-Extract-queries,
Secret-Value-Extract-queries and Sign queries as in Theorem 1. C responds to Public-
Key-Extract-queries as follows.

- Public-Key-Extract-queries: After receiving the queries from AI I with PIDi = (PIDi,1,
PIDi,2), C checks whether {PIDi,1, PIDi,2, xi, yi, Xi, Yi} exists in L. If it does, C returns
(Xi, Yi) to AI I . Otherwise, C does the Partial-Private-Key-Extract-queries to obtain yi.

- If PIDi = PID∗i , C sets Xi = G′ = g · G, Yi = yi · G, xi = ⊥. C adds {PIDi,1, PIDi,2, xi,
yi, Xi, Yi} into L and sends (Xi, Yi) to AI I .
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- If PIDi ̸= PID∗i , C chooses x ∈ Z∗q randomly, computes Xi = x · G, xi = x, Yi = yi · G.
After that, C adds {PIDi,1, PIDi,2, xi, yi, Xi, Yi} into L and returns (Xi, Yi) to AI I .

- Forgery: After all queries have been completed, AI I outputs a forged tuple {M∗i ,

PID∗i,1, PID∗i,2, T∗i , σ
∗(1)
i }. C verifies whether Ki

∗ = (x′1, y′1) = s∗i · G + t∗i (Yi + Z∗i ·
Dpub + φ∗i · Xi), R∗ = e∗i + x

′∗
1 modq = r∗i holds. If it does not hold, C terminates the

simulation. Otherwise, C replays the above process by choosing different H3 and H4

based on forking lemma. AI I will output two other distinct valid signatures σ
∗(2)
i

and σ
∗(3)
i .

Finally, we can obtain three equations as below.

ki = s∗(j)
i + t∗(j)

i
(s · hi + Z∗(j)

i
· K + φ∗(j)

i
· xi), where j = 1, 2, 3. (11)

In the above three equations, ki, K and xi represent the discrete logarithms of Ki, Dpub
and Xi, respectively, which are not known to C. C can obtain the three unknown values by
solving the above three linear independent equations, where xi is the solution of ECDLP.

However, it is difficult to solve the ECDLP in polynomial time. So, under the random
oracle model, CPPA-SM2 is existentially unforgeable under adaptive chosen-identity and
chosen-message attacks. □

4.3. Informal Security Analysis

Anonymity and Privacy-Preserving: In the CPPA-SM2 scheme, vehicles use pseudonyms
PIDi = (PIDi,1, PIDi,2) to communicate with other entities. To obtain the vehicle’s real
identity RIDi, the adversary must compute RIDi = PIDi,2 ⊕ H(ci · Ppub) = PIDi,2 ⊕ H(ci ·
s ·G). However, due to the hardness of the Computational Diffie–Hellman (CDH) problem,
the adversary is unable to obtain RIDi, thereby protecting the vehicle’s identity privacy.
Additionally, since vehicles participate in federated learning using pseudonyms, and these
pseudonyms are updated with each message sent, even if external adversaries or RSUs gain
access to the plaintext local model parameters, they cannot link them to specific vehicles. This
prevents the inference of any private information, thus providing privacy protection during
the federated learning process.

Traceability: When a vehicle with malicious behavior is detected, TA can trace its real
identity RIDi = PIDi,2 ⊕ H(s · PIDi,1) from its pseudonym PIDi = (PIDi,1, PIDi,2) using
the system’s master private key s.

Message integrity and authentication: According to Theorem 1 and Theorem 2, as long
as the ECDLP is hard to solve, the CPPA-SM2 scheme is existentially unforgeable under
adaptive chosen-identity and chosen-message attacks against the attackers AI and AI I .

Non-repudiation: Since only the message signer Vi can compute the signature key
sgki, an adversary cannot forge valid signatures for a specific vehicle identity. Additionally,
the TA can execute the Trace algorithm to obtain the vehicle’s real identity. Therefore, once
a vehicle’s message passes the signature verification, it cannot be denied.

Un-linkability: Since the vehicle pseudonym identity PIDi is generated during the
signing process and the random number used in the signature generation process is non-
repetitive, each PID in every signature is unique. As a result, any adversary cannot link
any number of signatures sent by the same vehicle.

Forward privacy: When a new vehicle joins the group C, the new group key K′ is
randomly generated by the TA and is independent of the old group key K. Therefore, the
newly joined vehicle cannot access the group’s communications prior to joining.

Backward privacy: When a vehicle is revoked or leaves the group, the TA will remove
the legitimate information ci associated with that vehicle from u and compute a new group
key K′ and group public key β′ = K′ · u and D′

pub
= K′ · G. Since the revoked vehicle

cannot obtain the updated group key K′, it cannot access the communications after leaving
the group.
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Impersonation attack: If an adversary wants to impersonate vehicle Vi to the RSUs
nearby or other vehicles Vj, they must generate a valid message {Mi, σi, (Xi, Yi), PIDi, Ti}
that passes the verification algorithm. However, according to Theorem 1 and Theorem 2, it
is evident that no polynomial adversary can forge a valid message.

Modification attack: According to Theorem 1 and Theorem 2, any modification of the
message {Mi, σi, (Xi, Yi), PIDi, Ti} can be detected by the verification algorithm. Therefore,
the proposed CPPA-SM2 scheme can withstand the modification attack.

Replay attack: In the proposed CPPA-SM2 scheme, vehicles use the current timestamp
Ti when generating message signatures. Therefore, message verifiers can resist replay
attacks by verifying the freshness of the timestamp Ti.

Collusion attack: Several vehicles would collaborate to try to compute the new group
key K′ after they left the group. However, since their legitimate information ci has been
removed from u, these leaving vehicles cannot conspire to calculate the new group key K′.

5. Performance Evaluation

In this section, we will evaluate the performance of the proposed CPPA-SM2 scheme
from both security features, computation overhead and communication overhead perspec-
tives, and compare and analyze it with the existing works. For bilinear pairings-based
CPPA schemes for IoV, we construct a bilinear pairing e : G1 ×G1 → GT , where G1 is
an additive group generated by a point G with the order q on the super singular elliptic
curve E : y2 = x3 + xmodp with embedding degree 2, p is a 512-bit prime number, q
is a 160-bit prime number. For ECC-based CPPA schemes for IoV, we construct an ad-
ditive group G generated by a point G with the order q on a non-singular elliptic curve
E : y2 = x3 + ax + bmodp, where p, q are two 256-bit prime numbers and a, b ∈ Z∗p. We
calculate the execution time of basic cryptographic operations using the MIRACL library in
VS 2019 with Windows 11 operating system over an Intel(R) Core(TM) i7-9750H CPU @
2.60GHz, as shown in Table 2.

Table 2. Execution time of basic cryptographic operations and element size.

Symbols Meanings Time (ms)/Size (Byte)

Tinverse Time of module inverse on Z∗q 0.0181 ms
Tmod Time of mod operation on Z∗q 0.0020 ms

Te Time of module exponential on Z∗q 0.0434 ms
Tm Time of module multiplication on Z∗q 0.0044 ms
TSE Encryption time of AES algorithm 10.0761 ms
TDE Decryption time of AES algorithm 0.1759 ms
T⊕ Time of XOR operation 0.0009 ms
Tbp Time of bilinear pairing 8.7985 ms

Tbpm1 Time of multiplication on bilinear group G1 0.1361 ms
Tbpe1 Time of exponential on bilinear group G1 1.3451 ms
Tbpm2 Time of multiplication on bilinear group G2 0.0069 ms
Tbpe2 Time of exponential on bilinear group G2 0.0869 ms
Tem Time of scalar multiplication on ecliptic curve group G 1.4944 ms
Tea Time of point addition on ecliptic curve group G 0.1376 ms
Th Time of one-way hash function 0.3018 ms

Tmtp Time of hash mapped to point 48.3228 ms
|T| Size of timestamp 4 bytes
|ID| Size of ID 8 bytes
|AES| The ciphertext size of AES algorithm 32 bytes
|G| Size of elements on elliptic curve G 64 bytes
|G1| Size of elements on bilinear group G1 128 bytes
|G2| Size of elements on bilinear group G2 128 bytes∣∣∣Z∗q ∣∣∣ Size of elements on Z∗q 32 bytes

|H| Output size of hash function 32 bytes
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5.1. Computation Costs

We compared the computational costs of the CPPA-SM2 scheme with other relevant
schemes in terms of signature generation, single signature verification, batch verification
and member management, as shown in Tables 3 and 4, and Figures 3 and 4, where “-”
indicates that the property is not considered in the scheme, MS denotes the message sign
and MV denotes the message verification.

Zhao et al. scheme [22] offers relatively low computational overhead, but RSU needs
to send a request to TA for each identity verification, and there is a key escrow issue. In
Kanchan et al. scheme [24] based on bilinear pairings, group signature is used instead of an
individual signature for message authentication, and the group manager achieves tracing of
malicious vehicles. Generating a group signature requires performing Th + 4Tbp + 4Tbpe2 +
6Te + 9Tm. Verifying the group signature requires performing Th + 2Tm + 4Tbpe2 + 5Tbp +
8Te, resulting in a relatively high computational overhead. In Jiang et al. scheme [26],
similarly, bilinear pairing operations are used, requiring 2Th + 5Tbpe1 computations to
generate a signature and Ti + Tbpe1 + Tbpe2 + Th + TDE + Tbpm2 + 3Tbp computations to
verify the signature. In Yang et al. scheme [37], generating a signature requires performing
T⊕ + 2Th + 3Tmtp + 4Tbpm1 + 6Tbpe1. To verify the signature, T⊕ + Tbpm1 + 2Th + 3Tbpe1 +
3Tbpm2 + 5Tbp + 5Tmtp operations are needed. Due to the involvement of bilinear pairings
and hash-to-point mappings, this method incurs the highest computational overhead.
In Lin et al. scheme [38], a vehicle calculates 2Th + 2Tea + 3Tm + 6Tem to generate the
anonymous public keys and a signature. Upon receiving the signature, RSU verifies it
by performing Th + 3Tem + 4Tea. Additionally, Zhao et al. scheme [22], Kanchan et al.
scheme [24], Jiang et al. scheme [26] and Lin et al. scheme all require maintaining a
revocation list for revocation purposes, which incurs additional lookup and maintenance
overhead. CPPA-SM2 does not require bilinear pairings or hash-to-point mappings, relying
only on basic ECC operations, thus reducing computational costs. Specifically, when a
vehicle sends a message, it first generates an unlinkable pseudonym PIDi by performing
one Tem, one T⊕ and one Th. Then, it generates the signature by performing three Th,
one Tem, four Tm and one Ti. Therefore, the computation cost for signature generation is
T⊕ + Ti + 2Tem + 4Tm + 4Th. To authenticate the message sent by the vehicle, the RSU,
upon receiving the message, needs to perform 3Th + 3Tea + 4Tem. Therefore, the total
computation cost for signature generation and signature verification in CPPA-SM2 is
T⊕ + Ti + 3Tea + 4Tm + 6Tem + 7Th. When RSU receives messages sent from n vehicles, it
performs batch verification of the messages by executing (2n + 1)Tea + (2n + 2)Tem + 3nTh.
To test the effectiveness of batch verification, we conducted experimental comparisons
between CPPA-SM2 and Xiong et al. scheme [28] and Shen et al. scheme [39]. In batch
verification, the RSU will verify the n messages received simultaneously from n vehicles,
meaning n represents both the number of signatures received by the RSU at the same
time and the number of vehicles. In the experiment, we tested with n set to 20, 40, 60 and
100, respectively. In CPPA-SM2, when RSU simultaneously receives n messages from n
vehicles, it needs to compute three Th, two Tem and two Tea for each vehicle. Finally, it
performs two Tem and one Tea to verify multiple messages. Therefore, the total cost of batch
verification is 3nTh + (2n + 2)Tem + (2n + 1)Tea. In Xiong et al. scheme [28], it performs
four Th, two Tem and three Tea for each vehicle. Then, it also executes three Tem and one
Tea. Therefore, the total cost of batch verification is 4nTh + (2n + 3)Tem + (3n + 1)Tea. In
Shen et al. scheme [39], RSU invokes one exponent operation, one bilinear pairing and
one multiplication to confirm the equation m = e(η, pki)e(P, P)−r2 . Its batch verification
is based on ∏n e(ηn, pkn)e(P, P)−r2,n = ∏n mn, which needs n times Tbp, n times nTbpe2
and (3n− 2)Tbpm1. The results are shown in Table 4 and Figure 4. From the experimental
results, it can be seen that the batch-verification performance of our scheme is better
than these two schemes. In terms of tracing cost, Kanchan et al. scheme [24], Yang et al.
scheme [37], Lin et al. scheme [38] and CPPA-SM2 are 1.3451 ms, 0.1759 ms, 1.6320 ms
and 0.3027 ms, respectively. All these approaches can achieve fast identity tracing. But
in terms of revocation, all schemes except CPPA-SM2 utilize revocation lists, leading to
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additional maintenance and lookup overheads, while CPPA-SM2 only requires a single
modular operation to efficiently revoke vehicles. Therefore, overall, compared to other
schemes, CPPA-SM2 not only reduces the computational costs of signature generation
and verification, and supports batch verification, but it also achieves efficient tracing and
revocation of vehicles while preserving vehicle privacy.
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Table 3. Analysis of computation costs for different schemes.

Scheme MS MV Trace Revoke

[22] 2T⊕ + 2Tem + 4Th 2T⊕ + 2Tem + 7Th - Revocation list
[24] Th + 4Tbp + 4Tbpe2 + 6Te + 9Tm Th + 2Tm + 4Tbpe2 + 5Tbp + 8Te Tbpe1 Revocation list
[26] 2Th + 5Tbpe1 Ti + Tbpe1 + Tbpe2 + Th + TDE + Tbpm2 + 3Tbp O(1) Revocation list
[37] T⊕ + 2Th + 3Tmtp + 4Tbpm1 + 6Tbpe1 T⊕ + Tbpm1 + 2Th + 3Tbpe1 + 3Tbpm2 + 5Tbp + 5Tmtp TDE -
[38] 2Th + 2Tea + 3Tm + 6Tem Th + 3Tem + 4Tea Tem + Tea Revocation list

Ours T⊕ + Ti + 2Tem + 4Tm + 4Th 3Th + 3Tea + 4Tem Th + T⊕ Tmod
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Table 4. Comparison of batch-verification costs.

Scheme Batch Verification Time

[28] 4nTh + (2n + 3)Tem + (3n + 1)Tea
[39] nTbp + nTbpe2 + (3n− 2)Tbpm1

Ours 3nTh + (2n + 2)Tem + (2n + 1)Tea

5.2. Communication Costs

We compared the communication costs of CPPA-SM2 with other schemes, mainly
including the following: the size of single signature (SSS), the total number of transmitted
messages (NTMs), their sizes (STMs) and the number of interactions (NIs). The results are
shown in Table 5 and Figure 5. In Zhao et al. scheme [22], to complete the authentication,
interaction is required four times, making it the highest number of interactions. Its total
computational cost is 476 bytes. The communication overhead for the group signature{

D1, D2, D3, c, sα, sβ, sx, sδ1 , sδ2

}
generated in Kanchan et al. scheme [24] is the highest, at

576 bytes. Jiang et al. scheme [26], Yang et al. scheme [37] and CPPA-SM2 all require only
one interaction to complete message authentication. In Lin et al. scheme [38], vehicles need
to transmit {σn, kn, Un, Dn, Z′n} for message authentication, with a total size of 480 bytes.
In CPPA-SM2, the generated signature, denoted as σi = (ri, si), consists of two elements
from Z∗q ; hence, its size is merely 64 bytes. To authenticate the signature, three additional
messages {PIDi, (Xi, Yi), Ti} of size 228 bytes need to be transmitted, resulting in a total
transmission cost of 292 bytes. In Yang et al. scheme [37], The generation of a single
signature is denoted as Ci = {Ri, ci, si}, where Ri, ci and si belongs to G1; thus, the size of
Ci is 384 bytes.

Table 5. Comparison of communication costs for different schemes.

Scheme SSS NTM STM NI

[22]
∣∣∣ID

∣∣∣+∣∣∣G∣∣∣+∣∣∣T∣∣∣+2
∣∣∣Z∗q ∣∣∣ 4 2

∣∣∣ID
∣∣∣+2

∣∣∣G∣∣∣+3
∣∣∣T∣∣∣+10

∣∣∣Z∗q ∣∣∣ 4

[24]
∣∣∣G2

∣∣∣+2
∣∣∣G1

∣∣∣+6
∣∣∣Z∗q ∣∣∣ 9

∣∣∣G2

∣∣∣+2
∣∣∣G1

∣∣∣+6
∣∣∣Z∗q ∣∣∣ 2

[26]
∣∣∣G1

∣∣∣+∣∣∣Z∗q ∣∣∣ 5 3
∣∣∣G1

∣∣∣+3
∣∣∣Z∗q ∣∣∣ 1

[37] 3|G1| 2 3|G1| 1
[38] 2

∣∣∣G∣∣∣+3
∣∣∣Z∗q ∣∣∣ 4

∣∣∣T∣∣∣+3
∣∣∣Z∗q ∣∣∣+4

∣∣∣G∣∣∣ 2

Ours 2
∣∣∣Z∗q ∣∣∣ 4

∣∣∣T∣∣∣+∣∣∣H∣∣∣+2
∣∣∣Z∗q ∣∣∣+3

∣∣∣G∣∣∣ 1
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In Lin et al. scheme [38], the obtained signature is denoted as {ci, zi,1, zi,2, Ri,1, Ri,2},
with a length of 224 bytes. Additionally, to resist replay attacks,

{
tsi, APK1

a , APK2
a
}

are also
sent, making the total message length for transmission 356 bytes. From the experimental
results, it can be observed that CPPA-SM2 has the smallest signature size and total cost of
transmitting messages. This makes it more suitable for operation in bandwidth-constrained
vehicular networking environments.

5.3. Security Features

We compared the security features (SFs) satisfied by these schemes, including the
following: 1: anonymity; 2: traceability; 3: authenticity; 4: integrity; 5: non-repudiation;
6: un-linkability; 7: forward security; 8: backward security; 9: key escrow-free; 10: batch
verification; 11: revocability; 12: dynamic member management; and 13: un-forgeability.
The results are shown in Table 6, where 1–13 represent these security features in order, with√

indicating that the security feature is met and × indicating that it is not met. From the
results, it can be seen that all schemes achieve 1: anonymity, 3: authenticity, 4: integrity and
6: un-linkability. Zhao et al. scheme [22], Kanchan et al. scheme [24], Jiang et al. scheme [26]
and CPPA-SM2 use digital signatures to verify the authenticity and integrity of the local
model parameters uploaded by vehicles. However, in Zhao et al. scheme [22] and Kanchan
et al. scheme [24], since TA possesses all users’ private keys, there is a key escrow issue.
Jiang et al. scheme [26] satisfies most of the security features; however, it uses a revocation
list for identity management, resulting in additional verification and maintenance overhead.
Furthermore, it does not support 12: dynamic member management. To achieve 6: un-
linkability, Yang et al. scheme [37] and Lin et al. scheme [38] use a set of pseudonyms to
hide real identities, whereas CPPA-SM2 achieves 6: un-linkability by randomly generating
pseudonyms each time a signature is made. Overall, compared to these schemes, CPPA-
SM2 achieves more comprehensive security attributes, supports 10: batch verification and
12: dynamic member management, and has lower computational and communication costs.

Table 6. Security features.

Scheme
SF

1 2 3 4 5 6 7 8 9 10 11 12 13

[22]
√

×
√ √

×
√ √

× × ×
√

× ×
[24]

√ √ √ √ √ √
× × × ×

√
×

√

[26]
√ √ √ √ √ √ √ √ √ √ √

×
√

[37]
√ √ √ √ √ √

× ×
√ √

× ×
√

[38]
√ √ √ √ √ √

× ×
√ √ √

×
√

Ours
√ √ √ √ √ √ √ √ √ √ √ √ √

Overall, compared to the state-of-the-art scheme, Jiang et al. scheme [26], CPPA-SM2
reduces the cost of single signature generation and verification by 42.25% and 74.25%, re-
spectively. In terms of communication overhead, CPPA-SM2 reduces it by 60% and 39.17%,
respectively. While the performance of CPPA-SM2 in batch verification is not as good as Jiang
et al. scheme [26], it supports dynamic member management, enabling efficient member
addition and revocation, which results in increased batch-verification costs.

6. Conclusions

In this paper, we propose a conditional privacy-preserving identity-authentication
protocol that provides privacy protection for vehicles participating in federated learning in
the IoV. Unlike most existing privacy-preserving federated learning schemes, it does not
require complex cryptographic operations or the introduction of random noise. Instead,
it achieves privacy protection by using dynamic pseudonyms to obscure the connection
between model parameters and the real identities of vehicles, thereby maintaining federated
learning efficiency.

Moreover, CPPA-SM2 is a certificateless authentication scheme based on ECC, CRT
and the SM2 digital signature algorithm. It enables efficient identity authentication and
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dynamic member management, and supports batch verification. Security proofs and
analyses demonstrate that it can ensure the authenticity and integrity of local model
parameters, achieving secure vehicle authentication. Experimental results show that,
compared to existing advanced schemes, CPPA-SM2 offers high computational efficiency
and low communication overhead. Additionally, its integration with standard algorithms
endows it with the potential for widespread application.

However, the focus of this paper is on identity-authentication schemes and privacy
protection in the federated learning process. There are still some malicious clients in the
federated learning process that may launch data-poisoning attacks by uploading malicious
local model parameters, thereby affecting the performance of the global model. Therefore,
future research could integrate Byzantine robust detection schemes to achieve privacy-
preserving Byzantine robust federated learning. Additionally, with the development of post-
quantum algorithms, the ECDLP may be efficiently solved by post-quantum algorithms,
making ECC-based authentication schemes no longer secure. Future work can explore
quantum-resistant identity-authentication schemes, such as lattice-based cryptography.

Author Contributions: Conceptualization, R.L. and S.X.; methodology, S.X.; formal analysis, R.L.;
investigation, R.L.; resources, R.L. and S.X.; writing—original draft preparation, R.L.; writing—review
and editing, R.L. and S.X.; supervision, S.X.; project administration, S.X.; funding acquisition, S.X. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of the People’s
Republic of China, the Research on Digital Identity Trust System for Massive Heterogeneous Terminals
in Road Traffic System (Grant No. 2022YFB3104402).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Duan, W.; Gu, J.; Wen, M.; Zhang, G.; Ji, Y.; Mumtaz, S. Emerging Technologies for 5G-IoV Networks: Applications, Trends and

Opportunities. IEEE Netw. 2020, 34, 283–289. [CrossRef]
2. Elbir, A.M.; Soner, B.; Coleri, S.; Gunduz, D.; Bennis, M. Federated Learning in Vehicular Networks. In Proceedings of the 2022

IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Athens, Greece, 5–8 September
2022; pp. 72–77. [CrossRef]

3. Khan, L.U.; Mustafa, E.; Shuja, J.; Rehman, F.; Bilal, K.; Han, Z.; Hong, C.S. Federated Learning for Digital Twin-Based Vehicular
Networks: Architecture and Challenges. IEEE Wirel. Commun. 2024, 31, 156–162. [CrossRef]

4. Zhang, X.; Chang, Z.; Hu, T.; Chen, W.; Zhang, X.; Min, G. Vehicle Selection and Resource Allocation for Federated Learning-
Assisted Vehicular Network. IEEE Trans. Mob. Comput. 2023, 23, 3817–3829. [CrossRef]
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