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Abstract: The increasingly complex electromagnetic environment of modern warfare and the prolif-
eration of intelligent jamming threaten to reduce the survival rate of radio fuzes on the battlefield.
Radio frequency (RF) stealth technology can fundamentally improve the anti-interception and re-
connaissance capabilities of radio fuzes, thereby lessening the probability of them being intercepted,
recognized, and jammed by the enemy. In this paper, an RF stealth waveform based on chaotic
pulse-position modulation is proposed for ultra-wideband (UWB) radio fuzes. Adding a perturbation
signal based on the Tent map ensures that the chaotic sequences have sufficiently long periods despite
hardware byte limitations. Measuring the approximate entropy and sequence period shows that
the Tent map with the addition of perturbation signals can maintain good randomness under byte
constraints, closely approximating the Tent map with ideal precision. Simulations verify that the
proposed chaotic mapping used to modulate the pulse position of an ultra-wideband radio fuze
signal results in superior detection, anti-interception, and anti-jamming performance.

Keywords: radio frequency (RF) stealth; chaotic; ultra-wideband; fuze

1. Introduction
1.1. Radio Fuzes

A radio fuze is a device that utilizes environmental or target information to control
the detonation of ammunition according to a predetermined strategy. The effectiveness
of the radio fuze determines the effectiveness of the munition to which it is attached. To
protect their positions, enemies typically deploy jammers around the perimeter, to intercept
fuze signals and transmit interference signals, thereby disrupting radio fuzes. The rapid
development of radio frequency hardware circuits and signal processing technology has
significantly improved jammer capabilities. Various interference waveforms have been
designed that seriously threaten the battlefield survivability of radio fuzes [1–4]. Suppres-
sive interference waveforms can drown the echo signal in dense electromagnetic waves,
preventing the fuze from obtaining and extracting distance information in time, which
results in misfires. Targeted interference waveforms can serve as false target information.
When the fuze receives an interference signal, it may misjudge it as target information and
detonate prematurely. Both misfires and premature detonations result in the ammunition
failing to achieve its maximum effectiveness. Therefore, improving the ability of radio
fuzes to survive on the battlefield is an important priority in military research.

Figure 1 illustrates the process of radio fuze jammers interfering with radio fuzes. To
implement effective jamming, the first step is to detect the radiated signals of the radio
fuzes, followed by sorting the detected signals, i.e., detecting the operating frequency of
the signals and analyzing their characteristics. A specific jamming method and waveform
are then selected based on the signal characteristics. After the interference is executed, its
effect is evaluated; if the interference fails, the process is repeated, and if the interference
succeeds, the next target to be jammed is identified [5]. The jammer’s threat to radio fuzes is
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based on its ability to detect the radio fuze signal. The application of RF stealth technology
in radio fuze design can prevent such detection, thereby stopping jammers from interfering
with the fuze at its source.
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RF stealth was initially proposed by David Lynch [6], who discussed various methods
to minimize the RF signal characteristics of radar, communication, and weapon systems
aboard aircraft. This approach aims to make it challenging for enemy electronic reconnais-
sance systems to detect and promptly identify the radiation source. For radio fuzes, the
objective of RF stealth is to decrease the likelihood of interception, detection, identification,
and subsequent jamming of radio fuze signals by enemy jammers. Therefore, in designing
RF stealth radio fuzes, two primary approaches are considered. One approach involves
reducing the radiation power of the radio fuze to hinder signal detection by jammers. The
other approach focuses on increasing the randomness of the radio fuze’s signals. This
strategy ensures that even if the jamming device detects the signals, it cannot accurately
recognize them or proceed with further processing [7].

Currently, the most commonly employed RF stealth techniques include radiated power
control and stealth waveform design [8]. Several studies [9–12] have concentrated on power
control, which involves optimizing the emitted signal strength to evade interception and
recognition by jammers, while still being robust enough to detect targets in complex
electromagnetic environments. Similarly, waveform design aims to balance the signal’s
resilience against interception with its localization accuracy [13], resolution capability [14],
and ability to mitigate delay-Doppler blurring of potential targets [15]. One method to
achieve this balance is interference-pulse anti-sorting [16–18], which introduces interference
pulses to the signal, complicating the enemy receiver’s ability to identify it from the
pulse-repetition-interval information it contains. Another approach involves randomly
or chaotically modulating certain signal parameters [19–23], making it challenging for
jammers to recognize the signal.

Current anti-jamming methods for radio fuzes mainly use multi-dimensional fea-
ture recognition and other techniques to enhance fuze resilience against jamming [24,25].
However, digital radio frequency memory (DRFM) jammers differ significantly from tra-
ditional targeting [26] and sweeping jammers [27,28]. DRFM jammers intercept and store
fuze transmission signals, then retransmit them after delay with amplification [29]. The
interference waveform produced by DRFM jammers is nearly indistinguishable from the
radio fuze echo signal, even with multi-dimensional feature recognition techniques. Thus,
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designing waveforms with RF stealth capabilities is crucial to prevent jammer interception
of fuze signals. UWB signals exhibit minimal interception vulnerability in the frequency
domain [30], and appear as periodic, extremely narrow pulse signals in the time domain.
Modulation techniques using pseudo-random codes like M-sequences are constrained by
their inherent periodicity. However, chaotic codes characterized by sensitivity to initial
values, non-periodicity, and randomness, represent an emerging pseudo-code. Utilizing
chaotic codes for UWB radio fuze pulse position modulation increases waveform parameter
complexity and enhances anti-interception capabilities.

1.2. Ultra-Wideband Radio Fuzes

This study focuses specifically on UWB radio fuzes. These fuzes detect ground targets
by transmitting and receiving narrow pulse signals. They possess strong anti-jamming
capabilities, superior distance-truncation characteristics, and robust anti-interception capa-
bilities [31]. Their simple structure, wide spectral range, and low power-spectral density
make interception by the enemy challenging [32].

Figure 2 depicts the principal block diagram of the radio fuze, consisting mainly of
the transmitting unit, receiving unit, signal processing unit, control and output unit, and
antenna. The transmitting unit includes a pulse-timing control circuit, which triggers the
narrow pulse generator circuit to produce nanosecond-wide pulses transmitted via the
antenna. Simultaneously, it serves as a distance control gate, triggering the sampling pulse
generator circuit to generate sampling pulses after a predetermined delay. The receiving
unit comprises a sampling pulse circuit and a weak signal detection circuit. When the
distance between the munition and the ground target matches the fuze’s preset detonation
height, the sampling pulse circuit controls the weak signal detection circuit to sample
the received echo signal from the antenna. The output signal from the receiving circuit
undergoes processing in the signal processing unit, with the processed signal forwarded to
the control and output unit. The control and output unit initiates the fuze by outputting
the start signal.
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In this study, the transmitter signal w(t) is defined as the second derivative of the
Gaussian function as follows:

w(t) =
(

1 − 2πt2

∆T2

)
exp

[
−π

(
t

∆T
)2
]

, (1)

where ∆T is the pulse width parameter.
With the inclusion of pulse-position modulation, the mathematical expression of the

transmitted signal becomes the following:

s(t) =
+∞

∑
i=−∞

w(t − iT − ci T0), (2)

where T is the pulse period, ci is a random sequence, T0 is the modulation range, and ciT0
is a uniformly distributed random variable in [0, T 0].

1.3. Chaos Theory

Chaos is a phenomenon that introduces irregular and stochastic behavior into deter-
ministic systems. Its initial value sensitivity and intrinsic randomness make it very suitable
for designing random signals. Even with deterministic chaotic mapping, distinct initial
values lead to entirely different chaotic trajectories over time. Unlike purely random noisy
signals, deterministic chaotic sequences can be reconstructed from known parameters and
initial values and synchronized for simplified signal processing. Unlike pseudo-random sig-
nals, they are non-periodic, generate numerous distinct sequences, and can extend infinitely
in length. Utilizing chaotic sequences to modulate pulse positions in UWB fuzes enhances
the signal’s resistance to interception and complicates decipherment by adversaries [33].

Chaotic signals can be generated by continuous-time dynamic analog systems like
Chua’s circuit, but these analog systems tend to be bulky and susceptible to environmental
factors. However, radio fuzes must adhere to strict volume constraints of projectiles,
necessitating compact design and high reliability. Thus, digital devices are preferred
for timing control circuit design. However, byte limitations in digital devices lead to
short-period phenomena when generating chaotic signals. Consequently, the resulting
signal becomes periodic and only chaotic. For practical applications, chaotic sequences
should ideally have extended periods to maximize decipherment difficulty and waveform
interception resistance.

Owing to operational and memory constraints in practical engineering, one-dimensional
chaotic mappings are typically favored. Equation (3) is the classical Tent map.

xn+1 =

{ xn
α xn ∈ [0, α)

1−xn
1−α xn ∈ [α, 1)

α ∈ (0, 1), (3)

and Equation (4) is the classical Logistic map.

xn+1 = µxn(1 − xn) µ ∈ [0, 4]. (4)

Under byte-constrained conditions, a chaotic sequence degenerates into a periodic one.
For instance, as depicted in Figure 3 for the Tent map, retaining six bits after the decimal
point and using different initial values results in the Tent map degenerating into a periodic
sequence during iteration, where the red dashed line indicates the starting position of
degeneration into a periodic sequence. This periodicity makes it easier for adversaries to
decipher because of its regularity in signal modulation.
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x0 = 0.68; (d) initial value x0 = 0.85.

2. Method
2.1. Perturbation Parameter

In this paper, we introduce a perturbation parameter r connecting the logistic map to
the Tent map as follows:

xn+1 =

{ xn
a + r ∗ yn xn ∈ [0, a)

1−xn
1−a + r ∗ yn xn ∈ [a, 1)

, (5)

yn+1 = µyn(1 − yn) µ ∈ [0, 4], (6)

r =
{

0.0001 mod(n, P) = 0, P = 100
0

. (7)

Chaotic sequences are highly sensitive to initial values, where even slight differences
can lead to entirely divergent trajectories over iterations. The addition of the periodicity
perturbation parameter can disrupt the closed state set of the original chaotic system,
thereby eliminating short-cycle phenomena. To minimize interference with the original
chaotic sequence, the signal-to-noise ratio between the original signal and the perturbation
signal should significantly exceed unity [34]. Therefore, we chose a perturbation parameter
as small as possible within the limits of accuracy to prevent excessive perturbation and
ensure the chaotic sequence remains within its intended range. For this study, we chose
1 × 10−4 as the value of r.

The approximation to chaos used in this study produces the map in Figure 4 when six
bits are retained after the decimal point. Figure 4a illustrates the chaotic scatter plot after
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3000 iterations, showing no observable periodic phenomena. Even with an increased itera-
tion count of 10,000, as shown in Figure 4b, it still maintains good chaotic characteristics.
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2.2. Approximate Entropy as a Measure of Complexity

In this study, the approximate entropy is used to measure the complexity of chaotic
sequences [35]. This metric reflects the likelihood of generating a new sequence within
an existing one: a higher approximate entropy value indicates greater complexity. When
dealing with a known sequence x(i), the algorithm for calculating the approximate entropy
is as follows:

(1) Convert the sequence x(i) into an m-dimensional vector α(i):

α(i) = [x(i), x(i + 1), · · · x(i + m − 1)]. (8)

(2) Define d[α(i), α(j)] as the maximum difference between the corresponding ele-
ments of α(i) and α(j):

d[α(i), α(j)] = max
k=1,2,··· ,m

|x(i + k − 1)− x(j + k − 1)|. (9)

(3) Let s denote the similarity tolerance. Then, for every value of i (including i = j)
1 ≤ i ≤ N − m + 1, count the number of vectors that satisfy d[α(i), α(j)] ≤ s. Let Cm

i (s)
denote the ratio of this number to the total number of α-vectors:

Cm
i (s) =

1
N − m − 1

num{d[α(i), α(j)] ≤ s}. (10)

(4) Calculate the Napierian logarithm of Cm
i (s) and its mean value Φm(s):

Φm(s) =
1

N − m − 1∑N−m−1
i−1 ln(Cm

i (s)). (11)

(5) Finally, define the approximate entropy of the sequence as follows:

E(m, s, N) = Φm(s)− Φm+1(s), m ≥ 2. (12)

3. Results and Discussion
3.1. Comparison of Complexity

We calculated the approximate entropy in two dimensions for the Tent chaotic output
sequence at ideal precision and compared it to those at finite precision (p = 6), both with and
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without the added perturbation parameter. Figure 5 illustrates the approximate entropy of
these output sequences of the three chaotic systems, evaluated across 100 randomly selected
sets of initial values. As depicted, the approximate entropy of the Tent-chaotic sequence
remained nearly unchanged with the addition of the perturbation parameter under finite
accuracy, closely resembling the entropy of the ideal accuracy scenario without perturbation.
By contrast, without the perturbation parameter, the sequence’s approximate entropy
exhibited instability and significantly lower complexity in certain initial value cases.
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3.2. Comparison of Period Length

For precision p = 6, we calculated and compared the period length of 100 groups of
chaotic maps with different initial values (Figure 6). It can be seen that the periods of
the Tent chaotic sequences with the perturbation parameter are much larger than those of
sequences without it.
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𝑁−1

𝑖=0
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𝜀2 = ∫  
∞

−∞

|∑  

𝑁−1

𝑖=0

𝑤[𝑡 − 𝑥 − 𝑖(𝑇 − 𝑦)] − ∑  

𝑁−1

𝑖=0

𝑤[𝑡 − (𝑥 + 𝜏) − 𝑖(𝑇 − 𝑦 − 𝑇d)]|

2

d𝑡

= ∫  
∞

−∞

|∑  

𝑁−1

𝑖=0

𝑤[𝑡 − 𝑥 − 𝑖(𝑇 − 𝑦)]|

2

𝑑𝑡 + ∫  
∞

−∞

|∑  

𝑁−1

𝑖=0

𝑤[𝑡 − (𝑥 + 𝜏) − 𝑖(𝑇 − 𝑦 − 𝑇d)]|

2

d𝑡

−2 ∫  
∞

−∞

∑  

𝑁−1

𝑖=0

𝑤[𝑡 − 𝑥 − 𝑖(𝑇 − 𝑦)] ∑  

𝑁−1

𝑖=0

𝑤[𝑡 − (𝑥 + 𝜏) − 𝑖(𝑇 − 𝑦 − 𝑇d)]d𝑡.
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3.3. Fuze Performance Analysis
3.3.1. Detection Performance

The ambiguity function (AF), initially proposed by P.M. Woodward to describe radar-
modulation waveform characteristics, serves to depict not only the resolution of radar
signals and the ambiguity levels but also measurement accuracy and clutter suppres-
sion [36]. Radio fuzes operate similarly to radar systems, allowing the AF to describe their
detection performance. The AF evaluates a signal’s ability to distinguish between two
targets at varying distances and velocities. In this study, we utilized the mean square error
criterion to derive the ambiguity function for UWB signals.

For an ideal point target 1 with a time delay x and Doppler shift y, by ignoring antenna
effects on the waveform of the transmitted signal, the echo signal is expressed as follows:

ur1(t) =
N−1

∑
i=0

w[t − x − i(T − y)]. (13)

For another ideal point target 2, with additional time delay τ and Doppler shift Td
relative to reference target 1, the expression for the echo signal becomes the following:

ur2(t) =
N−1

∑
i=0

w[t − (x + τ)− i(T − y − Td)]. (14)

The mean square deviation of the two echoes is as follows:

ε2 =
∫ ∞
−∞

∣∣∣∣N−1
∑

i=0
w[t − x − i(T − y)]−

N−1
∑

i=0
w[t − (x + τ)− i(T − y − Td)]

∣∣∣∣2dt

=
∫ ∞
−∞

∣∣∣∣N−1
∑

i=0
w[t − x − i(T − y)]

∣∣∣∣2dt +
∫ ∞
−∞

∣∣∣∣N−1
∑

i=0
w[t − (x + τ)− i(T − y − Td)]

∣∣∣∣2dt

−2
∫ ∞
−∞

N−1
∑

i=0
w[t − x − i(T − y)]

N−1
∑

i=0
w[t − (x + τ)− i(T − y − Td)]dt.

(15)

The echo energies for ideal targets 1 and 2 are denoted as E1 and E2, respectively:

E1 =
∫ ∞

−∞

∣∣∣∣∣N−1

∑
i=0

w[t − x − i(T − y)]

∣∣∣∣∣
2

dt, (16)

E2 =
∫ ∞

−∞

∣∣∣∣∣N−1

∑
j=0

w[t − (x + τ)− j(T − y − Td)]

∣∣∣∣∣
2

dt. (17)

By ignoring propagation losses, we assume E1 = E2 = E′. If t − (x + τ) = t′,
Equation (15) simplifies to the following:

ε2 = 2E − 2
∫ ∞

−∞

N−1

∑
i=0

w[t + τ − i(T − y)]
N−1

∑
i=0

w[t − i(T − y − Td)]dt. (18)

By setting y = 0 (i.e., there is no Doppler shift for target 1), the AF of an unmodulated
UWB pulse train is defined as follows:

χ(τ, Td) =
∫ ∞

−∞

N−1

∑
i=0

w[t + τ − iT]
N−1

∑
i=0

w[t − i(T − Td)]dt. (19)

Equation (19) shows that using the AF of an unmodulated UWB pulse train transforms
the problem of discriminating targets based on different distances and velocities into that
of discriminating the time delay and Doppler shift of the echo signals.
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Similarly, for chaotic pulse position modulation, for the ideal point target 1, the echo
signal with time delay x is given by the following equation:

ur1(t) =
N−1

∑
i=0

w[t − x − iT − CiT0 +
i

∑
j=1

2Tjv1

c
)] =

N−1

∑
i=0

w[t − x − iT − CiT0 +
2(iT + CiT0 − X0)v1

c
)]. (20)

For an ideal point target 2, with time delay τ and approach speed v2 relative to
reference target 1, the echo signal is given by the following:

ur2(t) =
N−1

∑
i=0

w
[

t − (x + τ)− iT − CiT0 +
2(iT + CiT0 − X0)(v1 + v2)

c

]
. (21)

The mean square deviation of the two echo signals is as follows:

ε2 =
∫ ∞
−∞

∣∣∣∣N−1
∑

i=0
w[t − x − iT − CiT0 +

2(iT + CiT0 − X0)v1

c
]−

N−1
∑

i=0
w[t − (x + τ)− iT − CiT0 +

2(iT + CiT0 − X0)(v 1 + v2)

c
]

∣∣∣∣2dt

=
∫ ∞
−∞

∣∣∣∣N−1
∑

i=0
w[t − x − iT − CiT0 +

2(iT + CiT0 − X0)v1

c
]

∣∣∣∣2dt +
∫ ∞
−∞

∣∣∣∣N−1
∑

i=0
w[t − (x + τ)− iT − CiT0 +

2(iT + CiT0 − X0)(v 1 + v2)

c
]

∣∣∣∣2dt

−2
∫ ∞
−∞

N−1
∑

i=0
w
[

t − x − iT − CiT0 +
2(iT + CiT0 − X0)v1

c

]
N−1
∑

i=0
w
[

t − (x + τ)− iT − CiT0 +
2(iT + CiT0 − X0)(v 1 + v2)

c

]
dt.

(22)

Expressing this in terms of variable t’, where t − (x + τ) = t′:

ε2 = 2E − 2
∫ ∞

−∞

∣∣∣∣∣N−1

∑
i=0

w[t + τ − iT − CiT0 +
2(iT + CiT0 − X0)v1

c
)]

N−1

∑
i=0

w[t − iT − CiT0 +
2(iT + CiT0 − X0)(v1 + v2)

c
]

∣∣∣∣∣dt. (23)

To simplify the discussion, let v1 = 0 and v2 = v. The AF of a chaotic pulse-position-
modulated UWB train can then be expressed as follows:

χ(τ, v) =
∫ ∞

−∞

N−1

∑
i=0

w[t + τ − iT − CiT0]
N−1

∑
i=0

w
[

t − iT − CiT0 +
2(iT + CiT0 − X0)v

c

]
dt. (24)

From the above analysis, it can be seen that, for the chaotic pulse-position-modulated
UWB pulse train, the Doppler time shift varies among pulse-repetition cycles. Thus, the
pulse train’s AF is not a function of delay and Doppler time shift but of delay and velocity.

Based on the above theoretical derivation, the normalized AF diagrams of the un-
modulated (Figure 7) and chaotic pulse-position-modulated (Figure 8) UWB train can be
obtained, in which different colors are used to indicate the magnitude of the AF values.
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As can be seen in Figures 7 and 8, the AF of the chaotic pulse-position-modulated
UWB pulse train approximates a thumbtack function, meaning that it has higher range
accuracy and greater resistance to clutter interference than that of the unmodulated UWB
pulse train.

3.3.2. Anti-Interception Performance

The power spectrum S( f ) of the signal s(t) of a UWB system consists of two parts, the
discrete spectrum Sd( f ) and the continuous spectrum Sc( f ):

Sd( f ) =
1

T2

+∞

∑
l=−∞

∣∣∣∣W(
l
T

)∣∣∣∣2∣∣∣∣E{exp(j2π
l
T

CiT0)}
∣∣∣∣2δ

(
f − l

T

)
, (25)

Sc( f ) = 1
T |W( f )|2

+∞
∑

l=−∞
E{[βn( f )− E{βn( f )}][βn+1( f )−

E{βn+1( f )} ]∗} exp(− 2jπ f lT),
(26)

where βn( f )= exp(j2π f CiT0). Assuming xn is a chaotic sequence with 0 < xn < 1, the
probability density function of cnT0 is uniform: ρ(CiT0) =

1
T0

.
Consequently,

E{exp(j2π f CiT0)} =
∫ T0

0

1
T0

exp(j2π f x)dx =
sin(π f T0)

π f T0
exp(jπ f T0). (27)

The continuous spectrum of the chaotic pulse-position-modulated UWB signal is
derived as follows:

Sc( f ) = 1
T |W( f )|2

+∞
∑

l=−∞

{
E
[
βn( f )β∗

n+1( f )
]
− E[βn( f )]E[βn+1( f )∗]} exp(− j2π f lT)

= 1
T |W( f )|2{1 −

[
sin(π f T0)

π f T0

]2
}.

(28)

The discrete spectrum is then expressed as follows:

Sd( f ) =
1

T2

+∞

∑
l=−∞

∣∣∣∣W(
l
T

)∣∣∣∣2
 sin(π l

T T0

)
π l

T T0

2

δ

(
f − l

T

)
. (29)



Entropy 2024, 26, 605 11 of 15

The introduction of chaotic sequences changes the power distribution of the system;
the power that was only represented in the form of discrete spectral lines is partially
transferred to the continuous spectrum. The calculated power-spectral densities of the
unmodulated and chaotic pulse-position-modulated UWB signals are shown in Figure 9.
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Following chaotic modulation, the peak power spectral density (PSD) of the UWB
signal decreased by approximately 50%, significantly increasing the difficulty for recon-
naissance and interference equipment to detect the fuze signal. Moreover, the modulated
UWB fuze signal exhibited a more random frequency distribution. Figure 9a clearly shows
a distinct spectral peak, facilitating targeted interference by interference equipment. By
contrast, the chaotically modulated UWB signal lacked a prominent spectral peak, making
it impractical for interference equipment to target specific frequencies.

3.3.3. Anti-Jamming Performance

In this study, the anti-jamming performance of radio fuzes was evaluated using
targeted sinusoidal jamming, which was applied to the fuze according to an established
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method after accurately obtaining the frequency of the fuze’s signals. The interference
signal is expressed as follows:

j(t) = a cos(2π f Jt + φ), (30)

The target echo signal with sinusoidal interference is correlated with the local reference
signal in a modulation period, and the output signal of the correlator can be obtained
as follows:

uR(t) =
∫

Tr
[r(t) + j(t)]u(t)dt =

∫
Tr

r(t)u(t)dt +
∫

Tr
j(t)u(t)dt. (31)

The average power of the interference signal at the output of the correlator is
as follows:

Pj(t) =
∫ ∞
−∞ J( f ) | H( f ) |2 d f

=
∫ ∞
−∞

⌈
a2

4 δ( f − f J) +
a2

4 δ( f + f J)
⌉
|H( f )|2d f

= a2

2 |H
(

f J
)
|2.

(32)

According to the literature [37], the gain in signal-to-interference ratio in UWB fuze
correlation detection with sinusoidal interference is as follows:

G =
SIRout

SIRin
=

NTr A2E∣∣H( f J)
∣∣2 ≈ NTD A2E∣∣H(

f J
)∣∣2 , (33)

where N is the number of pulses; E is the energy of a single pulse; A is the local reference-
signal amplitude; TD is the pulse-repetition period; Tr is the modulation period, H( f ) is
the spectrum of the echo signal; and f J is the frequency of the interference signal.

According to Equation (33), when the jamming frequency corresponds to the spectral
peak of the delayed signal in the local correlator of the UWB fuze, H( f J) reaches its
maximum, i.e., the correlation-detection processing gain G is a minimum. At this point, f J
is referred to as the optimal jamming frequency.

The parameters of the UWB fuze simulation model in this study were as follows: a
pulse repetition frequency of 10 MHz; a pulse width of 0.5 ns; the accumulation period of
fuze-related processing set to 1 µs; the simulated rendezvous distance of the projectile at
10 m; and a predetermined explosion height of 3 m. Figures 10 and 11 show the correlation-
detection output waveforms under optimal and non-optimal interference frequencies.
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Figure 10. Output waveform of fuze when jamming frequency is optimal: (a) chaotic pulse-position
modulation; (b) M-sequence modulated; (c) unmodulated.

Without modulation, when the interference-signal frequency was optimal, the inter-
ference effect was pronounced, causing the output correlation peaks to be submerged in
the interference signal. Away from the optimal frequency, the interference effect decreased
significantly, allowing the correlation peaks to be output normally. With M-sequence
modulation, the anti-interference effect showed a slight improvement compared to no



Entropy 2024, 26, 605 13 of 15

modulation. However, at the optimal interference frequency, the output correlation peaks
were still submerged in the interference signal. By contrast, in the chaotic pulse-position-
modulated case, an optimal interference frequency does not exist, and the output correlation
peaks can be output normally even when there is an interfering signal present. Thus, the
chaotic-pulse-position-modulated UWB fuze demonstrates strong resistance to sinusoidal
interference: effective interference is difficult for jammers to achieve, even if they can
identify the frequency of the fuze signal.
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Figure 11. Output waveform of fuze when jamming frequency deviates from optimal value:
(a) chaotic pulse-position modulation; (b) M-sequence modulated; (c) unmodulated.

4. Conclusions

This study investigated the RF stealth waveforms of a UWB radio fuze employing
chaotic pulse-position modulation. A perturbation signal based on Tent-chaotic mapping
was introduced to extend the periods of chaotic sequences without increasing complexity.
Through calculations of the approximate entropy and sequence period analysis, and numer-
ical simulations, we confirmed that the performance of the perturbed Tent-chaotic sequence
under byte constraints closely matched that of the unperturbed Tent-chaotic sequence
under ideal conditions. The chaotic pulse-position-modulated UWB radio fuze significantly
outperformed its unmodulated counterpart in terms of detection capability, interception
avoidance, and anti-jamming ability. This research offers theoretical insights to enhance
the battlefield survivability of radio fuzes through RF stealth technology. The limitation
lies in the fact that the study in this paper is based on the comparison of various aspects of
the performance of chaotic modulated UWB fuzes with unmodulated UWB fuzes, and in
future work, quantitative evaluation will continue to be investigated in order to evaluate
the RF stealth performance of radio fuze by means of standardized quantitative criteria.
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