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Abstract: We study stochastic linear contextual bandits (CB) where the agent observes a noisy version
of the true context through a noise channel with unknown channel parameters. Our objective is to
design an action policy that can “approximate” that of a Bayesian oracle that has access to the reward
model and the noise channel parameter. We introduce a modified Thompson sampling algorithm
and analyze its Bayesian cumulative regret with respect to the oracle action policy via information-
theoretic tools. For Gaussian bandits with Gaussian context noise, our information-theoretic analysis
shows that under certain conditions on the prior variance, the Bayesian cumulative regret scales as
Õ(m

√
T), where m is the dimension of the feature vector and T is the time horizon. We also consider

the problem setting where the agent observes the true context with some delay after receiving the
reward, and show that delayed true contexts lead to lower regret. Finally, we empirically demonstrate
the performance of the proposed algorithms against baselines.

Keywords: noisy contextual bandits; Thompson sampling; Bayes regret; information theory

1. Introduction

Decision-making in the face of uncertainty is a widespread challenge found across
various domains such as control and robotics [1], clinical trials [2], communications [3],
and ecology [4]. To tackle this challenge, learning algorithms have been developed to un-
cover effective policies for optimal decision-making. One notable framework for addressing
this is contextual bandits (CBs), which capture the essence of sequential decision-making
by incorporating side information, termed context [5].

In the standard CB model, an agent interacts with the environment over numerous
rounds. In each round, the environment presents a context to the agent based on which
the agent chooses an action and receives a reward from the environment. The reward is
stochastic, drawn from a probability distribution whose mean reward (which is a function
of context-action pair) is unknown to the agent. The goal of the agent is to design a
policy for action selection that can maximize the cumulative mean reward accrued over a
T-length horizon.

In this paper, we focus on a CB model that assumes stochastic rewards with linear
mean-reward functions, also called stochastic linear contextual bandits. Stochastic linear CB
models find applications in various settings including internet advertisement selection [6],
where the advertisement (i.e., action) and webpage features (i.e., context) are used to
construct a linear predictor of the probability that a user clicks on a given advertisement,
and article recommendation on web portals [7].

While most prior research on CBs has primarily focused on models with known exact
contexts [8–10], in many real-world applications, the contexts are noisy, e.g., imprecise
measurement of patient conditions in clinical trials, weather or stock market predictions.
In such scenarios, when the exact contexts are unknown, the agent must utilize the observed
noisy contexts to estimate the mean reward associated with the true context. However,
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this results in a biased estimate that renders the application of standard CB algorithms
unsuitable. Consequently, recent efforts have been made to develop CB algorithms tailored
to noisy context settings.

Related Works: ref. [11] considers a setting where there is a bounded zero-mean noise
in the m-dimensional feature vector (denoted by ϕ(a, c), where a is the action and c is the
context) rather than in the context vector, and the agent observes only noisy features.
For this setting, they develop an upper confidence bound (UCB) algorithm. Ref. [12]
models the uncertainty regarding the true contexts by a context distribution that is known to
the agent, while the agent never observes the true context and develops a UCB algorithm.
A similar setting has also been considered in [13]. Differing from these works, ref. [14]
considers the setting where the true feature vectors are sampled from an unknown feature
distribution at each time, but the agent observes only a noisy feature vector. Assuming
Gaussian feature noise with unknown mean and covariance, they develop an Optimism
in the Face of Uncertainty (OFUL) algorithm. A variant of this setting has been studied
in [15].

Motivation and Problem Setting: In this work, inspired by [14], we consider the following
noisy CB setting. In each round, the environment samples a true context vector ct from a
context distribution that is known to the agent. The agent, however, does not observe the true
context but observes a noisy context ĉt obtained as the output of a noise channel P(ĉt|ct, γ∗)
parameterized by γ∗. The agent is aware of the noise present but does not know the channel
parameter γ∗. Following [14], we consider Gaussian noise channels for our regret analysis.

Based on the observed noisy contexts, the agent chooses an action at and observes
a reward rt corresponding to the true context. We consider a linear bandit whose mean
reward ϕ(at, ct)⊤θ∗ is determined by an unknown reward parameter θ∗. The goal of the
agent is to design an action policy that minimizes the Bayesian cumulative regret with respect
to the action policy of a Bayesian oracle. The oracle has access to the reward model and the
channel parameter γ∗, and uses the predictive distribution of the true context given the
observed noisy context to select an action.

Our setting differs from [14] in that we assume noisy contexts rather than noisy feature
vectors and that the agent knows the context distribution. The noise model, incorporating
noise in the feature vector, allows [14] to transform the original problem into a different
CB problem that estimates a modified reward parameter. Such a transformation, however,
is not straightforward in our setting with noise in contexts rather than in feature vectors,
where we wish to analyze the Bayesian regret. Additionally, we propose a de-noising
approach to estimate the predictive distribution of the true context from given noisy
contexts, offering potential benefits for future analyses.

The assumption of known context distribution follows from [12]. This can be motivated
by considering the example of an online recommendation engine that pre-processes the
user account registration information or contexts (e.g., age, gender, device, location, item
preferences) to group them into different clusters [16]. The engine can then infer the
‘empirical’ distribution of users within each cluster to define a context distribution over
true contextual information. A noisy contextual information scenario occurs when a guest
with different preferences logs into a user’s account.

Challenges and Novelty: Different from existing works that developed UCB-based algo-
rithms, we propose a fully Bayesian Thompson Sampling (TS) algorithm that approximates
the Bayesian oracle policy. The proposed algorithm differs from the standard contextual
TS [10] in the following aspects. Firstly, since the true context vectors are not accessible at
each round and the channel parameter γ∗ is unknown, the agent uses its knowledge of
the context distribution and the past observed noisy contexts to infer a predictive posterior
distribution of the true context from the current observed noisy context. The inferred
predictive distribution is then used to choose the action. This de-noising step enables our
algorithm to ‘approximate’ the oracle action policy that uses knowledge of the channel
parameter γ∗ to implement exact de-noising. Secondly, the reward rt received by the agent
corresponds to the unobserved true context ct. Hence, the agent cannot accurately evaluate
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the posterior distribution of θ∗ and sample from it as is conducted in standard contextual
TS. Instead, our algorithm proposes to use a sampling distribution that ‘approximates’
the posterior.

Different from existing works that focus on frequentist regret analysis, we derive novel
information-theoretic bounds on the Bayesian cumulative regret of our algorithm. For Gaussian
bandits, our information-theoretic regret bounds scale as Õ(m

√
T) (the notation Õ(•)

suppresses logarithmic terms in •), where m, T denote the dimension of the feature vector
and time horizon respectively, under certain conditions on the variance of the prior on
θ∗. Furthermore, our Bayesian regret analysis shows that the posterior mismatch, resulting
due to replacing the true posterior distribution with a sampling distribution, results in an
approximation error that is captured via the Kullback–Leibler (KL) divergence between the
distributions. To the best of our knowledge, quantifying the posterior mismatch via KL
divergence has not been studied before and is of independent interest.

Finally, we also extend our algorithm to a setting where the agent observes the true
context after the decision is made and reward is observed [12]. We call this setting CBs with
delayed true contexts. Such scenarios arise in many applications where only a prediction of
the context is available at the time of decision-making; however, the true context is available
later. For instance, in farming-recommender systems where, at the time of making the
decision regarding which crop to cultivate in a year, the true contextual information about
the weather pattern is unavailable, while some ‘noisy’ weather predictions are available.
In fact, the true weather pattern is observed only after the decision is made. We show that
our TS algorithm for this setting with delayed true contexts results in reduced Bayesian
regret. Table 1 compares our regret bound with that of the state-of-the-art algorithms in the
noiseless and noisy CB settings.

Table 1. Comparison of the regret bounds of our proposed TS algorithm for noisy CB with state-of-the
art algorithms.

Reference Setting Algorithm Regret Bound

[8] Linear CB LinRel Frequentist Õ(
√

mT)

[9] Linear CB Lin-UCB Frequentist Õ(
√

mT)

[10] Linear CB TS Frequentist O(m
√

T log3/2 T)

[17] Linear CB TS Bayesian O(m
√

T log T)

[11] Noisy CB SampLinUCB Frequentist Õ(m
√

T)

[12] Noisy CB UCB Frequentist Õ(m
√

T)

[14] Noisy CB OFUL Frequentist Õ(m
√

T)

Our work Noisy CB TS Bayesian Õ(m
√

T)

2. Problem Setting

In this section, we present the stochastic linear CB problem studied in this paper. Let A
denote the action set with K actions and C denote the (possibly infinite) set of d-dimensional
context vectors. At iteration t ∈ N, the environment randomly draws a context vector
ct ∈ C according to a context distribution P(c) defined over the space C of context vectors.
The context distribution P(c) is known to the agent. The agent, however, does not observe
the true context ct drawn by the environment. Instead, it observes a noisy version ĉt of the
true context, obtained as the output of a noisy, stochastic channel P(ĉt|ct, γ∗) with the true
context ct as the input. The noise channel P(ĉt|ct, γ∗) is parameterized by the noise channel
parameter γ∗ that is unknown to the agent.

Having observed the noisy context ĉt at iteration t, the agent chooses an action at ∈ A
according to an action policy πt(·|ĉt). The action policy may be stochastic describing a
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probability distribution over the set A of actions. Corresponding to the chosen action at,
the agent receives a reward from the environment given by

rt = f (θ∗, at, ct) + ξt, (1)

where f (θ∗, at, ct) = ϕ(at, ct)⊤θ∗ is the linear mean-reward function and ξt is a zero-mean
reward noise variable. The mean reward function f (θ∗, at, ct) is defined via the feature map
ϕ : A× C → Rm, that maps the action and true context to an m-dimensional feature vector,
and via the reward parameter θ∗ ∈ Rm that is unknown to the agent.

We call the noisy CB problem described above CBs with unobserved true context (see
Setting 1) since the agent does not observe the true context ct and the selection of action
is based solely on the observed noisy context. Accordingly, at the end of iteration t,
the agent has accrued the history Ht,r,a,ĉ = {rτ , aτ , ĉτ}t

τ=1 of observed reward-action-noisy
context tuples. The action policy πt+1(·|ĉt+1) at (t + 1)th iteration may depend on the
history Ht,r,a,ĉ.

Setting 1: CBs with unobserved true contexts

1: for t = 1, . . . , T do
2: Environment samples ct ∼ P(c).
3: Agent observes noisy context ĉt ∼ P(ĉt|ct, γ∗).
4: Agent chooses an action at ∼ πt(·|ĉt).
5: Agent receives reward rt according to (1).
6: end for

We also consider a variant of the above problem where the agent has access to a delayed
observation of the true context ct as studied in [12]. We call this setting CBs with delayed true
context. In this setting, at iteration t, the agent first observes a noisy context ĉt, chooses action
at ∼ πt(·|ĉt), and receives reward rt. Later, the true context ct is observed. It is important
to note that the agent has no access to the true context at the time of decision-making. Thus,
at the end of iteration t, the agent has collected the history Ht,r,a,c,ĉ = {rτ , aτ , cτ , ĉτ}t

τ=1 of
observed reward-action-context-noisy context tuples.

In both of the problem settings described above, the agent’s objective is to devise an
action policy that minimizes the Bayesian cumulative regret with respect to a baseline action
policy. We define Bayesian cumulative regret next.

Bayesian Cumulative Regret

The cumulative regret of an action policy πt(·|ĉt) quantifies how different the mean
reward accumulated over T iterations is from that accrued by a baseline action policy
π∗

t (·|ĉt). In this work, we consider as baseline the action policy of an oracle that has access
to the channel noise parameter γ∗, reward parameter θ∗, the context distribution P(c) and
the noise channel likelihood P(ct|ĉt, γ∗). Accordingly, at each iteration t, the oracle can
infer the exact predictive distribution P(ct|ĉt, γ∗) of the true context from the observed noisy
context ĉt via Baye’s rule as

P(ct|ĉt, γ∗) =
P(ct, ĉt|γ∗)

P(ĉt|γ∗)
. (2)

Here, P(ct, ĉt|γ∗) = P(ct)P(ĉt|ct, γ∗) is the joint distribution of the true and noisy con-
texts given the noise channel parameter γ∗, and P(ĉt|γ∗) is the distribution obtained by
marginalizing P(ct, ĉt|γ∗) over the true contexts, i.e.,

P(ĉt|γ∗) = EP(ct)[P(ĉt|ct, γ∗)], (3)
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where E•[·] denotes expectation with respect to ‘•’. The oracle action policy then adopts
an action

a∗t = arg max
a∈A

EP(ct |ĉt ,γ∗)[ϕ(a, ct)
⊤θ∗]

= arg max
a∈A

ψ(a, ĉt|γ∗)⊤θ∗, (4)

at iteration t, where ψ(a, ĉ|γ∗) := EP(c|ĉ,γ∗)[ϕ(a, c)]. Note, that as in [14,18], we do not
choose the stronger oracle action policy of arg maxa∈A ϕ(a, ct)⊤θ∗, that requires access to
the true context ct, as it is generally not achievable by an agent that observes only noisy
context ĉt and has no access to γ∗.

For fixed parameters θ∗ and γ∗, we define the cumulative regret of the action policy
πt(·|ĉt) as

RT(π|θ∗, γ∗) =
T

∑
t=1

E[ϕ(a∗t , ct)
⊤θ∗ − ϕ(at, ct)

⊤θ∗|θ∗, γ∗], (5)

the expected difference in mean rewards of the oracle decision policy and the agent’s deci-
sion policy over T iterations. In (5), the expectation is taken with respect to the joint distribu-
tion P(Ht−1,r,ĉ,c,a|θ∗, γ∗)P(ĉt, ct, at|Ht−1,r,ĉ,c,a, θ∗, γ∗), where P(ĉt, ct, at|Ht−1,r,ĉ,c,a, θ∗, γ∗) =
P(ĉt, ct|γ∗)πt(at|ĉt) = P(ĉt|γ∗)P(ct|ĉt, γ∗)πt(at|ĉt). Using this, the cumulative regret (5)
can be written as

RT(π|θ∗, γ∗)

=
T

∑
t=1

EP(Ht−1,r,ĉ,c,a |θ∗ ,γ∗)
[
EP(ĉt |γ∗)πt(at |ĉt)EP(ct |ĉt ,γ∗)

[
ϕ(a∗t , ct)

⊤θ∗ − ϕ(at, ct)
⊤θ∗

]]
=

T

∑
t=1

EP(Ht−1,r,ĉ,c,a |θ∗ ,γ∗)
[
EP(ĉt |γ∗)πt(at |ĉt)

[
ψ(a∗t , ĉt|γ∗)⊤θ∗ − ψ(at, ĉt|γ∗)⊤θ∗

]]
:=

T

∑
t=1

E
[
ψ(a∗t , ĉt|γ∗)⊤θ∗ − ψ(at, ĉt|γ∗)⊤θ∗|θ∗, γ∗]. (6)

Our focus in this work is on a Bayesian framework where we assume that the reward pa-
rameter θ∗ ∈ Θ and channel noise parameter γ∗ ∈ Γ are independently sampled by the
environment from prior distributions P(θ∗), defined on the set Θ of reward parameters,
and P(γ∗), defined on the set Γ of channel noise parameters, respectively. The agent has
knowledge of the prior distributions, the reward likelihood in (1) and the noise chan-
nel likelihood P(ĉt|ct, γ∗), although it does not observe the sampled γ∗ and θ∗. Using
the above prior distributions, we define Bayesian cumulative regret of the action policy
πt(·|ĉt) as

RT(π) = E[RT(π|θ∗, γ∗)], (7)

where the expectation is taken with respect to the priors P(θ∗) and P(γ∗).
In the next sections, we present our novel TS algorithms to minimize the Bayesian

cumulative regret for the two problem settings considered in this paper.

3. Modified TS for CB with Unobserved True Contexts

In this section, we consider Setting 1 where the agent only observes the noisy context
ĉt at each iteration t. Our proposed modified TS Algorithm is given in Algorithm 1.
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Algorithm 1: TS with unobserved true contexts (πTS)

1: for t = 1, . . . , T do
2: The environment selects a true context ct.
3: Agent observes noisy context ĉt.
4: Agent evaluates the predictive posterior distribution P(ct|ĉt,Ht−1,ĉ) as in (8).
5: Agent samples θt ∼ P̄(θ∗|Ht−1,r,a,ĉ).
6: Agent chooses action at as in (11).
7: Agent observes reward rt as in (1).
8: end for

The proposed algorithm implements two steps in each iteration t ∈ N. In the first step,
called the de-noising step, the agent uses the current observed noisy context ĉt and the history
Ht−1,ĉ = {ĉτ}t−1

τ=1 of past observed noisy contexts to obtain a predictive posterior distribution
P(ct|ĉt,Ht−1,ĉ) of the true context ct. This is a two-step process, where firstly the agent uses
the history Ht−1,ĉ of past observed noisy contexts to compute the posterior distribution of
γ∗ as P(γ∗|Ht−1,ĉ) ∝ P(γ∗)∏t−1

τ=1 P(ĉτ |γ∗), where the conditional distribution P(ĉt|γ∗) is
evaluated as in (3). Note, that to evaluate the posterior, the agent uses its knowledge of
the context distribution P(c), the prior P(γ∗) and the noise channel likelihood P(ĉt|ct, γ∗).
Using the derived posterior P(γ∗|Ht−1,ĉ), the predictive posterior distribution of the true
context is then obtained as

P(ct|ĉt,Ht−1,ĉ) = EP(γ∗ |Ht−1,ĉ)
[P(ct|ĉt, γ∗)], (8)

where P(ct|ĉt, γ∗) is defined as in (2).
The second step of the algorithm implements a modified Thompson sampling. Note,

that since the agent does not have access to the true contexts, it cannot evaluate the posterior
distribution with known contexts,

P(θ∗|Ht−1,r,a,c) ∝ P(θ∗)
t−1

∏
τ=1

P(rτ |aτ , cτ , θ∗), (9)

as is conducted in standard contextual TS. Instead, the agent must evaluate the true posterior
distribution under noisy contexts,

Pt(θ
∗) := P(θ∗|Ht−1,r,a,ĉ) (10)

∝ P(θ∗)EP(γ∗)

[ t−1

∏
τ=1

EP(cτ)[P(ĉτ |cτ , γ∗)P(rτ |aτ , cτ , θ∗)]
]
.

However, evaluating the marginal distributionEP(γ∗)

[
∏t−1

τ=1 EP(cτ)[P(ĉτ|cτ, γ∗)P(rτ|aτ, cτ, θ∗)]
]

is challenging even for Gaussian bandits as the mean ϕ(aτ , cτ)⊤θ∗ of the reward distribution
P(rτ |aτ , cτ , θ∗) is, in general, a non-linear function of the true context cτ . As a result,
the posterior Pt(θ∗) is analytically intractable.

Consequently, at each iteration t, the agent samples θt ∼ P̄(θ∗|Ht−1,r,a,ĉ) from a
distribution P̄(θ∗|Ht−1,r,a,ĉ) that ‘approximates’ the true posterior Pt(θ∗). The specific
choice of this sampling distribution depends on the problem setting. Ideally, one must
choose a distribution that is sufficiently ‘close’ to the true posterior. In the next sub-section,
we will explain the choice for Gaussian bandits.

Using the sampled θt and the predictive posterior distribution P(ct|ĉt,Ht−1,ĉ) obtained
from the denoising step, the agent then chooses action at at iteration t as

at = arg max
a∈A

ψ(a, ĉt|Hĉ)
⊤θt, where (11)

ψ(at, ĉt|Hĉ) := EP(ct |ĉt ,Ht−1,ĉ)
[ϕ(at, ct)] (12)
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is the expected feature map with respect to P(ct|ĉt,Ht−1,ĉ).

3.1. Linear-Gaussian Stochastic CBs

We now instantiate Algorithm 1 for Gaussian CBs. Specifically, we consider Gaussian
bandits with the reward noise ξt in (1) as Gaussian N (0, σ2) with mean 0 and variance
σ2 > 0. We also assume a Gaussian prior P(θ∗) = N (0, λI) on the reward parameter θ∗

with mean zero and an m × m diagonal, covariance matrix with entries λ > 0. Here, I
denotes the identity matrix. The assumption of diagonal prior covariance is in line with
Lemma 3 in [19].

We consider a multivariate Gaussian context distribution P(c) = N (µc, Σc) with mean
µc ∈ Rd and covariance matrix Σc ∈ Rd×d. The context noise channel P(ĉ|c, γ∗) is also
similarly Gaussian with a mean (γ∗ + c) and covariance matrix Σn ∈ Rd×d. We assume the
prior on noise channel parameter γ∗ to be Gaussian P(γ∗) = N (0, Σγ) with d-dimensional
zero mean vector 0 and covariance matrix Σγ ∈ Rd×d. We assume that Σc, Σγ and Σn are
all positive definite matrices known to the agent. The assumption of positive definite
covariance matrices is to facilitate the Bayesian analysis adopted in this work. Similar
assumptions were also required in the related work of [14].

For this setting, we can analytically evaluate the predictive posterior distribution
P(ct|ĉt,Ht−1,ĉ) = N (ct|Vt, R−1

t ) as a multi-variate Gaussian with inverse covariance matrix,

Rt = M − Σ−1
n (H−1

t )⊤Σ−1
n , (13)

where Ht = (t − 1)Σ−1
n − (t − 2)Σ−1

n M−1Σ−1
n + Σ−1

γ and M = Σ−1
c + Σ−1

n , and with the
mean vector

Vt = (R−1
t )⊤

(
Σ−1

c µc + Σ−1
n ĉt − Σ−1

n (H−1
t )⊤L⊤

t

)
, (14)

where

L⊤
t = Σ−1

n M−1(Σ−1
c µc + Σ−1

n ĉt) + (Σ−1
n − Σ−1

n M−1Σ−1
n )

t−1

∑
τ=1

ĉτ

− (t − 1)Σ−1
n M−1Σ−1

c µc.

Derivations are presented in Appendix C.1.2.
For the modified-TS step, we sample θt from the approximate posterior distribution

P̄t(θ
∗) := P̄(θ∗|Ht−1,r,a,ĉ) ∝ P(θ∗)

t−1

∏
τ=1

P̄(rτ |aτ , ĉτ ,Hτ−1,ĉ, θ∗), (15)

where

P̄(rτ |aτ , ĉτ ,Hτ−1,ĉ, θ∗) = N (ψ(aτ , ĉτ |Hĉ)
⊤θ∗, σ2) (16)

and ψ(at, ĉt|Hĉ) is the expected feature map defined in (12). This yields the approximate
posterior to be a Gaussian distribution P̄t(θ∗) = N (µt−1, Σ−1

t−1) whose inverse covariance
matrix and mean, respectively, evaluate as

Σt−1 =
I
λ
+

1
σ2

t−1

∑
τ=1

ψ(aτ , ĉτ |Hĉ)ψ(aτ , ĉτ |Hĉ)
⊤ (17)

µt−1 =
Σ−1

t−1
σ2

( t−1

∑
τ=1

rτψ(aτ , ĉτ |Hĉ)
)

. (18)

The sampling distribution P̄t(θ∗) considered above is different from the true posterior
distribution (10), which is analytically intractable. However, it bears resemblance to the
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posterior (9) when the true contexts are known, with the reward distribution P(rτ |aτ , cτ , θ∗)
replaced by P̄(rτ |aτ , ĉτ ,Hτ−1,ĉ, θ∗). In Section 3.2.2, we show that the above choice of
sampling distribution is indeed ‘close’ to the true posterior.

3.2. Bayesian Regret Analysis

In this section, we derive information-theoretic upper bounds on the Bayesian regret
(7) of the modified TS algorithm for Gaussian CBs. To this end, we first outline the key
information-theoretic tools required to derive our bound.

3.2.1. Preliminaries

To start, let P(x) and Q(x) denote two probability distributions defined over the
space X of random variables x. Then, the Kullback–Leibler (KL)-divergence between the
distributions P(x) and Q(x) is defined as

DKL(P(x)||Q(x)) = EP(x)

[
log

P(x)
Q(x)

]
, (19)

if P(x) is absolutely continuous with respect to Q(x), and takes value ∞ otherwise. If x and y
denote two random variables described by the joint probability distribution P(x, y), the mutual
information I(x; y) between x and y is defined as I(x; y) = DKL(P(x, y)∥P(x)P(y)), where
P(x) (and P(y)) is the marginal distribution of x (and y). More generally, for three random
variables x, y and z with joint distribution P(x, y, z), the conditional mutual information
I(x; y|z) between x and y given z evaluates as

I(x; y|z) = EP(z)[DKL(P(x, y|z)∥P(x|z)P(y|z))]

where P(x|z) and P(y|z) are conditional distributions. We will also use the following varia-
tional representation of the KL-divergence, also termed the Donskar–Varadhan (DV) inequality,

DKL(P(x)∥Q(x)) ≥ EP(x)[ f (x)]− logEQ(x)[exp( f (x))], (20)

which holds for any measurable function f : X → R satifying the inequality
EQ(x)[exp( f (x))] < ∞.

3.2.2. Information-Theoretic Bayesian Regret Bounds

In this section, we present information-theoretic upper bounds on the Bayesian regret
of the modified TS algorithm. To this end, we first state our main assumption.

Assumption 1. The feature map ϕ(·, ·) ∈ Rm has bounded norm, i.e., ∥ϕ(·, ·)∥2 ≤ 1.

The following theorem gives our main result.

Theorem 1. Assume that the covariance matrices satisfy ΣnΣ−1
c ≻ 0 and ΣnΣ−1

γ Σn M ≻ 0 where
M = Σ−1

n +Σ−1
c . Under Assumption 1, if λ

σ2 ≤ 1
T ≤ 1, the following upper bound on the Bayesian

regret of the modified TS algorithm holds,

RT(πTS) ≤ U(m,
σ2

T
) +

√
2Tmσ2 +

√
2Tσ2(log(K) + m)

+
4
T

√
mσ2

2Tπ
+ 2

√
4σ2m log

(
2mT

)(
Tr((ΣnΣ−1

γ Σn M)−1) + log(T)Tr(ΣcΣ−1
n )

)
,

where

U(m, λ)=

√
2Tmσ2 min{m, 2 log(1 + K)} log

(
1 +

Tλ

mσ2

)
. (21)
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The theorem above shows that the proposed TS algorithm achieves Õ(m
√

T) regret
when the prior P(θ∗) is highly informative with variance parameter satisfying the constraint
λ ≤ σ2/T.

Remark 1. The assumption on covariance matrices in Theorem 1 directly holds for diagonal
covariance matrices with positive eigen values.

To prove the regret bound of Theorem 1, we start by defining

ât = arg max
a∈A

ψ(a, ĉt|Hĉ)
⊤θ∗ (22)

as the action that maximizes the mean reward ψ(a, ĉt|Hĉ)
⊤θ∗ corresponding to reward

parameter θ∗. Using the above, the Bayesian cumulative regret (7) for the proposed TS
algorithm πTS can be decomposed as

RT(πTS) = RT
CB +RT

EE1 +RT
EE2, where (23)

RT
CB =

T

∑
t=1

E
[
ψ(ât, ĉt|Hĉ)

⊤θ∗ − ψ(at, ĉt|Hĉ)
⊤θ∗

]
,

RT
EE1 =

T

∑
t=1

E
[
ψ(a∗t , ĉt|γ∗)⊤θ∗ − ψ(ât, ĉt|Hĉ)

⊤θ∗
]
,

RT
EE2 =

T

∑
t=1

E
[
ψ(at, ĉt|Hĉ)

⊤θ∗ − ψ(at, ĉt|γ∗)⊤θ∗
]
.

In (23), the first term RT
CB quantifies the Bayesian regret of our action policy (11)

with respect to the action policy (22) for a CB with mean reward function ψ(a, ĉt|Hĉ)
⊤θ∗.

The second term RT
EE1 accounts for the average difference in the cumulative mean rewards

of the oracle optimal action policy (4), evaluated using the exact predictive distribution
P(ct|ĉt, γ∗), and our action policy (11), that uses the inferred predictive posterior dis-
tribution P(ct|ĉt,Ht−1,ĉ). In this sense, RT

EE1 captures the error in approximating the
exact predictive distribution P(ct|ĉt, γ∗) via the inferred predictive distribution P(ct|ĉt,Hĉ).
The third term RT

EE2 similarly accounts for the average approximation error.
To derive an upper bound on the Bayesian regret RT(πTS), we separately upper

bound each of the three terms in (23) as derived in the following lemmas. The lemma below
presents an upper bound on RT

CB.

Lemma 1. Under Assumption 1, the following upper bound holds if λ
σ2 ≤ 1

T ≤ 1,

RT
CB ≤ U(m,

σ2

T
) +

√√√√2σ2
T

∑
t=1

Dt +

√√√√2σ2
(

T log(K) +
T

∑
t=1

Dt

)
, (24)

≤ U(m,
σ2

T
) +

√
2Tmσ2 +

√
2Tσ2(log(K) + m), (25)

where Dt = E[DKL(Pt(θ∗)∥P̄t(θ∗))] and U(m, λ) is as defined in (21).

To derive the upper bound in (24), we leverage results from [19] that study information-
theoretic Bayesian regret of standard contextual TS algorithms via lifted information-
ratio. However, the results do not directly apply to our algorithm due to the posterior
mismatch between the sampling distribution P̄t(θ∗) and the true posterior distribution Pt(θ∗).
Consequently, our upper bound (24) consists of three terms: the first term, defined as in (21),
corresponds to the upper bound on the Bayesian regret of contextual TS that assumes P̄t(θ∗)
as the true posterior. This can be obtained by applying the lifted information ratio-based
analysis of Cor. 2 in [19]. The second and third terms account for the posterior mismatch
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via the expected KL-divergence E[DKL(Pt(θ∗)∥P̄t(θ∗))] between the true posterior Pt(θ∗)
and the sampling distribution P̄t(θ∗). In particular, this expected KL divergence can
be upper bounded by 2(t − 1)λm/σ2 (See Appendix C.1.3 for proof) under the prior
P(θ∗) = N (0, λI). Importantly, our result holds when this prior distribution is sufficiently
concentrated with its variance satisfying the inequality λ ≤ σ2/T. This ensures that the
contribution of posterior mismatch to the Bayes regret scales is O(

√
mT).

The following lemma gives an upper bound on the sum RT
EE1 +RT

EE2.

Lemma 2. Under Assumption 1, the following upper bound holds for δ ∈ (0, 1),

RT
EE1 +RT

EE2 ≤ 2RT
EE1

≤ 4δ2T

√
mλ

2π
+ 2

√√√√4λTm log
(2m

δ

) T

∑
t=1

I(γ∗; ct|ĉt,Ht−1,ĉ). (26)

In addition, if the covariance matrices satisfy that ΣnΣ−1
c ≻ 0 and ΣnΣ−1

γ Σn M ≻ 0 where
M = Σ−1

n + Σ−1
c , then (26) can be further upper bounded as

RT
EE1 +RT

EE2

≤ 4δ2T

√
mλ

2π
+ 2

√
4λTm log

(2m
δ

)(
Tr((ΣnΣ−1

γ Σn M)−1) + log(T)Tr(ΣcΣ−1
n )

)
. (27)

Lemma 2 shows that the error in approximating P(ct|ĉt, γ∗) with P(ct|ĉt,Ht−1,ĉ),
on average, can be quantified via the conditional mutual information I(γ∗; ct|ĉt,Ht−1,ĉ)
between γ∗ and true context ct given knowledge of observed noisy contexts up to and
including iteration t.

Finally, combining Lemmas 1 and 2 with the choice of δ = 1/T and λ ≤ σ2/T gives
us the regret bound in Theorem 1.

3.3. Beyond Gaussian Bandits

In the previous sections, we studied Gaussian bandits and analyzed the Bayesian
regret. We will now discuss the potential extension of results beyond Gaussian bandits.
As in [14], we will focus on Gaussian context distribution and context noise distribution,
which helps to derive the upper bound on the estimation errors in Lemma 2.

To extend the Bayesian regret analysis to non-Gaussian bandits, Lemma 1 requires
bandit-specific modifications. Specifically, the derivation of the term U(m, λ), that captures
the standard Bayesian regret of contextual TS with P̄t(θ∗) as the true posterior, and that
of the posterior mismatch term via the expected KL divergence critically depends on the
type of bandit and the choice of the sampling posterior. The Bayesian regret bound U(m, λ)
is derived using the lifted information ratio-based approach of [19]. This can indeed be
extended to non-Gaussian bandits like logistic bandits (see [19]) to obtain a modified
U(m, λ) term.

However, the analysis of posterior mismatch term for non-Gaussian bandits is non-
trivial and depends on the specific bandit assumed. Firstly, to characterize the posterior mis-
match via the expected KL divergence, our analysis requires the chosen
sampling distribution P̄t(θ∗) to be sub-Gaussian. To choose the sampling distribution,
one can follow the framework adopted in (15) and (16) and use an ‘appropriate’
reward distribution P̄(rτ |aτ , ĉτ ,Hτ−1,ĉ, θ∗) such that (a) the KL divergence
DKL(P(rτ |aτ , cτ , θ∗)∥P̄(rτ |aτ , ĉτ ,Hτ−1,ĉ, θ∗)) between the true reward distribution and the
chosen reward distribution is small to minimize posterior mismatch, and (b) the resulting
sampling distribution is easy to sample from and has sub-Gaussian tails. Thus, analyz-
ing the posterior mismatch for non-Gaussian bandits requires a case-by-case treatment.
For Gaussian bandits, we control the above KL divergence by choosing a Gaussian distri-
bution P̄(rτ |aτ , ĉτ ,Hτ−1,ĉ, θ∗) with mean ψ(aτ , ĉτ |Hĉ) as in (16). Finally, in Section 5, we
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extend Algorithm 1 to logistic bandits with the choice of sampling distribution motivated
by (15) and (16) and use Langevin Monte Carlo to sample from this distribution.

4. TS for CB with Delayed True Contexts

In this section, we consider the CBs with delayed true context setting where the agent
observes the true context ct after it observes the reward rt corresponding to the chosen
action at. Note, that at the time of choosing action at, the agent has access only to noisy
contexts. We specialize our TS algorithm to this setting, and call it Algorithm 2 (or πTS

delay).

Algorithm 2: TS for Delayed True contexts (πTS
delay)

1: for t = 1, . . . , T do
2: The environment selects a true context ct.
3: Agent observes noisy context ĉt.
4: Agent evaluates the predictive posterior distribution P(ct|ĉt,Ht−1,c,ĉ) as in (28).
5: Agent samples θt ∼ P(θ∗|Ht−1,r,a,c).
6: Agent chooses action at as in (33).
7: Agent observes reward rt (as in (1)) and the true context ct.
8: end for

Algorithm 2 follows similar steps as in Algorithm 1. However, different from
Algorithm 1, at the tth iteration, the agent knows the history Ht−1,c,ĉ of true contexts in
addition to that of noisy contexts. Consequently, in the de-noising step, the agent evaluates
the predictive posterior distribution as

P(ct|ĉt,Ht−1,c,ĉ) = EP(γ∗ |Ht−1,c,ĉ)
[P(ct|ĉt, γ∗)], (28)

where P(ct|ĉt, γ∗) is as defined in (2) and posterior distribution P(γ∗|Ht−1,c,ĉ) is obtained
via Baye’s rule as P(γ∗|Ht−1,c,ĉ) ∝ P(γ∗)∏t−1

τ=1 P(cτ , ĉτ |γ∗) using the history of true and
noisy contexts.

For the Gaussian context, noise as considered in Section 3.1, the predictive poste-
rior distribution P(ct|ĉt,Ht−1,c,ĉ) = N (Ṽt, R̃−1

t ) is multivariate Gaussian with the inverse
covariance matrix,

R̃t = M − Σ−1
n H̃−1

t Σ−1
n , (29)

and the mean vector

Ṽt = R̃−1
t

(
Σ−1

c µc + Σ−1
n ĉt + Σ−1

n H̃−1
t Σ−1

n

t−1

∑
τ=1

(ĉτ − cτ)− Σ−1
n H̃−1

t Σ−1
n M−1(Σ−1

c µc − Σ−1
n ĉt)

)
, (30)

where M = Σ−1
c + Σ−1

n and H̃t = Σ−1
n M−1Σ−1

n + (t − 1)Σ−1
n + Σ−1

γ . Derivation can be
found in Appendix B.2.4.

Following the denoising step, the next step in Algorithm 2 is a conventional Thompson
sampling step, thanks to access to delayed true contexts. Consequently, the agent can eval-
uate the posterior distribution P(θ∗|Ht−1,r,a,c) with known contexts as in (9) and use it to
sample θt ∼ P(θ∗|Ht−1,r,a,c). For Gaussian bandit with Gaussian prior on θ∗, the posterior
distribution P(θ∗|Ht−1,r,a,c) = N (µ̃t−1, Σ̃−1

t−1) is a multivariate Gaussian distribution whose
inverse covariance matrix and mean, respectively, evaluate as

Σ̃t−1 =
1
λ
I+ 1

σ2

t−1

∑
τ=1

ϕ(aτ , cτ)ϕ(aτ , cτ)
⊤ (31)

µ̃t−1 =
Σ̃−1

t−1
σ2

( t−1

∑
τ=1

rτϕ(aτ , cτ)
)

. (32)
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Using the sampled θt and the obtained predictive posterior distribution P(ct|ĉt,Ht−1,c,ĉ),
the agent then chooses action at as

at = arg max
a∈A

ψ(a, ĉt|Hc,ĉ)
⊤θt, (33)

where we use the expected feature map ψ(at, ĉt|Hc,ĉ) := EP(ct |ĉt ,Ht−1,c,ĉ)
[ϕ(at, ct)].

Information-Theoretic Bayesian Regret Bounds

In this section, we derive an information-theoretic upper bound on the Bayesian
regret (7) of Algorithm 2 for Gaussian CBs. The following theorem presents our
main result.

Theorem 2. Under Assumption 1 and assuming that covariance matrices satisfy ΣγΣ−1
n ≻ 0,

the following inequality holds for δ ∈ (0, 1) when λ ≤ σ2,

RT(πTS
delay) ≤ U(m, λ) + 4Tδ2

√
2mλ

π
+2

√
2λmTd log

(
1 + TTr(ΣγΣ−1

n )/d
)

log
(2m

δ

)
,

where U(m, λ) is as defined in (21).

Theorem 2 shows that Algorithm 2 achieves Õ(m
√

T) regret with the choice of δ = 1/T
if d = O(m). Furthermore, due to the absence of posterior mistmatch, the upper bound
above is tighter than that of Theorem 1.

We now outline the main lemmas required to prove Theorem 2. To this end, we re-use
the notation

ât = arg max
a∈A

ψ(a, ĉt|Hc,ĉ)
⊤θ∗ (34)

to define the optimal action maximizing the mean reward ψ(a, ĉt|Hc,ĉ)
⊤θ∗.

To derive the regret upper bound in Theorem 2, we first decompose the Bayesian
cumulative regret (7) of Algorithm 2 (πTS

delay), similar to (23), into the following three terms,

RT(πTS
delay) = RT

d,CB +RT
d,EE1 +RT

d,EE2where, (35)

RT
d,CB =

T

∑
t=1

E
[
ψ(ât, ĉt|Hc,ĉ)

⊤θ∗ − ψ(at, ĉt|Hc,ĉ)
⊤θ∗

]
,

RT
d,EE1 =

T

∑
t=1

E
[
ψ(a∗t , ĉt|γ∗)⊤θ∗ − ψ(ât, ĉt|Hc,ĉ)

⊤θ∗
]
,

RT
d,EE2 =

T

∑
t=1

E
[
ψ(at, ĉt|Hc,ĉ)

⊤θ∗ − ψ(at, ĉt|γ∗)⊤θ∗
]
.

An upper bound on RT(πTS
delay) can be then obtained by separately bounding each of the

three terms in (35).
In (35), the first term RT

d,CB corresponds to the Bayesian cumulative regret of a standard
contextual TS algorithm that uses ψ(a, ĉt|Hc,ĉ)

⊤θ∗ for a ∈ A as the mean reward function.
Note, that due to availability of delayed true contexts, there is no posterior mismatch in
Algorithm 2. Hence, we apply Cor. 3 in [19] to yield the following upper bound on RT

d,CB.

Lemma 3. Under Assumption 1, the following upper bound on RT
d,CB holds for λ

σ2 ≤ 1,

RT
d,CB ≤ U(m, λ), (36)

where U(m, λ) is defined as in (21).
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Lemma 3 gives a tighter bound in comparison to Lemma 1 where the posterior mis-
match results in additional error terms in the regret bound.

We now upper bound the second term RT
d,EE1 of (35), which similar to the term RT

EE1
in (23), captures the error in approximating the exact predictive distribution P(ct|ĉt, γ∗)
via the inferred predictive distribution P(ct|ĉt,Hc,ĉ). The following lemma shows that
this approximation error over T iterations can be quantified, on average, via the mutual
information I(γ∗;HT,c,ĉ) between γ∗ and the T-length history of observed true and noisy
contexts. This bound also holds for the third term RT

d,EE2 of (35) which similarly accounts
for the average approximation error.

Lemma 4. Under Assumption 1, for any δ ∈ (0, 1), we have the following upper bound,

RT
d,EE1 +RT

d,EE2 ≤ 2RT
d,EE1≤ 4

√
mλT log

(2m
δ

)
I(γ∗;HT,c,ĉ) + 4Tδ2

√
2mλ

π
.

Furthermore, if the covariance matrices satisfy that ΣγΣ−1
n ≻ 0, we obtain that

I(γ∗;HT,c,ĉ) ≤
d
2

log
(

1 + TTr(ΣγΣ−1
n )/d

))
.

Combining Lemmas 3 and 4 then gives us the upper bound on RT(πTS
delay) in Theorem 1.

5. Experiments and Final Remarks

In this section, we experimentally validate the performance of the proposed algo-
rithms on synthetic and real-world datasets. Details of implementation can be found in
Appendux D.

Synthetic Datasets: For synthetic datasets, we go beyond Gaussian bandits and
evaluate our algorithms for logistic contextual bandits (see Figure 1 (Left) and (Center)).
In both these settings, we consider Gaussian contexts and context noise as in Section 3.1 with
parameters Σc = I, Σγ = σ2

γI, Σn = σ2
nI for some σ2

γ, σ2
n > 0. We further consider action a ∈

A and context c ∈ C to be d = 5 dimensional vectors with ai and ci, respectively, denoting
their ith component. We use ϕ(a, c) = [a2

1, a2
2, a2

3, a2
4, a2

5, c2
1, c2

2, c2
3, c2

4, c2
5, a1c1, a2c2, a3c3, a4c4,

a5c5] as the m = 15 dimensional feature vector.

Figure 1. Comparison of Bayesian regret of proposed algorithms with baselines as a function of
number of iterations. (Left): Gaussian bandits with K = 40, σ2

n = σ2
γ = 1.1; (Center) Logistic bandits

with K = 40, σ2
n = 2, σ2

γ = 2.5; (Right) MovieLens dataset with added Gaussian context noise and
Gaussian prior: parameters set as σ2

n = 0.1, σ2
γ = 0.6.

Gaussian Bandits: The mean reward function is given by f (θ∗, a, c) = ϕ(a, c)⊤θ∗ with
the feature map described above. Other parameters are fixed as σ2

γ = σ2
n = 1.1, σ2 = 2 and

λ = 0.01. Plots are averaged over 100 independent trials.
Logistic Bandits: The reward rt ∈ {0, 1} is Bernoulli with mean reward given by

µ(ϕ(a, c)⊤θ∗), where µ(z) = 1/(1 + exp(−z)) is the sigmoid function. We consider a
Gaussian prior N (0, I) over θ∗. In Algorithm 1, we choose the sampling distribution

P̄t(θ
∗) ∝ P(θ∗)

t−1

∏
τ=1

Ber(µ(ψ(aτ , ĉτ |Hĉ)
⊤θ∗)).
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However, the posterior P̄t(θ∗) is analytically intractable since Bernoulli reward-Gaussian
prior forms a non-conjugate distribution pair. Consequently, we use Langevin Monte Carlo
(LMC) [20] to sample from P̄t(θ∗). We run LMC for I = 50 iterations with learning rate
ηt = 0.2/t and inverse temperature β−1 = 0.001. Plots are averaged over 10 independent trials.

MovieLens Dataset: We use the MovieLens-100K dataset [21] to evaluate the per-
formances. To utilise this dataset, we first perform non-negative matrix factorization on
the rating matrix R = [rc,a] ∈ R943×1682 with 3 latent factors to obtain R = WH, where
W ∈ R943×3 and H ∈ R3×1682. Each row vector Wc corresponds to an user context, while
each column vector Ha corresponds to movie (action) features. The mean and variance of
the Gaussian context distribution is estimated from the row vectors of W. We then add
Gaussian noise to context as in the synthetic settings with σ2

n = 0.1.
We apply K-means algorithm to the column vectors of H to group the actions into

K = 20 clusters. We use mk ∈ R3 to denote the centroid and vk to denote the variance
of the kth cluster. We then fix the mean and variance of the Gaussian prior over θ∗ as
µθ = (m1, . . . , mK) and Σθ = diag(v1I3, . . . , vKI3), with I3 denoting the 3 × 3 identity
matrix, respectively. The feature vector ϕ(a, c) is then fixed as a 60-dimensional vector with
vector Wc at the index of the cluster k to which action a belongs and zeros everywhere else.
We further add mean-zero Gaussian noise to the mean reward ϕ(a, c)⊤θ∗ with variance
σ2 = 0.01. The Bayesian oracle in this experiment has access to the exact context noise
parameter γ∗ sampled from the Gaussian prior with variance Σγ = σ2

γI, as well as the true
θ∗ sampled from the Gaussian prior P(θ∗).

Baselines: We compare our algorithms with two baselines: TS_naive and TS_oracle.
In TS_naive, the agent observes only noisy contexts but is unaware of the presence of noise.
Consequently, it naively implements conventional TS with noisy context ĉt. This sets the
benchmark for the worst-case achievable regret. The second baseline TS_oracle assumes
that the agent knows the true channel parameter γ∗, a setting studied in [18], and can thus
perform exact denoising via the predictive posterior distribution P(ct|ĉ, γ∗). This algorithm
sets the benchmark for the best achievable regret.

Figure 1 (Left) corroborates our theoretical findings for Gaussian bandits. In particular,
our algorithms (Algorithms 1 and 2) demonstrate sub-linear regret and achieve robust
performance comparable to the best achievable performance of TS_oracle. We remark that
while our regret analysis of Gaussian bandits is motivated due to the tractability of posterior
distributions and the concentration properties of Gaussians, our empirical results for logistic
bandits in Figure 1 (Center) show a promising extension of our algorithms to non-conjugate
distributions. Extension of Bayesian regret analysis to such general distributions is left
for future work. Further, our experiments on MovieLens data in Figure 1 (Right) validate
the effectiveness of our algorithm in comparison to the benchmarks. The plot shows that
our approach outperforms TS_naive and achieves comparable regret as that of TS_oracle
which is the best achievable regret.

6. Conclusions

We studied a stochastic CB problem where the agent observes noisy contexts through
a noise channel with an unknown channel parameter. For Gaussian bandits and Gaussian
context noise, we introduced a TS algorithm that achieves Õ(m

√
T) Bayesian regret. The

setting of Gaussian bandits with Gaussian noise was chosen for easy tractability of posterior
distributions used in the proposed TS algorithms. We believe that the algorithm and
key lemmas can be extended to when the likelihood-prior form conjugate distributions.
Extension to general distributions is left for future work.

Finally, we conjecture that our proposed modified TS algorithm and the information-
theoretic Bayesian regret analysis could be extended to noisy contexts in multi-task bandit
settings. In this regard, a good starting point would be to leverage prior works that
study multi-armed hierarchical bandits [22] and contextual hierarchical bandits [23] with
linear-Gaussian reward models. However, the critical challenge is to evaluate the posterior
mismatch which requires a case-by-case analysis.
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Appendix A. Preliminaries

Definition A1 (Sub-Gaussian Random Variable). A random variable y is said to be s2-sub-
Gaussian with respect to the distribution P(y) if the following inequality holds:

EP(y)[exp(λ(y −EP(y)[y])] ≤ exp
(λ2s2

2

)
. (A1)

Lemma A1 (Change of Measure Inequality). Let x ∈ Rn be a random vector and g : Rn → R
denote a real-valued function. Let P(x) and Q(x) be two probability distributions defined on the
space of x. If g(x) is s2-sub-Gaussian with respect to Q(x), then the following inequality holds,

|EP(x)[g(x)]−EQ(x)[g(x)]| ≤
√

2s2DKL(P(x)∥Q(x)). (A2)

Proof. The inequality (A2) follows by using the Donsker-Varadhan inequality (20) with
f (x) = λg(x) for λ ∈ R. This yields that

DKL(P(x)∥Q(x)) ≥ EP(x)[λg(x)]− logEQ(x)[exp(λg(x))]

≥ EP(x)[λg(x)]−EQ(x)[λg(x)]− λ2 s2

2
(A3)

where the last inequality follows from the assumption of sub-Gaussianity. Rearranging,
we obtain

EP(x)[λg(x)]−EQ(x)[λg(x)] ≤ λ2 s2

2
+ DKL(P(x)∥Q(x)). (A4)

For λ > 0, we obtain that

EP(x)[g(x)]−EQ(x)[g(x)] ≤ λ
s2

2
+

DKL(P(x)∥Q(x))
λ

, (A5)

and optimizing over λ > 0 then yields that

EP(x)[g(x)]−EQ(x)[g(x)] ≤
√

2s2DKL(P(x)∥Q(x)). (A6)

Similarly, for λ < 0, we obtain that

EQ(x)[g(x)]−EP(x)[g(x)] ≤
√

2s2DKL(P(x)∥Q(x)). (A7)

Lemma A2. Let x ∈ Rn be distributed according to Q(x) = ∏n
i=1 N (xi|µi, σ2

i ), i.e., each element
of the random vector is independently distributed according to a Gaussian distribution with mean µi
and variance σ2

i . Let g(x) = maxi=1,...n xi denote the maximum of n Gaussian random variables.
Then, the following inequality holds for λ ≥ 0,

https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
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logEQ(x)[exp(λg(x))] ≤ log n + λ max
i

µi + λ2 maxi σ2
i

2
. (A8)

For any distribution P(x) that is absolutely continuous with respect to Q(x), we then have the
following change of measure inequality,

EP(x)[g(x)]−EQ(x)[g(x)] ≤
√

2
(

log n + DKL(P(x)∥Q(x))
)

max
i

σ2
i . (A9)

Proof. The proof of inequality (A8) follows from standard analysis (see [14]). We present it
here for the sake of completeness. The following sequence of relations hold for any λ ≥ 0,

EQ(x)[exp(λg(x))] = EQ(x)[max
i

exp(λxi)] ≤
n

∑
i=1

EQ(xi)
[exp(λxi)]

=
n

∑
i=1

exp
(

λµi + λ2σ2
i /2

)
≤ n exp(λ max

i
µi + λ2 max

i
σ2

i /2
)

. (A10)

Taking logarithm on both sides of the inequality yields the upper bound in (A8). We now
apply the DV inequality (20) as in (A3). This yields that

DKL(P(x)∥Q(x)) ≥ EP(x)[λg(x)]− logEQ(x)[exp(λg(x))]
(a)
≥ EP(x)[λg(x)]− log n − λ max

i
µi − λ2 maxi σ2

i
2

(b)
≥ EP(x)[λg(x)]−EQ(x)[λg(x)]− log n − λ2 maxi σ2

i
2

, (A11)

where the inequality in (a) follows from (A8). The inequality in (b) follows from observing
that maxi xi ≥ xi for all i, whereby we obtain that EQ(x)[maxi xi] ≥ µi which holds for all i.
The latter inequality implies that EQ(x)[maxi xi] ≥ maxi µi. Re-arranging and optimizing
over λ ≥ 0 then yields the required inequality in (A9).

Appendix B. Linear-Gaussian Contextual Bandits with Delayed Contexts

In this section, we provide all the details relevant to the Bayesian cumulative regret
analysis of TS for delayed, linear-Gaussian contextual bandits.

Appendix B.1. TS Algorithm for Linear-Gaussian Bandits with Delayed True Contexts

The pseudocode for the TS algorithm for Gaussian bandits is given in Algorithm A1.

Algorithm A1: TS with Delayed Contexts for Gaussian Bandits (πTS
delay)

1: Given parameters: (Σn, σ2, λ, Σγ, µc, Σc). Initialize µ̃0 = 0 ∈ Rm and Σ̃−1
0 = (1/λ)I

2: for t = 1, . . . , T do
3: The environment selects a true context ct.
4: Agent observes noisy context ĉt.
5: Agent computes R̃t and Ṽt using (29) and (30) to evaluate P(ct|ĉt,Ht−1,c,ĉ) =

N (Ṽt, R̃−1
t ).

6: Agent samples θt ∼ N (µ̃t−1, Σ̃−1
t−1) where µ̃t−1 and Σ̃t−1 are defined as in (32) and

(31).
7: Agent chooses action at as in (33) using θt and P(ct|ĉt,Ht−1,c,ĉ).
8: Agent observes reward rt corresponding to at, and the true context ct.
9: end for



Entropy 2024, 26, 606 17 of 37

Appendix B.2. Derivation of Posterior and Predictive Posterior Distributions

In this section, we provide detailed derivation of posterior predictive distribution for
Gaussian bandits. To this end, we first derive the exact predictive distribution P(ct|ĉt, γ∗).

Appendix B.2.1. Derivation of P(ct|ĉt, γ∗)

We begin by noting that

P(ct|ĉt, γ∗) =
P(ct)P(ĉt|ct, γ∗)

P(ĉt|γ∗)
∝ P(ct)P(ĉt|ct, γ∗)

= N (µc, Σc)N (ct + γ∗, Σn).

Subsequently,

log(P(ct|ĉt, γ∗)) ∝ log(P(ct)P(ĉt|ct, γ∗))

∝ −1
2

(
(ct − µc)

⊤Σ−1
c (ct − µ) + (ĉt − ct − γ∗)⊤Σ−1

n (ĉt − ct − γ∗)

)
= −1

2

(
c⊤t (Σ

−1
c + Σ−1

n )ct −
(

µ⊤
c Σ−1

c + (ĉt − γ∗)⊤Σ−1
n

)
ct

− c⊤t
(

Σ−1
c µc + Σ−1

n (ĉt − γ∗)
)
+ (ĉt − γ∗)⊤Σ−1

n (ĉt − γ∗)

)
= −1

2

(
c⊤t Mct − A⊤

t Mct − c⊤t MA + A⊤
t MA − A⊤

t MA

+ (ĉt − γ∗)⊤Σ−1
n (ĉt − γ∗)

)
, (A12)

where we have defined

M = Σ−1
c + Σ−1

n (A13)

At = (M−1)⊤
(

Σ−1
c µc + Σ−1

n (ĉt − γ∗)
)

. (A14)

From (A12), we obtain

log(P(ct|ĉt, γ∗)) ∝ −1
2

(
c⊤t Mct − A⊤

t Mct − c⊤t MA + A⊤
t MA

)
.

This implies that

P(ct|ĉt, γ∗) = N (At, M−1). (A15)

Appendix B.2.2. Derivation of P(ĉt|γ∗)

We now derive the distribution P(ĉt|γ∗) which is defined in (3) as

P(ĉt|γ∗) = EP(ct)[P(ĉt|ct, γ∗)].

Hence, P(ĉt|γ∗) can be obtained by marginalizing the joint distribution P(ct)P(ĉt|ct, γ∗) =
P(ct|ĉt, γ∗)P(ĉt|γ∗) over ct. To this end, we use (A12) to obtain,

log(P(ct)P(ĉt|ct, γ∗)) = log(P(ct|ĉt, γ∗)P(ĉt|γ∗))

∝ log(P(ct|ĉt, γ∗))− 1
2

(
−A⊤

t MA + (ĉt − γ∗)⊤Σ−1
n (ĉt − γ∗)

)
,
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which implies that

log(P(ĉt|γ∗)) ∝ −1
2

(
−A⊤

t MA + (ĉt − γ∗)⊤Σ−1
n (ĉt − γ∗)

)
∝ −1

2

(
ĉ⊤t

(
Σ−1

n − Σ−1
n (M−1)⊤Σ−1

n

)
ĉt − ĉ⊤t

(
Σ−1

n (M−1)⊤(−Σ−1
n γ∗ + Σ−1

c µc)

+ Σ−1
n γ∗

)
−

(
(µ⊤

c Σ−1
c − γ∗⊤Σ−1

n )(M−1)Σ−1
n + γ∗⊤Σ−1

n

)
ĉ
)

= −1
2

(
ĉ⊤t Gĉt − F⊤Gĉt − G⊤Fĉt

)
∝ −1

2

(
(ĉt − F)⊤G(ĉt − F)

)
,

where

G = Σ−1
n − Σ−1

n (M−1)⊤Σ−1
n (A16)

F = (G−1)⊤
(

Σ−1
n (M−1)⊤(−Σ−1

n γ∗ + Σ−1
c µc) + Σ−1

n γ∗
)
= (G−1)⊤(Gγ∗ + Σ−1

n (M−1)⊤Σ−1
c µc). (A17)

Thus,

P(ĉt|γ∗) = N (F, G−1). (A18)

Appendix B.2.3. Derivation of P(γ∗|Ht−1,c,ĉ)

We now derive the posterior distribution P(γ∗|Ht−1,c,ĉ). To this end, we use Baye’s
theorem as

P(γ∗|Ht−1,c,ĉ) ∝
t−1

∏
τ=1

P(ĉτ |cτ , γ∗)P(γ∗)

=
t−1

∏
τ=1

N (cτ + γ∗, Σn)N (0, Σγ).

We then have,

log P(γ∗|Ht−1,c,ĉ) ∝ −1
2

( t−1

∑
τ=1

(
(ĉτ − cτ − γ∗)⊤Σ−1

n (ĉτ − cτ − γ∗)

)
+ γ∗⊤Σ−1

γ γ∗
)

= −1
2

( t−1

∑
τ=1

(
(−ĉτ + cτ + γ∗)⊤Σ−1

n (−ĉτ + cτ + γ∗)

)
+ γ∗⊤Σ−1

γ γ∗
)

∝ −1
2

(
γ∗⊤((t − 1)Σ−1

n + Σ−1
γ )γ∗ − γ∗⊤Σ−1

n (
t−1

∑
τ=1

(ĉτ − cτ))

− (
t−1

∑
τ=1

(ĉτ − cτ))
⊤Σ−1

n γ∗
)

.

Consequently, we obtain that,

P(γ∗|Ht−1,c,ĉ) = N (γ∗|Yt, W−1
t ) (A19)
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where

Wt = (t − 1)Σ−1
n + Σ−1

γ (A20)

Yt = (W−1
t )⊤Σ−1

n

t−1

∑
τ=1

(ĉτ − cτ). (A21)

Appendix B.2.4. Derivation of Posterior Predictive Distribution P(ct|ĉt,Ht−1,c,ĉ)

Using results from previous subsections, we are now ready to derive the posterior pre-
dictive distribution P(ct|ĉt,Ht−1,c,ĉ). Note, that P(ct|ĉt,Ht−1,c,ĉ) = EP(γ∗ |Ht−1,c,ĉ)

[P(ct|ĉt, γ∗)].
We then have the following set of relations:

log
(

P(γ∗|Ht−1,c,ĉ)P(ct|ĉt, γ∗)
)

∝ −1
2

(
(ct − At)

⊤M(ct − At) + (γ∗ − Yt)
⊤Wt(γ

∗ − Yt)
)

= −1
2

(
(ct − D − Et + (M−1)⊤Σ−1

n γ∗)⊤M(ct − D − Et + (M−1)⊤Σ−1
n γ∗)

+ (γ∗ − Yt)
⊤Wt(γ

∗ − Yt)
)

∝ −1
2

(
γ∗⊤(Σ−1

n (M−1)⊤Σ−1
n + Wt)γ

∗ − γ∗⊤(Σ−1
n (D + Et − ct) + WtYt)− ((D + Et − ct)

⊤Σ−1
n

+ Y⊤
t Wt)γ

∗ + (ct − D − Et)
⊤M(ct − D − Et)

)
= −1

2

(
γ∗⊤H̃tγ

∗ − γ∗⊤H̃⊤
t J̃t − J̃⊤t H̃tγ

∗ + J̃⊤t H̃t J̃t − J̃⊤t H̃t J̃t + (ct − D − Et)
⊤M(ct − D − Et)

)
∝ log(P(γ∗|Ht,c,ĉ))−

1
2

(
− J̃⊤t H̃t J̃t + (ct − D − Et)

⊤M(ct − D − Et)
)

where D = (M−1)⊤Σ−1
c µc, Et = (M−1)⊤Σ−1

n ĉt, H̃t = Σ−1
n (M−1)⊤Σ−1

n + Wt and
J̃t = (H̃−1

t )⊤(Σ−1
n (D + Et − ct) + WtYt).

Since log
(

P(γ∗|Ht−1,c,ĉ)P(ct|ĉt, γ∗)
)
= log

(
P(ct|ĉt,Ht−1,c,ĉ)P(γ∗|Ht,c,ĉ)

)
, we obtain

log(P(ct|ĉt,Ht−1,c,ĉ)) ∝ −1
2

(
− J̃⊤t H̃t J̃t + (ct − D − Et)

⊤M(ct − D − Et)
)

∝ −1
2

(
c⊤t

(
M − Σ−1

n (H̃−1
t )⊤Σ−1

n

)
ct − c⊤t

(
M(D + Et)

− Σ−1
n (H̃−1

t )⊤(Σ−1
n (D + Et) + WtYt)

)
−

(
M(D + Et)

− Σ−1
n (H̃−1

t )⊤(Σ−1
n (D + Et) + WtYt)

)⊤
ct

)
.

This gives

P(ct|ĉt,Ht−1,c,ĉ) = N (Ṽt, R̃−1
t ) where (A22)

R̃t = M − Σ−1
n (H̃−1

t )⊤Σ−1
n (A23)

Ṽt = (R̃−1
t )⊤

(
M(D + Et)− Σ−1

n (H̃−1
t )⊤(Σ−1

n (D + Et) + WtYt)
)

. (A24)

Appendix B.3. Proof of Lemma 3

We now present the proof of Lemma 3. To this end, we first recall that Et[·] =
E[·|Ft] where Ft = Ht−1,r,a,c,ĉ ∪ ĉt, and we denote Pt(θ∗) as the posterior distribution
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P(θ∗|Ht−1,r,a,c) of θ∗ given the history of observed reward-action-context tuples. We can
then equivalently write RT

d,CB as

RT
d,CB =

T

∑
t=1

E
[
Et

[
ψ(ât, ĉt|Hc,ĉ)

⊤θ∗ − ψ(at, ĉt|Hc,ĉ)
⊤θ∗

]]
=

T

∑
t=1

E
[
Et

[
f (θ∗, ât, ct)− f (θ∗, at, ct)

]
︸ ︷︷ ︸

:=∆t

]
, (A25)

where ψ(a, ĉt|Hc,ĉ) = EP(ct |ĉt ,Ht−1,c,ĉ)
[ϕ(a, ct)] is as defined in (33) and we have used

f (θ∗, at, ct) = ϕ(at, ct)⊤θ∗ to denote the mean-reward function. To obtain an upper bound
on RT

d,CB, we define the following lifted information ratio as in [19],

Γt =
(Et[∆t])2

Λt
(A26)

where

Λt = Et

[(
f (θ∗, at, ct)− f̄ (at, ct)

)2]
, (A27)

with f̄ (at, ct) = Et[ f (θ∗, at, ct)|at, ct] denoting the expectation of mean reward with respect
to the posterior distribution Pt(θ∗). Subsequently, we obtain the following upper bound

RT
d,CB ≤

T

∑
t=1

E
[√

ΓtΛt

]
≤

√√√√E
[ T

∑
t=1

Γt

][ T

∑
t=1

E
[
Λt

]]
, (A28)

where the last inequality follows by an application of Cauchy–Schwarz inequality. An upper
bound on RT

d,CB then follows by obtaining an upper bound on the lifted information ratio
Γt as well as on Λt.

We first evaluate the term Λt. To this end, note that f̄ (at, ct) = ϕ(at, ct)⊤µ̃t−1, with µ̃t−1
defined as in (32). Using this, we obtain

Λt = Et

[
(ϕ(at, ct)

⊤(θ∗ − µ̃t−1))
2
]

= Et

[
ϕ(at, ct)

⊤(θ∗ − µ̃t−1)(θ
∗ − µ̃t−1)

⊤ϕ(at, ct)
]

(A29)

= Et

[
ϕ(at, ct)

⊤Σ̃−1
t−1ϕ(at, ct)

]
= Et

[
∥ϕ(at, ct)∥2

Σ̃−1
t−1

]
(A30)

where Σ̃t−1 is as in (31), and the third equality follows since conditional on Ft, (at, ct) is
independent of θ∗. Subsequently, we can apply the elliptical potential lemma Lemma 19.4
in [24] using the assumption that ∥ϕ(·, ·)∥2 ≤ 1 and that σ2/λ ≥ 1. This results in

T

∑
t=1

∥ϕ(at, ct)∥2
Σ̃−1

t−1
= σ2

T

∑
t=1

∥ϕ(at, ct)∥2
(σ2Σ̃t−1)−1

≤ 2σ2 log
det(Σ̃T)

det(σ2/λI) = 2σ2
(

m log
(

σ2/λ + T/m
)
− m log(σ2/λ)

)
= 2mσ2 log

(
1 +

Tλ

mσ2

)
. (A31)

To upper bound the lifted information ratio term Γt, we can use Lemma 7 in [19].
To demonstrate how to leverage results from [19], we start by showing that the inequality
Γt ≤ m holds. To this end, we note that the lifted information ratio can be equivalently
written as
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Γt =

(
Et

[
f (θt, at, ct)− f̄ (at, ct)

])2

Λt
(A32)

which follows since

Et[∆t] = Et

[
f (θ∗, ât, ct)− f (θ∗, at, ct)

]
= Et

[
f (θ∗, ât, ct)− f̄ (at, ct)

]
= ∑

a′
Pt(ât = a′)Et

[
f (θ∗, a′, ct)|ât = a′

]
− ∑

a′
Pt(at = a′)Et

[
f̄ (at = a′, ct)

]
= ∑

a′
Pt(ât = a′)

(
Et

[
f (θ∗, a′, ct)|ât = a′

]
−Et[ f̄ (a′, ct)]

)
, (A33)

where the second equality holds since conditioned on Ft, (at, ct) and θ∗ are independent.
In the third equality, we denote Pt(ât) = P(ât|Ft) and Pt(at) = P(at|Ft). Using these,

the last equality follows since at
d
= ât, i.e, Pt(at) = Pt(ât). Now, let us define a K × K matrix

M with entries given by

Ma,a′ =
√

Pt(ât = a′)Pt(at = a)
(
Et

[
f (θ∗, a, ct)|ât = a′

]
−Et[ f̄ (a, ct)]

)
. (A34)

Using this and noting that Pt(ât) = Pt(at), we obtain that Et[∆t] = Tr(M). We now try to
bound Λt in terms of the matrix M. To see this, we can equivalently write Λt as

Λt = ∑
a

Pt(at = a)Et

[(
f (θ∗, a, ct)− f̄ (a, ct)

)2]
= ∑

a,a′
Pt(at = a)Pt(ât = a′)Et

[(
f (θ∗, a, ct)− f̄ (a, ct)

)2
|ât = a′

]
≥ ∑

a,a′
Pt(at = a)Pt(ât = a′)

(
Et

[
f (θ∗, a, ct)− f̄ (a, ct)|ât = a′

])2

= ∑
a,a′

Pt(at = a)Pt(ât = a′)
(
Et[ f (θ∗, a, ct)|ât = a′]−Et[ f̄ (a, ct)]

)2
= ∥M∥2

F, (A35)

where the inequality follows by the application of Jensen’s inequality. We thus obtain that

Γt ≤
Tr(M)2

∥M∥2
F

≤ m,

where the last inequality follows from Prop. 5 in [25]. From Lemma 3 in [19], we also obtain
Γt ≤ 2 log(1 + K). This results in the upper bound Γt ≤ min{m, 2 log(1 + K)}.

Using this and the bound of (A31) in (A28), we obtain

RT
d,CB ≤

√
2Tmσ2 min{m, 2(1 + log K)} log

(
1 +

Tλ

mσ2

)
. (A36)

Appendix B.4. Proof of Lemma 4

We now prove an upper bound on the term RT
d,EE1. To this end, let us define the

following event:

E :=
{
∥θ∗∥2 ≤

√
2λm log

(2m
δ

)
:= U

}
. (A37)
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Note, that since θ∗ ∼ N (θ∗|0, λI), we obtain that with probability at least 1 − δ, the fol-

lowing inequality holds ∥θ∗∥∞ ≤
√

2λ log
(

2m
δ

)
. Since ∥θ∗∥2 ≤

√
m∥θ∗∥∞, the above

inequality in turn implies the event E such that P(E) ≥ 1 − δ.

RT
d,EE1

(a)
≤

T

∑
t=1

E
[
ψ(a∗t , ĉt|γ∗)⊤θ∗ − ψ(a∗t , ĉt|Hc,ĉ)

⊤θ∗
]

=
T

∑
t=1

E
[
EP(ct |ĉt ,γ∗)[ϕ(a∗t , ct)

⊤θ∗]−EP(ct |ĉt ,Hc,ĉ)
[ϕ(a∗t , ct)

⊤θ∗]︸ ︷︷ ︸
:=∆

(
P(ct |ĉt ,γ∗),P(ct |ĉt ,Hc,ĉ)

)
]
,

=
T

∑
t=1

E
[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hc,ĉ)
)

1{E}] +
T

∑
t=1

E
[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hc,ĉ)
)

1{E c}] (A38)

(b)
≤

T

∑
t=1

E
[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hc,ĉ)
)

1{E}] + 2δTE[∥θ∗∥2|E c], (A39)

where the inequality (a) follows from the definition of ât = arg maxa∈A ψ(a, ĉ|Hc,ĉ)
⊤θ∗,

and 1{•} denotes the indicator function which takes value 1 when • is true and takes value
0 otherwise. The inequality in (b) follows by noting that

E[∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hc,ĉ)
)
I{E c}]

≤ E
[(

EP(ct |ĉt ,γ∗)[ϕ(a∗t , ct)]−EP(ct |ĉt ,Hc,ĉ)
[ϕ(a∗t , ct)]

)⊤
θ∗1{E c}

]
≤ E

[
∥EP(ct |ĉt ,γ∗)[ϕ(a∗t , ct)]−EP(ct |ĉt ,Hc,ĉ)

[ϕ(a∗t , ct)]∥2∥θ∗∥21{E c}
]

≤ 2E
[
∥θ∗∥21{E c}

]
= 2P(E c)E[∥θ∗∥2|E c] ≤ 2δE[∥θ∗∥2|E c],

where the last inequality is due to P(E c) = 1 − P(E) ≤ δ. To obtain an upper bound on
E[∥θ∗∥2|E c], we note that the following set of inequalities hold:

E[∥θ∗∥2|E c]
(a)
≤

√
mE[∥θ∗∥∞|E c]

(b)
=

√
mE[∥θ∗∥∞|∥θ∗∥∞ > u]

=
√

m
m

∑
i=1

P(∥θ∗∥∞ = |θ∗i |)E
[
∥θ∗∥∞

∣∣∣∥θ∗∥∞ = |θ∗i |, ∥θ∗∥∞ > u
]

≤
√

m
m

∑
i=1

E
[
|θ∗i |

∣∣∣|θ∗i | > u
]
(c)
= 2

√
m

m

∑
i=1

∫
x>u

xg(x)dx

(d)
= −2λ

√
m

m

∑
i=1

∫
x>u

g′(x)dx = 2λm3/2g(u) = 2λm3/2 1√
2πλ

exp(−u2/2λ)

= δ

√
mλ

2π
, (A40)

where (a) follows since ∥θ∥2 ≤
√

m∥θ∥∞, (b) follows since ∥θ∗∥2 >
√

m
√

2λ log
(

2m
δ

)
implies that ∥θ∗∥∞ >

√
2λ log

(
2m
δ

)
:= u. The equality in (c) follows by noting that |θ∗i |,

where θ∗i ∼ N (0, λ), follows a folded Gaussian distribution with density 2g(θ∗i ) where
g(θ∗i ) = 1√

2πλ
exp(−θ∗2

i /(2λ)) is the Gaussian density. The equality in (d) follows by

noting that xg(x) = −λg′(x), where g′(x) is the derivative of the Gaussian density. Thus,
we have the following upper bound
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T

∑
t=1

E[∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hc,ĉ)
)

1{E c}] ≤ 2Tδ2

√
mλ

2π
. (A41)

We now obtain an upper bound on ∑T
t=1 E

[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hc,ĉ)
)

1{E}
]
. To this

end, note that

E
[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hc,ĉ)
)

1{E}
]
≤ P(E)E

[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hc,ĉ)
)
|E
]

≤ E
[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hc,ĉ)
)
|E ]. (A42)

Note, that under the event E , we have the following relation,

|ϕ(a∗t , ct)
⊤θ∗)| ≤ ∥ϕ(a∗t , ct)∥2∥θ∗∥2 ≤ U,

whereby ϕ(a∗t , ct)⊤θ∗ is U2-sub-Gaussian.
Consequently, applying Lemma A1 gives the following upper bound

T

∑
t=1

E
[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hc,ĉ)
)

1{E}] ≤
T

∑
t=1

E
[√

2U2DKL(P(ct|ĉt, γ∗)∥P(ct|ĉt,Hc,ĉ)
]

≤

√√√√2TU2
T

∑
t=1

E
[

DKL(P(ct|ĉt, γ∗)∥P(ct|ĉt,Hc,ĉ)
]

(a)
=

√√√√2TU2
T

∑
t=1

I(ct; γ∗|ĉt,Hc,ĉ)

(b)
≤

√√√√2TU2
T

∑
t=1

I(ct, ĉt; γ∗|Hc,ĉ) (A43)

(c)
=

√
2TU2 I(HT,c,ĉ; γ∗) (A44)

where the equality in (a) follows by the definition of condition mutual information

I(ct; γ∗|ĉt,Hc,ĉ) := E
[

DKL

(
P(ct, γ∗|ĉt,Hc,ĉ)∥P(ct|ĉt,Hc,ĉ)P(γ∗|ĉt,Hc,ĉ)

)]
,

and inequality in (b) follows since I(ct, ĉt; γ∗|Hc,ĉ) = I(ĉt; γ∗|Hc,ĉ) + I(ct; γ∗|ĉt,Hc,ĉ) ≥
I(ct; γ∗|ĉt,Hc,ĉ) due to the non-negativity of mutual information, and finally, the equality
in (c) follows from the chain rule of mutual information.

We now analyze the mutual information I(γ∗;HT,c,ĉ) which can be written as

I(γ∗;HT,c,ĉ) = H(γ∗)− H(γ∗|HT,c,ĉ)

=
1
2

log
(
(2πe)ddet(Σγ)

)
− 1

2
log

(
(2πe)ddet(W−1)

)
(A45)

=
1
2

log
det(Σγ)

det(W−1)
(A46)

where W = (T − 1)Σ−1
n + Σ−1

γ = Σ−1
γ (I + (T − 1)ΣγΣ−1

n ). Using this, we can equiva-
lently write

I(γ∗;HT,c,ĉ) =
1
2

log
1

det((I+ (T − 1)ΣγΣ−1
n )−1)

(A47)

=
1
2

log det(I+ (T − 1)ΣγΣ−1
n ). (A48)
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Under the assumption that ΣγΣ−1
n ≻ 0, we have I+ (T − 1)ΣγΣ−1

n ≻ 0, whereby
using the determinant-trace inequality we obtain,

I(γ∗;HT,c,ĉ) =
1
2

log
(

det(I+ (T − 1)ΣγΣ−1
n )

)
≤ d

2
log

(
Tr(I+ (T − 1)ΣγΣ−1

n )/d)
)

=
d
2

log
(

1 + (T − 1)Tr(ΣγΣ−1
n )/d

)
≤ d

2
log

(
1 + TTr(ΣγΣ−1

n )/d
)

.

Using this in (A44), we obtain that

T

∑
t=1

E
[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hc,ĉ)
)
I{E}] ≤

√
Td log

(
1 + TTr(ΣγΣ−1

n )/d
)

U2. (A49)

Finally, using this in (A39), gives the following upper bound

RT
d,EE1 ≤

√
2λmTd log

(
1 + TTr(ΣγΣ−1

n )/d
)

log
(2m

δ

)
+ 2Tδ2

√
mλ

2π
. (A50)

We finally note that same upper bound holds for the term RT
d,EE2.

Appendix C. Linear-Gaussian Noisy Contextual Bandits with Unobserved True Contexts

Appendix C.1. Derivation of Posterior Predictive Distribution

In this section, we derive the posterior predictive distribution P(ct|ĉt,Ht−1,ĉ) for
Gaussian bandits with Gaussian context noise. To this end, we first derive the posterior
P(γ∗|Ht−1,ĉ).

Appendix C.1.1. Derivation of Posterior P(γ∗|Ht−1,ĉ)

Using Baye’s theorem, we have

P(γ∗|Ht−1,ĉ) ∝ P(γ∗)
t−1

∏
τ=1

P(ĉτ |γ∗),

where P(ĉτ |γ∗) is derived in (A18). Subsequently, we have that

log p(γ∗|Ht−1, ĉ) ∝ −1
2

t−1

∑
τ=1

(
(ĉτ − F)⊤G(ĉτ − F)

)
− 1

2

(
γ∗⊤Σ−1

γ γ∗
)

∝ −1
2

(
γ∗⊤((t − 1)G + Σ−1

γ )γ∗ − γ∗⊤(Gĉ1:t−1 − (t − 1)Σ−1
n (M−1)⊤Σ−1

c µc)

−
(

ĉ⊤1:t−1G − (t − 1)µ⊤
c Σ−1

c M−1Σ−1
n

)
γ∗

)
,

where we have denoted ∑t−1
τ=1 ĉτ = ĉ1:t−1. We then obtain

P(γ∗|Ht−1,ĉ) = N (M̃t, N−1
t ) where, (A51)

Nt = (t − 1)G + Σ−1
γ (A52)

M̃t = (N−1
t )⊤

(
Gĉ1:t−1 − (t − 1)Σ−1

n (M−1)⊤Σ−1
c µc

)
. (A53)
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Appendix C.1.2. Derivation of P(ct|ĉt,Ht−1,ĉ)

The derivation of posterior predictive distribution P(ct|ĉt,Ht−1,ĉ) follows in a similar
line as that in Appendix B.2.4. We start the derivation by noting that P(ct|ĉt,Ht−1,ĉ) =
EP(γ∗ |Ht−1,ĉ)

[P(ct|ĉt, γ∗)].
We have

log(P(γ∗|Ht−1,ĉ)P(ct|ĉt, γ∗))

∝ −1
2

(
(ct − At)

⊤M(ct − At) + (γ∗ − M̃t)
⊤N(γ∗ − M̃t)

)
= −1

2

((
M−1)⊤Σ−1

n γ∗ + ct − D − Et

)⊤
M
(
(M−1)⊤Σ−1

n γ∗ + ct − D − Et

)
+ (γ∗ − M̃t)

⊤Nt(γ
∗ − M̃t)

)
= −1

2

(
(γ∗ − Jt)

⊤Ht(γ
∗ − Jt)− J⊤t Ht Jt + (ct − D − Et)

⊤M(ct − D − Et) + M̃⊤
t Nt M̃t

)
, (A54)

where At is defined in (A14), M is defined in (A13), M̃t in (A53), N in (A52), D = (M−1)⊤Σ−1
c µc,

Et = (M−1)⊤Σ−1
n ĉt, Ht = Σ−1

n (M−1)⊤Σ−1
n + Nt and Jt = (H−1

t )⊤
(

Σ−1
n (−ct + D + Et) +

NtM̃t

)
.

Subsequently, we have

log p(ct|ĉt,Ht−1,ĉ) ∝ −1
2

(
−J⊤t Ht Jt + (ct − D − Et)

⊤M(ct − D − Et)

)
(A55)

∝ −1
2

(
c⊤t

(
M − Σ−1

n (H−1
t )⊤Σ−1

n

)
ct − c⊤t

(
M(D + Et)− Σ−1

n (H−1
t )⊤L⊤

t

)
−

(
(D + Et)

⊤M − Lt(H−1
t )Σ−1

n

)
, (A56)

where Lt = (D + Et)⊤Σ−1
n + M̃⊤

t Nt. Thus, we have,

P(ct|ĉt,Ht−1,ĉ) = N (ct|Vt, R−1
t ), where (A57)

Rt = M − Σ−1
n (H−1

t )⊤Σ−1
n (A58)

Vt = (R−1
t )⊤

(
M(D + Et)− Σ−1

n (H−1
t )⊤L⊤

t

)
. (A59)

Appendix C.1.3. Evaluating the KL Divergence between the True Posterior Pt(θ∗) and
Sampling Distribution P̄t(θ∗)

In this subsection, we analyze the true posterior distribution Pt(θ∗) := P(θ∗|Ht−1,r,a,ĉ)
and the approximate sampling distribution P̄t(θ∗) := P̄(θ∗|Ht−1,r,a,ĉ), and derive the KL
divergence DKL(Pt(θ∗)∥P̄t(θ∗)) between them. To see this, note that from Bayes’s theorem,
we have the following joint probability distribution

P(θ∗,Ht−1,r,ĉ|Ht−1,a) = P(θ∗)EP(γ∗)

[ t−1

∏
τ=1

EP(cτ)[P(ĉτ |cτ , γ∗)P(rτ |aτ , cτ , θ∗)]
]

︸ ︷︷ ︸
:=P(Ht−1,r,ĉ |Ht−1,a ,θ∗)

(A60)

= P(θ∗)P(Ht−1,r,ĉ|Ht−1,a, θ∗) (A61)

whereby we obtain that

Pt(θ
∗) ∝ P(θ∗)P(Ht−1,r,ĉ|Ht−1,a, θ∗). (A62)
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In particular, for general feature maps ϕ(a, c), the distribution P(Ht−1,r,ĉ|Ht−1,a, θ∗) cannot
be exactly evaluated, even under Gaussian assumptions, resulting in the posterior Pt(θ∗) to
be intractable, in general.

In contrast to this, our approximate TS-algorithm scheme assumes the following joint
probability distribution,

P̄(θ∗,Ht−1,r,ĉ|Ht−1,a) = P(θ∗)EP(γ∗)

[ t−1

∏
τ=1

EP(cτ)[P(ĉτ |cτ , γ∗)P̄(rτ |aτ , ĉτ ,Hτ−1,ĉ, θ∗)]
]

︸ ︷︷ ︸
:=P̄(Ht−1,r,ĉ |Ht−1,a ,θ∗)

(A63)

= P(θ∗)P̄(Ht−1,r,ĉ|Ht−1,a, θ∗), (A64)

where
P̄(rτ |aτ , ĉτ ,Hτ−1,ĉ, θ∗) = N (ψ(aτ , ĉτ |Hτ−1,ĉ), σ2).

Consequently, we have

P̄t(θ
∗) ∝ P(θ∗)P̄(Ht−1,r,ĉ|Ht−1,a, θ∗)

= P(θ∗)
( t−1

∏
τ=1

P̄(rτ |aτ , ĉτ ,Hτ−1,ĉ, θ∗)
)(

EP(γ∗)

[ t−1

∏
τ=1

[P(ĉτ |γ∗)
])

. (A65)

As a result, we can upper bound the KL divergence DKL(Pt(θ∗)∥P̄t(θ∗)) as

DKL(Pt(θ
∗)∥P̄t(θ

∗))

≤ DKL

(
P(θ∗,Ht−1,r,ĉ|Ht−1,a)∥P̄(θ∗,Ht−1,r,ĉ|Ht−1,a)

)
= DKL

(
P(θ∗)P(Ht−1,r,ĉ|θ∗,Ht−1,a)∥P(θ∗)P̄(Ht−1,r,ĉ|Ht−1,a, θ∗)

)
= EP(θ∗)

[
DKL

(
P(Ht−1,r,ĉ|θ∗,Ht−1,a)∥P̄(Ht−1,r,ĉ|Ht−1,a, θ∗)

)]
(a)
≤ EP(θ∗)P(γ∗)EP(Ht−1,c)

[
DKL

( t−1

∏
τ=1

P(ĉτ |cτ , γ∗)P(rτ |aτ , cτ , θ∗)∥
t−1

∏
τ=1

P(ĉτ |cτ , γ∗)P̄(rτ |aτ ,Hτ,ĉ, θ∗)
)]

= EP(θ∗)EP(γ∗)EP(Ht−1,c)

[ t−1

∑
τ=1

EP(Hτ−1,ĉ |Hτ−1,c ,γ∗)

[
DKL

(
P(rτ |aτ , cτ , θ∗)∥P̄(rτ |aτ , ĉτ ,Hτ−1,ĉ, θ∗)

)]]

(b)
= EP(θ∗)EP(γ∗)EP(Ht−1,c)

[ t−1

∑
τ=1

EP(Hτ−1,ĉ |Hτ−1,c ,γ∗)

[
(ϕ(aτ , cτ)⊤θ∗ − ψ(ĉτ , aτ |Hτ−1,ĉ)

⊤θ∗)2

2σ2

]]
,

= EP(θ∗)EP(γ∗)EP(Ht−1,c)

[ t−1

∑
τ=1

EP(Hτ−1,ĉ |Hτ−1,c ,γ∗)

[ |(ϕ(aτ , cτ)− ψ(ĉτ , aτ |Hτ−1,ĉ))
⊤θ∗|2

2σ2

]]
,

(c)
≤ EP(θ∗)EP(γ∗)EP(Ht−1,c)

[ t−1

∑
τ=1

EP(Hτ−1,ĉ |Hτ−1,c ,γ∗)

[∥(ϕ(aτ , cτ)− ψ(ĉτ , aτ |Hτ−1,ĉ)∥2
2∥θ∗∥2

2
2σ2

]]
(d)
≤ EP(θ∗)EP(γ∗)EP(Ht−1,c)

[ t−1

∑
τ=1

EP(Hτ−1,ĉ |Hτ−1,c ,γ∗)

[4∥θ∗∥2
2

2σ2

]]

=
t−1

∑
τ=1

EP(θ∗)

[2∥θ∗∥2
2

σ2

]
(e)
=

2(t − 1)λm
σ2 . (A66)

In the above series of relationships,
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• equality in (a) follows by noting that

P̄(Ht−1,r,ĉ|Ht−1,a, θ∗) = EP(γ∗)EP(Ht−1,c)
[

t−1

∏
τ=1

P(ĉτ |cτ , γ∗)P̄(rτ |aτ , ĉτ , θ∗)]

and

P(Ht−1,r,ĉ|Ht−1,a, θ∗) = EP(γ∗)EP(Ht−1,c)
[

t−1

∏
τ=1

P(ĉτ |cτ , γ∗)P(rτ |aτ , cτ , θ∗)],

and applying Jensen’s inequality on the jointly convex KL divergence,
• equality in (b) follows from evaluating the KL divergence between two Gaussian distri-

butions with same variance σ2 and with means ϕ(aτ , cτ)⊤θ∗ and ψ(ĉτ , aτ |Hτ−1,ĉ)
⊤θ∗

respectively,
• inequality in (c) follows from application of Cauchy–Schwarz inequality,
• inequality in (d) follows from Assumption 1,
• inequality in (e) follows from

EP(θ∗)[∥θ∗∥2
2] =

m

∑
j=1

E[(θ∗j )
2] = λm

since P(θ∗) = N (0, λI).

Appendix C.2. Proof of Lemma 1

For notational simplicity, throughout this section we use ψ(a) := ψ(a, ĉt|Hĉ) =
EP(ct |ĉt ,Ht−1,ĉ)

[ϕ(a, ct)] to denote the expected feature map. Furthermore, we use Ft =
Ht−1,r,a,ĉ ∪ ĉt.

We start by distinguishing the true and approximated posterior distributions. Recall
that Pt(θ∗) := P(θ∗|Ht−1,r,a,ĉ) denotes the true posterior and P̄t(θ∗) := P̄(θ∗|Ht−1,r,a,ĉ)
denotes the approximated posterior. We then denote Pt(ât, θ∗) := P(ât, θ∗|Ft) as the
distribution of ât and θ∗ conditioned on Ft, while P̄t(ât, θ∗) := P̄(ât, θ∗|Ft) denote the
distribution of ât and θ∗ under the sampling distribution. Furthermore, we have that
P̄t(at, θ∗) = P̄t(at)P̄t(θ∗) = Pt(at)P̄t(θ∗). We start by decomposing RT

CB into the following
three differences,

RT
CB =

T

∑
t=1

E
[
EPt(ât ,θ∗)[ψ(ât)

⊤θ∗]−EPt(at ,θ∗)[ψ(at)
⊤θ∗]

]

=
T

∑
t=1

E
[
EP̄t(ât ,θ∗)[ψ(ât)

⊤θ∗]−EP̄t(at ,θ∗)[ψ(at)
⊤θ∗]︸ ︷︷ ︸

:=Term1

+EPt(ât ,θ∗)[ψ(ât)
⊤θ∗]−EP̄t(ât ,θ∗)[ψ(ât)

⊤θ∗]]︸ ︷︷ ︸
:=Term2

+EP̄t(at ,θ∗)[ψ(at)
⊤θ∗]−EPt(at ,θ∗)[ψ(at)

⊤θ∗]

]
︸ ︷︷ ︸

:=Term3

(A67)

We will separately upper bound each of the three terms in the above decomposition.

Appendix C.2.1. Upper Bound on Term2

To obtain an upper bound on Term2, note that the following equivalence holds

EPt(ât ,θ∗)[ψ(ât)⊤θ∗] = EPt(θ∗)

[
maxa ψ(a)⊤θ∗

]
. Using this, we can rewrite Term2 as

Term2 = EPt(θ∗)[max
a

ψ(a)⊤θ∗]−EP̄t(θ∗)[max
a

ψ(a)⊤θ∗]. (A68)
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Note, here that when θ∗ ∼ P̄t(θ∗), for each a ∈ A, we have that za = ψ(a)⊤θ∗ follows
Gaussian distribution N (za|ψ(a)⊤µt−1, ψ(a)⊤Σ−1

t−1ψ(a)) with mean ψ(a)⊤µt−1 and vari-
ance ψ(a)⊤Σ−1

t−1ψ(a), where µt−1 and Σt−1 are as defined in (18) and (17), respectively.
Thus, EP̄t(θ∗)[maxa za] is the average of maximum of Gaussian random variables. We can
then apply Lemma A2 with P(x) = Pt(θ∗), Q(x) = P̄t(θ∗), n = |A| = K, µi = ψ(a)⊤µt−1
and σi = ψ(a)⊤Σ−1

t−1ψ(a) to obtain that

Term2 ≤
√

2(log K + DKL(Pt(θ∗)∥P̄t(θ∗))max
a

ψ(a)⊤Σ−1
t ψ(a). (A69)

Using this, we obtain that

T

∑
t=1

E[Term2] ≤ E
[ T

∑
t=1

√
2(log K + DKL(Pt(θ∗)∥P̄t(θ∗)))max

a
ψ(a)⊤Σ−1

t ψ(a)
]

(a)
≤

√√√√( T

∑
t=1

E
[
2(log K + DKL(Pt(θ∗)∥P̄t(θ∗)))

])( T

∑
t=1

E
[
max

a
ψ(a)⊤Σ−1

t ψ(a)
])

,

(b)
≤

√√√√2λT
( T

∑
t=1

E
[
log K + DKL(Pt(θ∗)∥P̄t(θ∗))

])
(c)
≤

√√√√2λT
(

T log K +
T

∑
t=1

2(t − 1)
λm
σ2

)

=

√
2λT2 log K +

4λ2T(T2 − T)m
2σ2

≤
√

2λT2 log K +
2λ2T3m

σ2 , (A70)

where the inequality in (a) follows from Cauchy–Schwarz inequality, and the inequality in
(b) follows since

T

∑
t=1

E
[
max

a
ψ(a)⊤Σ−1

t ψ(a)
]
≤

T

∑
t=1

E
[
max

a
ψ(a)⊤(λI)ψ(a)

]
≤ λT,

which follows since Σ−1
t ≤ λI and ∥ψ(a)∥ ≤ 1. The inequality in (c) follows from (A66).

If λ ≤ σ2

T , we obtain that

T

∑
t=1

E[Term2] ≤
√

2Tσ2(log(K) + m). (A71)

Appendix C.2.2. Upper Bound on Term3

We can bound Term3 by observing that

Term3 = EPt(at)[ψ(at)]
⊤
(
EP̄t(θ∗)[θ

∗]−EPt(θ∗)[θ
∗]
)

(A72)

= EP̄t(θ∗)[Ψ
⊤
t θ∗]−EPt(θ∗)[Ψ

⊤
t θ∗] (A73)

where we used Ψt = EPt(at)[ψ(at)]. Note, that for θ∗ ∼ P̄t(θ∗), the random variable
Ψ⊤

t θ∗ is Gaussian with mean Ψ⊤
t µt−1 and variance Ψ⊤

t Σ−1
t−1Ψt. Consequently, Ψ⊤

t θ∗ is
also Ψ⊤

t Σ−1
t−1Ψt-sub-Gaussian according to Definition A.1. By using Lemma A1, we then

obtain that
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|Term3| ≤
√

2(Ψ⊤
t Σ−1

t Ψt)DKL(Pt(θ∗)∥P̄t(θ∗)). (A74)

Using Cauchy–Schwarz inequality then yields that

E[
T

∑
t=1

|Term3|] ≤

√√√√( T

∑
t=1

E[Ψ⊤
t Σ−1

t Ψt]
)( T

∑
t=1

E[2DKL(Pt(θ∗)∥P̄t(θ∗))]
)

≤
√

2λT
λT2m

σ2 =

√
2λ2T3 m

σ2 .

where the second inequality follows from (A66). As before, if λ ≤ σ2

T , we then obtain that

E[
T

∑
t=1

|Term3|] ≤
√

2Tmσ2. (A75)

Appendix C.2.3. Upper Bound on Term1

Note, that in Term1, P̄t(ât) = P̄t(at) = Pt(at), whereby the posterior is matched.
Hence, one can apply bounds from conventional contextual Thompson Sampling here. For
simplicity, we denote Ēt[·] = EP̄[·|Ft] to denote the expectation with respect to P̄t(a, θ).
To this end, as in the proof of Lemma 3, we start by defining an information ratio,

Γt =
Term1

2

Ēt

[(
ψ(at)⊤θ∗ − ψ(at)⊤µt)

)2]
:= Λt

, (A76)

using which we obtain the upper bound on Term1 as

T

∑
t=1

E[Term1] ≤ E
[ T

∑
t=1

√
ΓtΛt

]
≤

√√√√( T

∑
t=1

E[Γt]
)( T

∑
t=1

E[Λt]
)

(A77)

by the Cauchy–Schwarz inequality.
Furthermore, we have

Λt = Ēt

[
(ψ(at)

⊤(θ∗ − µt))
2
]
= Ēt

[
ψ(at)

⊤(θ∗ − µt−1)(θ
∗ − µt−1)

⊤ψ(at)
]

= Ēt[ψ(at)
⊤Σ−1

t−1ψ(at)] = Ēt[∥ψ(at)∥Σ−1
t−1

], (A78)

where µt−1 and Σt−1 are defined as in (18) andd (17). Subsequently, using elliptical potential
lemma, we obtain

T

∑
t=1

Λt ≤ 2mσ2 log
(

1 +
(T)λ
mσ2

)
. (A79)

To obtain an upper bound on the information ratio Γt, we define f̄ (θ∗, a) = ψ(a)⊤θ∗

and f̄ (a) = ψ(a)⊤µt−1 and let

Ma,a′ = ∑
a,a′

√
P̄t(at = a)P̄t(ât = a′)(Ēt[ f̄ (θ∗, a)|ât = a′]− f̄ (a)). (A80)

It is easy to see that
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Term1 = Ēt[ f̄ (ât, θ∗)]− Ēt[ f̄ (at)]

= ∑
a′

P̄t(ât = a′)
(
Ēt[ f̄ (θ∗, a′)|ât = a′]− Ēt[ f̄ (ât)]

)
= ∑

a′
P̄t(ât = a′)

(
Ēt[ f̄ (θ∗, a′)|ât = a′]− f̄ (a′)

)
= Tr(M), (A81)

where the second and last equality follows since P̄t(at) = P̄t(ât). Similarly, we can relate Λt
with the matrix (Ma,a′) as

Λt = Ēt[( f̄ (θ∗, at)− f̄ (at))
2] (A82)

= ∑
a

P̄t(at = a)Ēt[( f̄ (θ∗, a)− f̄ (a))2]

= ∑
a,a′

P̄t(at = a)P̄t(ât = a′)Ēt[( f̄ (θ∗, a)− f̄ (a))2|ât = a′]

≥ ∑
a,a′

P̄t(at = a)P̄t(ât = a′)
(
Ēt[( f̄ (θ∗, a)− f̄ (a))|ât = a′]

)2

= ∑
a,a′

P̄t(at = a)P̄t(ât = a′)
(
Ēt[( f̄ (θ∗, a)|ât = a′]− f̄ (a)

)2
= ∥M∥2

F, (A83)

whereby we obtain

Γt ≤
Tr(M)2

∥M∥2
F

≤ m, (A84)

where the last inequality can be proved as in [25]. Following [19], it can be seen that
Λt ≤ 2 log(1 + K) also holds. Using this, together with the upper bound (A79) gives

T

∑
t=1

E[Term1] ≤
√

2Tmσ2 min{m, 2 log(1 + K)} log
(

1 +
Tλ

mσ2

)
. (A85)

Appendix C.3. Proof of Lemma 2

We first give an upper bound on the estimation error that does not require the assump-
tion of a linear feature map.

Appendix C.3.1. A General Upper Bound on RT
EE1

To obtain an upper bound on RT
EE1 that does not require the assumption that ϕ(a, c) =

G(a)c, we leverage the same analysis as in the proof of Lemma 4. Subsequently, we obtain
that

RT
EE1 ≤

T

∑
t=1

E
[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hĉ)
)

1{E}
]
+ 2δTE[∥θ∗∥2|E c]

≤
T

∑
t=1

E
[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hĉ)
)

1{E}
]
+ 2δ2T

√
mλ

2π
,

where the event E is defined as in (A37). Subsequently, the first summation can be upper
bounded as
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T

∑
t=1

E
[
∆
(

P(ct|ĉt, γ∗), P(ct|ĉt,Hĉ)
)

1{E}] ≤

√√√√2TU2
T

∑
t=1

I(ct; γ∗|ĉt,Hĉ)

=

√√√√2TU2
T

∑
t=1

(H(ct|ĉt,Hĉ)− H(ct|ĉt, γ∗))

=

√√√√TU2
T

∑
t=1

log
(

det(R−1
t )det(Mt)

)
≤

√
TU2(Tr((ΣnΣ−1

γ Σn M)−1) + log(T)Tr(ΣcΣ−1
n )) (A86)

where U is defined as in (A37), Mt = Σ−1
c + Σ−1

n and Rt is as in (13).
To derive the last inequality, we observe the following series of relationships starting

from (13):

Σ−1
n (H−1

t )⊤Σ−1
n = (Σn HtΣn)

−1 =
(
(t − 1)Σn − (t − 2)M−1 + ΣnΣ−1

γ Σn

)−1

Rt = M − Σ−1
n (H−1

t )⊤Σ−1
n

= M −
(
(t − 1)Σn − (t − 2)M−1 + ΣnΣ−1

γ Σn

)−1

= M
[
I− M−1

(
(t − 1)Σn − (t − 2)M−1 + ΣnΣ−1

γ Σn

)−1]
R−1

t =
[
I− M−1

(
(t − 1)Σn − (t − 2)M−1 + ΣnΣ−1

γ Σn

)−1]−1
M−1

=
[
I−

(
(t − 1)Σn M − (t − 2)I+ ΣnΣ−1

γ Σn M
)−1]−1

M−1

R−1
t M =

[
I−

(
(t − 1)Σn M − (t − 2)I+ ΣnΣ−1

γ Σn M
)−1]−1

=
[
I−

(
(t − 1)ΣnΣ−1

c + (t − 1)I− (t − 2)I+ ΣnΣ−1
γ Σn M

)−1]−1

=
[
I−

(
I+ (t − 1)ΣnΣ−1

c + ΣnΣ−1
γ Σn M︸ ︷︷ ︸

:=Pt

)−1]−1

(a)
=

[
I−

(
I− Pt(I+ Pt)

−1
)]−1

= (Pt(I+ Pt)
−1)−1

where the equality in (a) follows from Woodbury matrix identity and by the assumption
that ΣnΣ−1

γ Σn M ≻ 0, ΣnΣ−1
c ≻ 0, we have Pt ≻ 0 is invertible. Now,

det(R−1
t M) =

1
det(Pt(I+ Pt)−1)

= det(P−1
t (I+ Pt))

= det(P−1
t + I)

(b)
≤

(
Tr(P−1

t + I)
d

)d

= (1 + Tr(P−1
t )/d)d,
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where the inequality in (b) follows from the determinant-trace inequality. Subsequently,
we have

T

∑
t=1

log
(

det(R−1
t M)

)
≤

T

∑
t=1

d log(1 + Tr(P−1
t )/d)

(c)
≤

T

∑
t=1

Tr(P−1
t )

= Tr(P−1
1 ) +

T

∑
t=2

Tr(P−1
t )

= Tr((ΣnΣ−1
γ Σn M)−1) +

T

∑
t=2

Tr(P−1
t )

(d)
≤ Tr((ΣnΣ−1

γ Σn M)−1) + log(T)Tr(ΣcΣ−1
n ), (A87)

where the inequality in (c) follows since log(1 + x) ≤ x for x > 0 and the inequality in (d)
follows since by assumption Pt ⪰ (t − 1)ΣnΣ−1

c , whereby we have P−1
t ⪯ 1

t−1 ΣcΣ−1
n and

consequently, Tr(P−1
t ) ≤ 1

t−1 Tr(ΣcΣ−1
n ). Finally, we use that ∑T

s=1 1/s ≤ log(T).
We thus obtain that

RT
EE1 ≤

√
2λmT log(2m/δ)

(
Tr((ΣnΣ−1

γ Σn M)−1) + log(T)Tr(ΣcΣ−1
n )

)
+ 2δ2T

√
mλ

2π
(A88)

for δ ∈ (0, 1). We note that same upper bound holds for the term RT
EE2.

Appendix C.3.2. Upper Bound for Linear Feature Maps and Scaled Diagonal
Covariance Matrices

We now obtain an upper bound on the estimation error under the assumption of a
linear feature map ϕ(a, c) = Gac such that ∥ϕ(a, c)∥2 ≤ 1. The following set of inequali-
ties hold:

RT
EE1 =

T

∑
t=1

E
[
ψ(a∗t , ĉt|γ∗)⊤θ∗ − ψ(ât, ĉt|Hĉ)

⊤θ∗
]

≤
T

∑
t=1

E
[
ψ(a∗t , ĉt|γ∗)⊤θ∗ − ψ(a∗t , ĉt|Hĉ)

⊤θ∗
]

=
T

∑
t=1

E
[
EP(ct |ĉt ,γ∗)[ϕ(a∗t , ct)

⊤θ∗]−EP(ct |ĉt ,Hĉ)
[ϕ(a∗t , ct)

⊤θ∗]. (A89)

Note, that P(ct|ĉt,Hĉ) = N (ct|Vt, R−1
t ) where Rt and Vt are, respectively, defined in (13)

and (14). Consequently, ϕ(a∗t , ct)⊤θ∗ = c⊤t G⊤
a∗t

θ∗ is s2
t = θ∗⊤Ga∗t R−1

t G⊤
a∗t

θ∗-sub-Gaussian
with respect to P(ct|ĉt,Hĉ). Consequently, using Lemma A1, we can upper bound the inner
expectation of (A89) as

|EP(ct |ĉt ,γ∗)[ϕ(a∗t , ct)
⊤θ∗]−EP(ct |ĉt ,Hĉ)

[ϕ(a∗t , ct)
⊤θ∗| ≤

√
2s2

t DKL(P(ct|ĉt, γ∗)∥P(ct|ĉt,Hĉ)). (A90)

Summing over t and using Cauchy–Schwarz inequality then gives

RT
EE1 ≤

√√√√2(
T

∑
t=1

E[s2
t ])

( T

∑
t=1

E
[

DKL(P(ct|ĉt, γ∗)∥P(ct|ĉt,Hĉ))
])

. (A91)
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We now evaluate the KL-divergence term. To this end, note that conditioned on γ∗ and ĉt,
ct is independent of Hĉ, i.e., P(ct|ĉt, γ∗,Hĉ) = P(ct|ĉt, γ∗). This gives

T

∑
t=1

E
[

DKL(P(ct|ĉt, γ∗)∥P(ct|ĉt,Hĉ))
]

=
T

∑
t=1

I(ct; γ∗|ĉt,Hĉ)

=
T

∑
t=1

H(ct|ĉt,Hĉ)− H(ct|ĉt, γ∗)

=
1
2

T

∑
t=1

EP(ĉt ,Hĉ)
[log det(R−1

t )]− 1
2

T

∑
t=1

EP(ĉt ,γ∗)[log det(M−1)]

=
T

∑
t=1

1
2
EP(ĉt ,Hĉ)

[log
(

det(R−1
t )det(M)

)
≤ dσ2

c
σ2

n

( σ2
γ

σ2
n + σ2

c
+ log(T − 1)

)
, (A92)

where M = Σ−1
c + Σ−1

n and Rt is as in (13). The first equality follows by noting that

E
[

DKL(P(ct|ĉt, γ∗)∥P(ct|ĉt,Hĉ))
]
= EP(ĉt ,Hĉ)

[
EP(γ∗ |ĉt ,Hĉ)

[
DKL(P(ct|ĉt, γ∗,Hĉ)∥P(ct|ĉt,Hĉ))

]]
= EP(ĉt ,Hĉ)

[I(ct; γ∗|ĉt,Hĉ)]

with the outer expectation taken over ĉt and Hĉ. The last inequality is proved in
Appendix C.3.3 using that Σc = σ2

c I, Σn = σ2
nI and Σγ = σ2

γI.
We can now upper bound ∑t E[s2

t ] as follows.

E[s2
t ] ≤ E[max

a
θ∗⊤GaR−1

t G⊤
a θ∗] ≤ ∑

a
E[θ∗⊤GaR−1

t G⊤
a θ∗] = ∑

a
Tr(GaR−1

t G⊤
a E[θ∗θ∗⊤])

= λ ∑
a

Tr(R−1
t G⊤

a Ga)

= λbtTr(∑
a

G⊤
a Ga)

where the last equality uses R−1
t = btI as in (A95). Using (A95), we obtain

∑
t

bt =
σ2

c σ2
n

f ∑
t

(
1 +

σ2
c σ2

γ

(t − 1)σ2
γσ2

n + f σ2
n

)
=

σ2
c σ2

nT
f

+ ∑
t

σ2
c
f

σ2
c σ2

γ

(t − 1)σ2
γ + f

=
σ2

c σ2
nT

f
+

σ4
c σ2

γ

f 2 + ∑
t>1

σ2
c
f

σ2
c σ2

γ

(t − 1)σ2
γ + f

≤ σ2
c σ2

n
f

T +
σ4

c σ2
γ

f 2 +
σ4

c
f

log(T − 1).

Using the above relation, we obtain

∑
t
E[s2

t ] = λTr(∑
a

G⊤
a Ga)∑

t
bt ≤

λKσ2
c

f
max

a
Tr(G⊤

a Ga)
(

σ2
nT +

σ2
c σ2

γ

f
+ σ2

c log(T − 1)
)

.
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If λ ≤ dσ2

T , we obtain

∑
t
E[s2

t ] ≤
dσ2Kσ2

c
f

max
a

Tr(G⊤
a Ga)

(
σ2

n +
σ2

c σ2
γ

T f
+ σ2

c
log(T − 1)

T

)
= L

Using the above inequality together with (A92) in (A91) yields

RT
EE1 ≤

√
2L

dσ2
c

σ2
n

( σ2
γ

σ2
n + σ2

c
+ log(T − 1)

)
. (A93)

An upper bound on RT
EE2 similarly follows.

Appendix C.3.3. Analysis of Rt for Scaled Diagonal Covariance Matrices

Assume that Σn = σ2
nI, Σc = σ2

c I and Σγ = σ2
γI. Then, from (13), we obtain

Ht = (t − 1)Σ−1
n − (t − 2)Σ−1

n M−1Σ−1
n + Σ−1

γ

=
( (t − 1)

σ2
n

− (t − 2)σ2
nσ2

c

σ4
n (σ

2
c + σ2

n)︸ ︷︷ ︸
:= f

+
1

σ2
γ

)
I

=
(t − 1)σ2

γ − (t − 2)σ2
c σ2

γ/ f + σ2
n

σ2
nσ2

γ
I. (A94)

This implies

H−1
t =

σ2
nσ2

γ

(t − 1)σ2
γ − (t − 2)σ2

c σ2
γ/ f + σ2

n
I

whereby we obtain

Rt =
f
(
(t − 1)σ2

γ + σ2
n + σ2

c

)
σ2

c ((t − 1)σ2
γσ2

n + σ2
c σ2

γ + f σ2
n)

I and

R−1
t =

σ2
c ((t − 1)σ2

γσ2
n + σ2

c σ2
γ + f σ2

n)

f
(
(t − 1)σ2

γ + σ2
n + σ2

c

) I = btI. (A95)

Noting that Mt =
f

σ2
nσ2

c
I we then have

R−1
t Mt =

(t − 1)σ2
γσ2

n + σ2
c σ2

γ + f σ2
n

σ2
n

(
(t − 1)σ2

γ + σ2
n + σ2

c

) I =
(t − 1)σ2

γσ2
n + σ2

c σ2
γ + f σ2

n

(t − 1)σ2
γσ2

n + f σ2
n

I = (1 +
σ2

c σ2
γ

(t − 1)σ2
γσ2

n + f σ2
n
)I. (A96)

Subsequently, we obtain that for t > 1,

log
(

det(R−1
t Mt)

)
= d log

(
1 +

σ2
c σ2

γ

(t − 1)σ2
γσ2

n + f σ2
n

)
≤ d log

(
1 +

σ2
c /σ2

n
(t − 1)

)
≤ dσ2

c /σ2
n

t − 1
, (A97)

whereby

T

∑
t=1

log
(

det(R−1
t Mt)

)
≤ d log

(
1 +

σ2
c σ2

γ

f σ2
n

)
+

T

∑
t>1

dσ2
c /σ2

n
t − 1

(A98)

≤ dσ2
c

σ2
n

(σ2
γ

f
+ log(T − 1)

)
(A99)
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where the last inequality follows since log(1 + x) ≤ x and ∑T
s=1

1
s ≤ log(T).

Appendix D. Details on Experiments

In this section, we present details on the baselines implemented for stochastic CBs
with unobserved true contexts.

Appendix D.1. Gaussian Bandits

For Gaussian bandits, we implemented the baselines as explained below.
TS_naive: This algorithm implements the following action policy at each iteration t,

at = arg max
a∈A

ϕ(a, ĉt)
⊤θt,

where θt is sampled from a Gaussian distribution N (µt−1,naive, Σ−1
t−1,naive) with

Σt−1,naive =
I
λ
+

1
σ2

t−1

∑
τ=1

ϕ(aτ , ĉτ)ϕ(aτ , ĉτ)
⊤

µt−1,naive =
Σ−1

t−1,naive

σ2

( t−1

∑
τ=1

rτϕ(aτ , ĉτ)
)

.

TS_oracle: In this baseline, the agent has knowledge of the true predictive distribution
P(ct|ĉt, γ∗). Consequently, at each iteration t, the algorithm chooses action

at = arg max
a∈A

ψ(a, ĉt|γ∗)⊤θt,

where θt is sampled from a Gaussian distribution N (µt−1,poc, Σ−1
t−1,poc) with

Σt−1,poc =
I
λ
+

1
σ2

t−1

∑
τ=1

ψ(aτ , ĉτ |γ∗)ψ(aτ , ĉτ |γ∗)⊤

µt−1,poc =
Σ−1

t−1,poc

σ2

( t−1

∑
τ=1

rτψ(aτ , ĉτ |γ∗)
)

.

For Gaussian bandits, the following figure shows additional experiment comparing the
performance of our proposed Algorithm 1 for varying values of the number K of actions.
All parameters are set as in Figure 1 (Left).

Figure A1. Bayesian cumulative regret of Algorithm 1 as a function of iterations over varying number
K of actions.

Appendix D.2. Logistic Bandits

In the case of logistic bandits, we implemented the baselines as explained below.
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TS_naive: This algorithm considers the following sampling distribution:

Q(θ∗|Ht−1,r,a,ĉ) ∝ P(θ∗)
t−1

∏
τ=1

Ber(µ(ϕ(aτ , ĉτ)
⊤θ∗)).

However, due to the non-conjugateness of Gaussian prior P(θ∗) and Bernoulli reward likeli-
hood, sampling from the above posterior distribution is not straightforward. Consequently,
we adopt the Langevin Monte Carlo (LMC) sampling approach from [20]. To sample θt
at iteration t, we run LMC for I = 50 iterations with learning rate ηt = 0.2/t and inverse
temperature parameter β−1 = 0.001. Then, θt is chosen as the output of the LMC after
I = 50 iterations. Using the sampled θt, the algorithm then chooses the action at as

at = arg max
a∈A

ϕ(a, ĉt)
⊤θt.

TS_oracle: This algorithm considers the following sampling distribution:

Q(θ∗|Ht−1,r,a,ĉ) ∝ P(θ∗)
t−1

∏
τ=1

Ber(µ(ψ(aτ , ĉτ |γ∗)⊤θ∗)),

where ψ(at, ĉt|γ∗) = EP(ct |ĉt ,γ∗)[ϕ(at, ct)] is the expected feature map under the posterior
predictive distribution with known γ∗. As before, to sample from the above distribution,
we use I = 50 iterations of LMC with learning rate ηt = 0.2/t and inverse temperature
parameter β−1 = 0.001. Using the sampled θt, the algorithm then chooses the action at as

at = arg max
a∈A

ψ(a, ĉt|γ∗)⊤θt.
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