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Abstract: When describing Active Inference Agents (AIAs), the term “energy” can have two distinct
meanings. One is the energy that is utilized by the AIA (e.g., electrical energy or chemical energy).
The second meaning is so-called Variational Free Energy (VFE), a statistical quantity which provides
an upper bound on surprisal. In this paper, we develop an account of the former quantity—the
Thermodynamic Free Energy (TFE)—and its relationship with the latter. We highlight the necessary
tradeoffs between these two in a generic, quantum information-theoretic formulation, and the macro-
scopic consequences of those tradeoffs for the ways that organisms approach their environments. By
making this tradeoff explicit, we provide a theoretical basis for the different metabolic strategies that
organisms from plants to predators use to survive.

Keywords: compartmentalization; control flow; Free Energy Principle; matrix representation; mortal
computation

1. Introduction

Active Inference Agents (AIAs) are physical systems compliant with the Free Energy
Principle (FEP); such systems maximize their abilities to predict the behaviors of their
environments by learning from experience and by actively probing their environments to
gain new information [1–5]. Whether they are bacteria, humans, robots, or simulations
running on ordinary computers, AIAs need adequate supplies of thermodynamic free
energy (TFE)—in biological systems, metabolic energy [6]—to power interactions with
their environments. It is, in particular, the flux of TFE through an AIA, entering as “fuel”
and exiting as “waste” heat, that powers autopoiesis and hence maintains the AIA as a
dissipative system, preventing thermal equilibration with its environment. The need of
any AIA to maintain its TFE supply solves the “dark-room problem” posed by the goal
of uncertainty minimization; no AIA can minimize uncertainty simply by minimizing its
environmental input due to the pain of starving to death [7].

Sengupta, Stemmler, and Friston [8] showed in 2013 that any AIA minimizes the
TFE requirements of its computational processes when it minimizes prediction errors,
i.e., when it minimizes the variational free energy (VFE) at its boundary. The reason is
straightforward: when predictions are accurate, incoming data do not induce computation-
ally expensive state changes. Formal treatments of active inference under the FEP have,
therefore, subsequently focused on the minimization of VFE, treating TFE inputs such
as food just as “preferred” observational outcomes [6,9–11]. An exclusive focus on VFE,
however, makes it difficult to distinguish two types of problem solving: activity with the
specific goal of obtaining TFE resources and activity that has other goals. This, in turn,
makes it difficult to explicitly address any specific role of TFE limitations in modulating
attention, problem solving, or planning. We know, however, that organisms employ such
TFE-driven modulatory processes, and we can expect “mortal computers” [6] to do so
as well.
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Here, we develop an explicit representation of TFE inputs, or dually waste heat
outputs, within the formalism of the FEP, and ask how active management of TFE resources
contributes to control flow during computation. We begin in Section 2 by noting that the
FEP can be regarded either as “just physics” or as a theory of inference, particularly as
a theory of approximate Bayesian VFE minimization. We distinguish between models
that adopt either of these stances and models that attribute “inference” or “cognition” to
only some components of a system while treating the rest of the system as infrastructure.
Building on previous work [12,13], we show in Section 3 that models of the latter kind
require an explicit representation of TFE flow for completeness. We then consider in
Section 4 how the active allocation of TFE flows to component processes provides a control
mechanism for compartmentalized multi-component systems. Finally, in Section 5, we
address the practical issue of estimating TFE flows as they affect information processing
within the discrete matrix formulation of active inference developed in [14].

2. “Just Physics” versus Implemented Computation

We consider finite system S that interacts with a finite environment E and assume
that the joint system U = SE is effectively isolated. The FEP characterizes the conditions
under which S and E remain distinguishable from each other as the joint system U evolves
through time. It states, speaking informally, that S and E remain distinct only if they are
only sparsely or weakly coupled [9]. This condition can be formulated in various ways;
one can require that almost all paths through the joint space that begin in S(E) remain in
S(E) [11], that the number of states on the Markov blanket (MB) between S and E be much
smaller than the number of states in either S or E, or that the interaction Hamiltonian (or
total interaction energy operator) HSE be much smaller than either of the self-interactions
HS and HE [13]. What all of these conditions assure is that both S and E have “internal
states” that are not directly involved in the interaction and that therefore remain mutually
conditionally statistically independent. These internal states can then implement distinct,
independent computations that enable S and E to exhibit distinct, agentive behaviors.

The FEP is, therefore, fundamentally a principle about physical interaction, and hence
about the exchange of energy between physical systems. It becomes a principle about
inference when energy flow is interpreted as information flow. This interpretation rests on
Clausius’ [15] definition of entropy dE = TdS, where E is energy, T is ambient temperature,
and S is entropy, and on Boltzmann’s [16] identification of entropy with uncertainty about
the state of a system, S = kBlnΩ, where kB is Boltzmann’s constant and Ω is the number
of observationally indistinguishable states of the system of interest. Combining these two
yields Landauer’s principle, dE = ln2(kBT) for the minimal energy dE required to resolve
the value of one bit, i.e., to resolve the state of a two-state system [17,18]. Any energy flow,
therefore, can be associated with a maximal number of bits, and hence with a maximal
information bandwidth. With this information-flow interpretation of energetic coupling,
the FEP becomes the claim that the input/output (I/O) bandwidths of persistent systems are
small compared to the internal information flows—computations—that generate outputs
given inputs. Persistent systems, in other words, remain persistent by implementing
computations that effectively model the observable behavior their environments and acting
accordingly, i.e., by being AIAs.

The idea that arbitrary physical systems can be interpreted as information-processing
systems—computers—is not unique to the literature of the FEP; indeed, it is ubiquitous in
physics [19] and forms the basis for explanation by appeal to function in the life sciences [20]
and computer science [21]. The structure of any such interpretation is shown in Figure 1.
The vertical map ψ is semantic in Tarski’s model-theoretic sense [22]: it treats function f
as implemented by physical process P(t) between time points ti and tj. As Horsman et al.
point out, such semantic maps can also be thought of as representing measurements [19];
in this case, Figure 1 depicts the relationship between any observation-based model f and
the physical process P(t) that it models.
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Figure 1. Generic structure of semantic interpretations of physical processes. Function f interprets,
via the semantic map ψ, the action of the physical time-propagator P(t) between time points ti

and tj. The interpretation is semantically coherent provided the diagram commutes, i.e., provided
f |ti→tj (ψ|ti (S)) = ψ|tj (P |ti→tj (S)).

Representing physical systems as AIAs employs the mapping process shown in
Figure 1: the physical system behaves “as if” it is executing inferential processes encoded
by some function f that construct a model of its environment’s behavior and then employ
that model to choose approximately Bayes-optimal actions. This inferential process must
satisfy two constraints: (1) its only inputs from the environment are the data encoded on its
MB; and (2) it must be tractable. As emphasized in [8,9] and elsewhere, these constraints
are met optimally by function f that minimizes an upper bound on the surprise −lnp(b|η),
where b is an input “sensory” MB state and η is a model prediction. This upper bound is
the VFE ([9] Equation (2.3)),

F = DKL[qµ(η)|p(η)]−Eq[lnp(b|η)], (1)

where qµ(η) is a variational density over predicted external states η parameterized by
internal states µ and Eq is an expectation value operator parameterized by variational
density q.

We can therefore choose to regard an AIA simply as a dissipative physical system that
is maintaining its state in the vicinity of—or maintaining an orbit around—a nonequilibrium
steady state (NESS), or we can choose to regard it as computer implementing a procedure
that minimizes an abstract information measure, the VFE defined by Equation (1). Provided
that states b are sampled from the complete state space of the MB separating the system
from its environment—and hence capture the total energy/information exchange through
the MB—descriptions of the dynamics as “just physics” or “just computations” are related
by semantic map ψ as in Figure 1. The energy and information flows they entail are,
at optimal thermodynamic efficiency, quantitatively related by the total I/O bandwidth of
the MB in bits times ln2(kBT).

In practice, however, we do not always want to view systems as either “just physics”
or “just computation”. We often want to view part of a system as computing some specific
function, and the rest as providing the infrastructure services required by the system’s
physical embodiment, including architectural integrity, adequate power, and heat dissipa-
tion. We are in this situation whenever specific computations are attributed to particular
components of system S, or when only a particular subset of S’s MB states is regarded as
encoding “interesting” inputs and outputs. Note that this choice of what is “of interest” is
effectively a choice of semantic map ψ that applies to only some components of S. This
kind of interest-driven decomposition is ubiquitous in biology, e.g., when distinguishing
signal transduction from metabolic pathways in cells, when modeling neural computation
in terms of synaptic inputs and outputs, or when treating the I/O of animal’s brain as
separate and distinct from that of its digestive system. It is also ubiquitous in practical
computing, e.g., when specifying the application programming interface (API) of a software
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module while leaving power management to the hardware and memory management to
the operating system.

Interpreting particular subsystems of system S as computing particular functions
abstracts away the fundamental constraints imposed on S by its physicality, including
the fact that acting on the environment by producing output requires TFE in accord with
Landauer’s principle. Given the assumption that U = SE is isolated, that energy must be
obtained from the environment as an input. Providing a complete description of an AIA
that computes some specific inputs and outputs—or sensations and actions—of interest
requires, therefore, also the thermodynamic (or metabolic) inputs and outputs that the “of
interest” designation assumes as infrastructure. It therefore requires devoting some of the
states on the MB to flows of fuel and waste heat. Making these requirements of physical
embodiment explicit, thus re-integrating thinking about software with thinking about hard-
or bio-ware, is one of the goals of both the embodied cognition and mortal computing
frameworks [6].

3. Coupling Information and Energy Flows

If computational and infrastructure functions are regarded as performed by distinct
components of a system, how do we represent their coupling? In the notation of Figure 1,
if we factor the interpretation of ψ, what is the relationship between the factors? How is
TFE delivered to the computational processes that need it in order to compute VFE?

This question is challenging to formulate precisely, because any decomposition of
system S into components generates an MB between them and renders each component a
part of the environment of each of the others. Decomposition requires, therefore, a bottom
level of undecomposed “atomic” components to avoid infinite regress. At this atomic
level, the question of how computing and infrastructure relate must be answered without
recourse to further decomposition.

This question of how “physical” TFE flows couple to “computational” VFE flows
arises in both classical and quantum formulations of the FEP. It is, however, most easily
addressed using quantum formalism, which provides a simple, intuitive description of
inter-system interactions that applies to all systems, regardless of their structure. Using
this formalism, we can view TFE and VFE flows as distinguished by a symmetry breaking
that has no natural classical formulation [23]. We first review the quantum formulation
of generic physical interactions, then show how it provides both a natural definition of
“atomic” systems and a precise characterization of the interaction between components in
a composite system. We use the latter to understand how a thermodynamic component,
effectively power supply, can provide regulated TFE flows to computational components
of a composite system.

In quantum formalism, the joint state space of a composite system U = SE is a finite-
dimensional Hilbert space HU = HS ⊗HE [13,24]. For any system X, the Hilbert space HX
is a vector space that can be constructed by assigning a basis vector to every independent
yes/no question that can be asked about system X. Each of these basis vectors can be
represented by a quantum bit, a qubit, with measurable states (in the Dirac notation) | ↑⟩
and | ↓⟩. Hilbert spaces HU ,HS, and HE can, therefore, all be considered qubit spaces;
see [25] for a textbook introduction to such spaces. We let B denote the boundary between S
and E implicitly given by factorization HU = HS ⊗HE. Systems S and E can be considered
distinct only if they have distinct, mutually conditionally independent states |S⟩ and |E⟩.
This is the case only if their joint state is separable; i.e., only if it factors as |SE⟩ = |S⟩|E⟩. In
this case, the entanglement entropy across B is zero. The FEP, in this formulation, states
the truism that distinguishable systems must remain unentangled.

The interaction between S and E is represented in quantum formalism by a Hamil-
tonian or total energy operator HSE. This operator is linear, and so it can be written as
HSE = HU − (HS + HE), where HU , HS, and HE are the internal or “self” interactions of
U, S, and E, respectively. Interaction HSE is defined at boundary B. We can characterize
both HSE and B by employing the Holographic Principle [26,27] which states that the
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information that can be obtained about any system X by an observer outside X is limited to
the information that crosses boundary BX of X. If X is finite, this quantity of information is
finite, and can be written as classical entropy S(BX). We can therefore think of boundary
B between S and E as encoding S(B) = N qubits, and hence as characterized by an
ancillary Hilbert space HB with dimension dim(HB) = dim(HSE) = 2N . Hilbert space
HB is ancillary because it is not part of U = SE, i.e., HB ∩HU = ∅. This reflects the fact
that B is merely a theoretical construct induced by factorization HU = HS ⊗HE.

Given this characterization of B, we are now in a position to describe internal dy-
namics HS of S. Formally, HS is a linear operator on state space HS, i.e., we can write
HS : HS → HS. Because HS is a space of qubits, we can think of HS as an operator
acting on qubits to change their states, i.e., as a quantum computation (again see [25] for
an introduction). The only information flowing into S from the outside, i.e., from E, is
the information encoded by the N qubits composing B; similarly, the only information
flowing out of S and into E must be encoded by these same qubits. Boundary B is therefore
the input/output (I/O) interface to S and hence to the quantum computation implemented
by HS.

We can further characterize HS by thinking of B as a finite collection of non-overlapping
subsets of qubits, which we call “sectors” Zi and considering the components of HS that
act on each of these Zi. We can represent each of these components as a quantum reference
frame (QRFs) Qi that measures and dually prepares the states of the ni qubits that compose
sector Zi. A QRF is a physical system that enables measuring or preparing states of other
systems in a reproducible way [28,29]; meter sticks, clocks, and the Earth’s gravitational
field are canonical examples of laboratory QRFs. Using a QRF such as a meter stick requires,
however, implementing a similar QRF internally; an agent that had no internal ability to
represent or process information about distances would have no use for a meter stick.
Any observer can therefore be considered to implement a collection of QRFs, one for
every combination of physical degree of freedom, every physical one observable, that the
observer can detect, assign operational meaning to, and process information about [13,24].
Here, we follow previous convention [12,13,24,30] in extending the usual notion of a QRF
to include all of the measurement and preparation processes that employ it. As each
QRF Qi can also be regarded as a quantum computation, it can also be represented by
a hierarchical, communtative diagram—a Cone-CoCone diagram (CCCD)—that depicts
information flow between a set of ni single-qubit operators and a single operator Ci that
encodes an observational outcome for the physical observable represented by Qi [12,13,24,30].
We can depict B and an associated QRF Q as in Figure 2.

As mathematical objects, CCCDs are objects in category CCCD; the morphisms of this
category are embeddings of small CCCDs into larger ones and projections of small CCCDs
out of larger ones [30]; see [31] for a textbook introduction to categories and their uses.
Because CCCDs are by definition commutative diagrams, two CCCDs that do not mutually
commute cannot be composed to form a larger CCCD. Pairs of non-commuting CCCDs
correspond to pairs of non-commuting QRFs, i.e., to pairs of operators Qi and Qj for which
commutator [Qi, Qj] = QiQj − QjQi ̸= 0. A single quantum process cannot simultaneously
implement two non-commuting QRFs. If system S implements non-commuting QRFs
Qi and Qj, it must be partitioned into two subsystems Si and Sj that are separated by a
boundary via which they interact. Such a system must therefore have distinguishable
components, and its components must have different environments. If E is the environment
of S, the environment of Si is Ej = ESj and vice versa. Hence, we can define

Definition 1. An atomic system is a system that can be represented as implementing a single QRF.
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Figure 2. “Attaching” a CCCD to an intersystem boundary B depicted as an ancillary array of qubits.
Operators Mk

i , k = S or E, are single-bit components of the interaction Hamiltonian HSE. The node C
is both the limit and the colimit of the nodes Ai; only leftward-going (cocone implementing) arrows
are shown for simplicity. See [12,13,24,30] for details. Adapted from [12], CC-BY license.

Systems that are not atomic are called “composite” systems. The QRFs implemented
by an atomic system must, by Definition 1, all mutually commute; composite systems
may implement QRFs that do not commute. Note that Definition 1 makes reference to
how the system in question is represented. This reflects the fact that an external observer
cannot determine what QRF(s) a system implements [32]. How the system is represented is
therefore a theoretical choice; indeed, it is the very choice of semantic map ψ that motivates
defining atomic systems in the first place.

We let S be an atomic system, E be its environment, and Q be its single (effective) QRF.
We can now state the following:

Theorem 1. The thermodynamic free energy required by an atomic system S is acquired from E via
its single (effective) QRF Q.

Proof. We let HS be the internal dynamics of S; by definition, HS implements Q. As
dom(Q) = B, we can think of Q as automorphism Q : B → B (see [30] for details). All
TFE required by S must traverse B; hence, all TFE required by S can only be acquired from E
via Q.
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If we assume that HS is a pure quantum process, and hence that it is perfectly reversible,
then it requires TFE only for the thermodynamically irreversible final step of acting on its
environment E, which we can represent, as in Figure 2, as preparing specific final states of
the qubits encoded by its boundary [33,34]. Any additional thermodynamically irreversible
steps require additional TFE, up to the limit of fully irreversible classical computation,
for which every step requires TFE proportional to the number of bits modified or written.
Hence, we can write the TFE consumption of Q as

Ξ(Q) = fQ(nQ)βQkBTQ, (2)

where nQ is the number of qubits in sector dom(Q) on B, fQ is a non-decreasing func-
tion with fQ(nQ) ≥ nQ everywhere, βQ ≥ ln2 is an inverse measure of the thermody-
namic efficiency of Q, and TQ is the effective ambient temperature. For an atomic system,
dom(Q) = B. The minimum value fQ(nQ) = nQ corresponds to fully reversible computa-
tion, i.e., to writing output values on dom(Q) as the only thermodynamically irreversible
step. For a classical binary tree, fQ(nQ) = n2

Qlog2nQ. The value of βQ is implementation-
dependent, with contemporary semiconductors and ATP/GTP-independent macromolecu-
lar switches such as rhodopsins approaching the theoretical optimum, i.e., the Landauer
limit of ln2(kBT) per bit, and ATP/GTP-dependent macromolecular switches typically
about 10x less efficient [35].

We now consider system S that is atomic and hence has a single QRF Q that can
be treated as a map Q : B → B. If efficiency βQ is fixed, energy Ξ(Q)/nQ must be
obtained from each of the nQ qubits in dom(Q). This follows from, and indeed illustrates,
a fundamental symmetry of the Hamiltonian HSE: permuting the qubits on B, which, since
HB is ancillary to HU and just means permuting the labels on qi, has no effect on physical
interaction HSE [23]. This symmetry is evident from Figure 2, which depicts an atomic
system if only qubits qk . . . qn composing dom(Q) are considered. It extends to Q itself:
since the CCCD representing Q is a commutative diagram, permuting the “base-level”
operators Ai is equivalent to just permuting their labels.

This symmetry of HSE has a significant consequence for computational models of S.
As Ξ(Q) increases, due to internal irreversibility, i.e., inefficiency, the amount of energy
extracted from E by the measurement process and dissipated into E by the preparation
process proportionately increases. Higher-energy interactions disturb E more per mea-
surement and inject more noise into E per preparation. The symmetry of HSE spreads this
increased disturbance and noise uniformly across B.

Therefore, from Equation (2), we can see that any system S, whether atomic or compos-
ite, faces an energetic tradeoff for every deployed QRF Q. Systems operating far from the
optimal, fully reversible limit of fQ(nQ)βQ = nQln2 can decrease the interaction energy for
measurement and preparation locally by breaking the permutation symmetry of HSE [12].
This requires factoring Q into components Qχ and QΘ that act on distinct subsets of qubits
and hence distinct sectors of B, i.e., dom(Qχ) ∩ dom(QΘ) = ∅, with dom(Qχ) devoted to
information exchange and dom(QΘ) devoted to TFE exchange. This factorization is advan-
tageous if βΘ ≫ βχ, with QΘ ideally providing all of Ξ(Q) above the Landauer minimum,
allowing for the action of Qχ to minimally disturb E. We can represent this situation in
schematic form as in Figure 3. It is reflected in the designs of technologies, like transistors,
that use separate power inputs and waste-heat outputs to enable high-sensitivity, low-noise
computational I/O. It is also evident in the separation between signal transduction and
metabolic pathways and between sensory systems and photosynthetic or digestive systems
that are observed in biology.

Dividing B into sectors characterized by different thermal efficiencies by function-
ally distinguishing the sectors dom(Qχ) or dom(QΘ) creates a “difference that makes a
difference” [36] in how information flowing through B is processed. Differences between
sectors can therefore be thought of as semantic differences—differences effectively in what
actions are taken in response to inputs, as well as thermodynamic differences. A choice
of a QRF to act on B corresponds, moreover, to a choice of basis vectors for describing
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both HB and HSE [13]; hence, we can view factorization Q = QχQΘ as a choice of distinct
representations for the basis vectors characterizing dom(Qχ) versus dom(QΘ). We could,
from a mathematical perspective, also choose to maintain constant β and build the energetic
difference into a difference between temperatures Tχ and TΘ associated with dom(Qχ) and
dom(QΘ), respectively [37]. Any system that uses a part of its environment with above-
average energy density, e.g., external electrical power, solar radiation, or sugar, as a thermal
resource effectively takes this approach to the energy/information tradeoff. Organisms
typically employ both variable β and variable T strategies, e.g., by absorbing relatively
high-temperature TFE resources from the environment through specialized anatomical
structures with non-uniform bioenergetic properties.

Figure 3. Factoring a QRF Q into components Qχ and QΘ allows information exchange through B to
be separated from thermal exchange through B. This breaks the previous qubit-exchange symmetry
on B as discussed in Ref. [12].

4. Measuring and Controlling Energy Usage

Unlike technologies designed for an environment with effectively unlimited energy
resources, living systems are often faced with energy scarcity. Restrictions on the availability
of TFE are effectively restrictions on computational throughput, rendering the allocation of
energy an important “control knob” on computation. It is for this reason that energy usage
and its control are significant practical issues for modeling AIAs.

Energy-supply restrictions can prevent a system that has multiple available QRFs
from deploying them simultaneously to measure and act on its environment. Deploying
multiple QRFs sequentially requires a control system that allocates TFE resources to one
QRF at a time. In the context of the FEP, attentional control—how much either a top-down
or a bottom-up signal is amplified or attentuated—is standardly modeled as precision
adjustment [38,39]. Low-resolution signals can be amplified, and hence have high pre-
cision [40], for example, when reflexive attention is driven by the magnocellular visual
pathway, which sacrifices object-identification accuracy for speed [41]. Recognizing specific
objects as having high significance, e.g., specific individual humans that must be correctly
identified, requires both high precision and high resolution, and therefore more bits and
more TFE. Hence, attention as precision control can, when high object-identification accu-
racy is required, automatically control TFE allocation as well; the utility of the blood oxygen
level-dependent (BOLD) signal for indicating areas in enhanced neural activity via func-
tional MRI provides striking evidence for this [42]. Targeting energy resources to one QRF
at the expense of others requires walling it off, with an interaction-minimizing boundary,
from any others that might compete with it. Serialization of QRFs, in other words, induces
compartmentalization even of QRFs that would otherwise commute. Hence, systems that
are driven by TFE restrictions to deploy QRFs in sequence must be composites of multiple
atomic systems, one for each serially deployable QRFs. The converse is also true:
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Theorem 2. Only composite systems can control thermodynamic free energy flows.

Proof. Since it is clear that composite systems can control TFE flows, it suffices to show
that atomic systems cannot. This, however, is obvious: for atomic system S to be well
defined, its QRF Q must be well defined as a computation, and hence have well-defined
values for all the terms in Equation (2).

On a deeper level, Theorem 2 follows from the inability of any system S to measure its
own boundary; for proof, see ([32], Thm.1, Clause 1).

We suppose now that S is a compartmentalized system interacting with an energeti-
cally restricted environment E. Provided that TFE availability varies slowly compared to
the timescale for other inputs from E, natural selection processes favor architectures for
S that include a metaprocessor component M that allocates energy resources to m other
components S1, . . . Sm of S, each of which can be regarded as atomic [43]. The boundary of
M must include m disjoint sectors Mi that each interface with the thermodynamic sector Θi
of one of the Si; these sectors must be disjoint for the boundaries and hence the state spaces
of the Θi to be well defined. The boundary of M must also include a sector that manages
its own thermodynamic I/O, i.e., that obtains TFE specifically from and dissipates waste
heat specifically into E. Each of the Mi has an associated QRF, which, to save notation, we
can also call Mi. We assume these QRFs Mi all mutually commute, so that M can measure
the thermodynamic states of, and supply energy to, multiple of the Si simultaneously. No
generality is lost with this assumption by taking M to be atomic, as any finite hierarchy
of metaprocessors must have some top level with this characteristic. Theorem 2 therefore
applies to M: while M can control TFE flows to the Si, it cannot address its own energy
supply versus computation tradeoff.

We can now ask: how effectively can M control the overall computational behavior
of S by differentially allocating TFE resources to Si? The answer clearly depends on M’s
ability to determine both the need for a particular Si in the current behavioral context
and that the resource needs, relative to the rest of S, of that Si. This information must be
obtained from M’s environment EM, which comprises E together with all of the Si. Indeed,
M is just an AIA operating in EM.

To recognize that M is an AIA operating in EM is, however, to recognize the difference
and prima facie mismatch between M’s task in the context of S and M’s task in its own
environment, i.e., in EM. The former task is effectively to increase S’s predictive power,
while the latter is to increase M’s predictive power (i.e., the task stipulated by M’s compli-
ance with the FEP). Compatibility between these tasks requires, at minimum, preventing
competition between M and the Si. The only architecture for S that does this is one in
which M is the sole energetic interface between the Si and E, and the Si are collectively
the sole informational interface between M and E. To observed this, note that if Si can
obtain TFE independently of M, M is less able to control their operation to prevent com-
petition or deadlock, and hence less able to optimize S’s behavior, while if M can obtain
information from E independently of the Si, the FEP drives M to optimize its own access to
the affordances of E instead of optimizing S’s access.

This architecture explicitly restricts M’s information about S’s current behavioral
context to that provided by its interaction with the Si. The only learnable predictive
model for M is, therefore, a model of how energy distribution to the Si correlates with
expected future energy availability to M. The role of M in increasing S’s predictive power
is therefore limited to increasing S’s ability to predict future energy availability. This,
as mentioned earlier, solves the dark room problem for S. It also places an energetic
constraint on epistemic foraging that does not positively correlate with energetic foraging.
From an organismal perspective, this constraint makes sense; novel information may be
very valuable, but its value can only be realized if the energy required to exploit it can also
be found. Attention, in other words, is automatically prioritized toward maintaining TFE
resources, i.e., to maintaining allostasis. Semelparous species violate this rule, prioritizing
sex over TFE, but pay the price when allostasis collapses.
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5. Resource Usage in the Matrix Representation

As noted earlier, computational simulations of AIAs have tended to ignore energy
usage and hence the use of energy allocation as a control knob for system behavior. The dis-
crete matrix formulation of active inference developed in [14] is a general and commonly
used tool for such simulations. For present purposes, the most important matrices are A,
representing the mapping at some time ti from an internal “belief” state to a predicted
observation, and B, representing the time-propagator for internal belief states. In the
simplest case in which the only action is belief updating, these are d × d matrices for some
fixed dimension d in some orthonormal computational basis, i.e., A = Id maps each belief
deterministically to a distinct, specific observation and B = Id propagates each belief
forward in time unchanged.

We can think of these matrices in either of the ways discussed in Section 2 above.
If dimension d = N, corresponding to “observations” of the entire MB B, then A and B
describe the entire AIA S. If, on the other hand, d < N, corresponding to observations
of just some informative sector χ of B, A and B describe a particular inferential process
implemented by S. This latter interpretation is implicit in Ref. [14], and in simulations that
do not take energy usage into account. As the matrix elements have no intrinsic semantics,
we could also think of A and B as describing TFE processing alone, or as performing some
subprocess with both inferential and thermodynamic components.

If d < N, and we treat the B matrix as encoding inference, we can write an effective
N × N matrix B as

B =

[
B′

ij b′
ij

bij Bij

]
(3)

where B′
ij represents the thermodynamic action of B, analogous to the QRF component

QΘ in Figure 3, and bij and b′
ij represent the thermodynamic coupling into, and out of,

respectively, the inferential process represented by the d × d matrix Bij. This matrix B
propagates both belief states and their energy usage forward through time. The A matrix,
and any other matrices representing thermodynamically irreversible computations within
a given model, can be similarly extended, with analogous interpretations.

If we assume constant T and hence βΘ > βχ discussed in Section 3 above, extending
a normalized computational basis chosen for B to a basis for B either renders the larger
basis unnormalized or requires renormalization to account for net energy flows. From
Equation (2), renormalization by fΘ(nΘ)βΘ/ fχ(nχ)βχ is required to take differences in the
extent of classical computation and hence the amount of TFE that is required between QΘ
and Qχ into account.

6. Conclusions

What counts as “information processing” by system S is observer-relative [19]. The FEP
provides the formalism needed to represent the energy dependence of information pro-
cessing that is a fundamental consequence of embodiment, but this energy dependence is
often abstracted out in practice. Keeping it in the model allows addressing control-theoretic
issues that cannot be explicitly formulated otherwise.

Modeling energy dependence explicitly helps to emphasize the four-way tradeoff
faced by any AIA: the need to balance (1) its requirements for new information (i.e.,
unpredicted environmental behavior), (2) memory for old information (i.e., predicted
results of past actions), and (3) fuel to fund the computing and encoding of these data
against (4) the size of its boundary and hence against the risks to boundary integrity
posed by a stronger interaction with its environment. “Precarious” or “edge-of-chaos”
behavior results when an AIA drives close its the upper limit of boundary-preserving
interaction with its environment. Such precarious behavior maximally exposes the AIA
to its environment to gain boundary space for both data and fuel, but also maximizes the
risk of boundary collapse, failure of allostasis, and death. We can expect that systems
for which fuel resources are rare and hard to obtain, e.g., carnivores, and systems that
preferentially engage in epistemic foraging, e.g., explorers of new territories, to be forced
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into this high-risk lifestyle. Sedentary systems for which energetic resources are highly
predictable, e.g., photosynthesizing plants in a stable climate, can be expected to adopt a
more passive, low-risk lifestyle. Similarly, a big brain and hence a high-energy budget are
required by any system that can identify and interact specifically with a large variety of
environmental objects, while systems that do not notice or respond to many details of their
environments do not have this requirement. Making the thermodynamic cost of being an
AIA explicit thus not only helps us understand individual AIAs, but also opens the door to
understanding ecologies of AIAs.
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