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Abstract: Recently, research interest in the field of infrastructure attack and defense scenarios has
increased. Numerous methods have been proposed for studying strategy interactions that combine
complex network theory and game theory. However, the unavoidable effect of constrained strategies
in complex situations has not been considered in previous studies. This study introduces a novel
approach to analyzing these interactions by including the effects of constrained strategies, a factor
often neglected in traditional analyses. First, we introduce the rule of constraints on strategies, which
depends on the average distance between selected nodes. As the average distance increases, the
probability of choosing the corresponding strategy decreases. Second, we establish an attacker–
defender game model with constrained strategies based on the above rule and using information
theory to evaluate the uncertainty of these strategies. Finally, we present a method for solving this
problem and conduct experiments based on a target network. The results highlight the unique
characteristics of the Nash equilibrium when setting constraints, as these constraints influence
decision makers’ Nash equilibria. When considering the constrained strategies, both the attacker and
the defender tend to select strategies with lower average distances. The effect of the constraints on
their strategies becomes less apparent as the number of attackable or defendable nodes increases. This
research advances the field by introducing a novel framework for examining strategic interactions in
infrastructure defense and attack scenarios. By incorporating strategy constraints, our work offers a
new perspective on the critical area of infrastructure security.

Keywords: infrastructure attack and defense scenarios; complex networks; game theory; constrained
strategies; information theory

1. Introduction

Currently, infrastructure networks, such as water supply networks, aviation networks,
and transportation networks, play essential roles in human society [1,2]. Excessive depen-
dency on these networks results in human systems having a wide range of vulnerabilities,
including to the threats posed by both terrorists and hackers. For example, the Septem-
ber 11 attacks against the World Trade Center in New York and the Pentagon in Virginia
resulted in a significant loss of life and had an enormous impact on the economy and
politics. Moreover, networks are also prime targets during times of conflict. Therefore, it is
vital to consider adversaries’ strategies and understand network interdependencies from a
global perspective.

Numerous methods, such as probabilistic risk analyses and data analyses, have been pro-
posed to protect infrastructures [3,4]. These methods are unsuitable for modeling the behavior
of intelligent adversaries [3–5]. In these cases, game theory provides an appropriate model
framework to address this problem, within which the optimal strategies and interactions of
players can be assessed [6,7]. For example, Brown et al. [8] formulated a sequential game
model to minimize the operating costs for both attack and defense strategies. Pita et al. [9] em-
ployed game theory to examine the complexity of airport security. Zhang et al. [10] proposed
a game model to address challenges in factory safety management. Feng et al. [11] took this a
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step further by integrating game theory and risk assessments to evaluate protective measures
for multiple chemical facilities under the looming threat of attacks. They later expanded their
study to incorporate multiple attackers [12]. Zhang et al. [13] investigated resource allocation
within security games, while Guan et al. [14] delved into an attack–defense game model that
incorporated budget constraints. Zhang et al. [15] transformed the game of an infrastructure
problem into a multiobjective optimization model and employed evolutionary algorithms to
solve it.

However, importantly, the above studies overlook the complex interactions that exist
within infrastructure systems. In reality, interconnected infrastructures form a complex
network, wherein the failure of a single facility could potentially affect the entire network.
A typical network consists of nodes, edges connecting the nodes, and weights assigned
to the edges. Initially, mathematicians believed that real systems could be represented by
regular structures such as regular lattices and nearest-neighbor grids. By the late 1950s,
Erdős et al. [16] introduced random networks, in which the existence of an edge between
two nodes is determined by a probability. Networks generated via this method are referred
to as random networks. In recent decades, research on small-world networks and scale-free
networks has initiated complex network studies. Watts et al. [17] proposed a small-world
network model involving the rewiring of the edges between nodes in a regular network.
Barabási et al. [18] introduced the scale-free network model, which is characterized by a few
nodes with many connections, resulting in a power-law distribution of the node degrees in
this type of network. Li et al. [19] proposed a localized world evolutionary network model
by using the world trade web. Comellas [20] introduced a small-world network model
with a certain regularity in its node connections from the perspective of graph theory to
study the topology of communication networks.

Therefore, it is crucial to consider the comprehensive impact of localized infrastructure
failures on the entire infrastructure network. To address this issue, protection measures
for infrastructure networks should be analyzed by integrating game theory and com-
plex network theory. Fu et al. [21] developed a static network attack and defense game
model to examine the impact of cascading failures. Gu et al. [22] analyzed the signifi-
cance of the Bayesian Stackelberg game model from the perspective of network science.
Zeng et al. [23] used the Bayesian Stackelberg game model and proposed a false network
construction method. Qi et al. [24,25] proposed a link-hiding rule and analyzed its optimiza-
tion impact within the context of dynamic attack and defense games in complex networks.
Huang et al. [26] used sequential game theory to model attack and defense games in com-
plex networks and proposed a strategy optimization method. Baykal-Guersoy et al. [27]
introduced the concept of an attack number, which considers factors such as the number
of affected individuals or the occupancy level of critical infrastructure, as a measure-
ment. They developed a game model to examine the security of transportation networks.
Li et al. [28–30] proposed an attack–defense model that takes a network perspective to
investigate how network structure and cost constraints influence equilibrium outcomes
under two typical strategies. Thompson et al. [31,32] analyzed the potential impacts of
intelligent attacks and worst-case interruptions on the U.S. air transportation network.
Subsequently, they established a defender–attacker–defender optimization model with
three levels and proceeded to solve it. These game models can be roughly divided into two
categories. One category is that of the simultaneous game models, where the attacker and
the defender do not know their opponent’s chosen strategies [28,29,33]. The other category,
containing the Stackelberg (sequential) game models, is the one in which the attacker can
effectively surveil the security measures of the defender [23–25,34–36].

In these studies, it is assumed that players’ strategies are not constrained, which is not
always possible in realistic situations. In practice, players are often restricted by objective
conditions when choosing strategies. Charnes [37] developed the two-person zero-sum
constrained game. Owen [38] investigated the existence of solutions to the two-person
zero-sum constraint matrix countermeasure problem using dual linear programming theory.
Firouzbakht et al. [39] proposed a constrained bimatrix game framework that has practical
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applications in various fields, such as modeling packet jamming in wireless networks.
Xiao et al. [40] proposed an interval bimatrix game with a constrained strategy.

In this paper, we introduce a new approach to the attacker–defender game model by
incorporating strategy constraints. Considering the average distances between nodes is
crucial for securing critical infrastructures like high-speed rail (HSR) networks. Shorter
distances between stations enable the rapid communication of security signals, essential
for swift detection and responses to threats. This quick communication directly impacts
the response time of automated security measures. During an attack, shorter distances
can significantly reduce the time needed to activate security protocols, mitigating the
attack’s severity. By incorporating the average node distance as a key metric, our model
introduces a method for quantifying the feasibility of strategy selection. The larger the
average distance between selected nodes, the more difficult it is to apply that strategy in
realistic situations. This approach is not only innovative within the field but also mirrors
practical scenarios. We conduct experiments in a target network to analyze the impacts of
these constraints.

The rest of the paper is organized as follows: In Section 2, we present some basic
assumptions, constrained strategies, and payoffs. In Section 3, the method used for solving
the game is presented. The equilibrium results are analyzed in Section 4. Finally, Section 5
concludes the paper.

2. An Attacker–Defender Game Model Based on Constrained Strategies

Considering constrained strategies, we build an attacker–defender game model for
infrastructure networks. An infrastructure network can be represented by an undirected
simple graph G(V, E), where V = {V1, V2, · · · , VN} represents the node set, N = |V| is
the number of nodes, and E =

(
eij
)
⊆ V × V represents the link set. Let the adjacency

matrix of graph G be A(G) =
(
aij

)
N×N . If there is a link between nodes Vi and Vj, then

aij = aji = 1; otherwise, aij = aji = 0.
Since the actions of the attacker and the defender are simultaneous, this game model

is a static model. The attacker–defender game model uses a ten-tuple to represent the
confrontation, where ADG =

(
NA, ND, VA, SA, VD, SD, PA, PD, UA, UD

)
:

(1) Let NA represent the attacker in the attacker–defender game model. The attacker
predicts the defense strategy of the defender to develop an attack strategy.

(2) Let ND represent the defender in the attacker–defender game model. The defender
predicts the attack strategy of the attacker to develop a defense strategy.

(3) Let VA represent the attack node set. If the attacker chooses to target nodes V1 and
V2, then VA = {V1, V2}.

(4) Let SA =
{

S1
A, S2

A, · · · , Si
A, · · · , Sm

A
}

represent the attack strategy set. The vector
Si

A = [x1, x2, · · · , xN ] indicates the ith attack strategy in the set of attack strategies. In this
case, xi = 1 if the Vi node is attacked (Vi ⊆ VA); otherwise, xi = 0.

(5) Let VD represent the defense node set. If the defender chooses to target nodes V3
and V4, then VD = {V3, V4}.

(6) Let SD =
{

S1
D, S2

D, · · · , Sj
D, · · · , Sn

D

}
represent the defense strategy set. The vector

Sj
D = [y1, y2, · · · , yN ] indicates the jth defense strategy in the set of defense strategies.

In this case, yi = 1 if the Vi node is defended (Vi ⊆ VD); otherwise, yi = 0.
(7) Let PA =

{
P1

A, P2
A, · · · , Pi

A, · · · , Pm
A
}

represent the probability that the attacker
adopts an attack strategy. The element Pi

A indicates that the attacker adopts the Si
A strategy

with a probability of Pi
A.

(8) Let PD =
{

P1
D, P2

D, · · · , Pj
D, · · · , Pn

D

}
represent the probability that the defender

adopts a defense strategy. The element Pj
D indicates that the defender adopts the Sj

D

strategy with a probability of Pj
D.

(9) Let UA = UA(SA, SD) represent the profit function for the attacker. The value of
the function also depends on SA and SD. Different attack strategies and different defense
strategies generate different profit values for the attacker.



Entropy 2024, 26, 624 4 of 15

(10) Let UD = UD(SA, SD) represent the profit function for the defender. The value
of the function depends on SA and SD. Different attack strategies and different defense
strategies generate different profit values for the defender.

2.1. Basic Assumptions

(1) In this game, there are two rational players, namely, the attacker and the defender.
Both players possess complete information about the target network, including knowledge
of all possible strategies and the objective metrics associated with the network’s structure
for each strategy profile in the network.

(2) All attacks and defenses are target nodes. A node is considered to be successfully
attacked when it is targeted by the attacker without being protected by the defender. Once
a node is successfully attacked, all the edges connected to that node are removed from
the network.

(3) In this game, both the attacker and the defender independently formulate their
strategies without prior knowledge of each other’s decisions. This simultaneous move
structure is designed to capture scenarios in which each party operates under conditions of
strategic secrecy and independent decision-making. Furthermore, the game is structured as
a single-shot interaction, implying that there are no subsequent rounds which could provide
opportunities for reassessment or adaptation based on an opponent’s previous moves.

2.2. Constraint Strategies

The attack strategy’s selection probability is denoted as Pi
A, while the defense strat-

egy’s selection probability is represented by Pj
D. The strategy constraints are established

as follows:
Pi

A ≤ αi
A, ∀Si

A ∈ SA, (1)

and
Pj

D ≤ α
j
D, ∀Sj

D ∈ SD, (2)

where αi
A and α

j
D are constraint coefficients for the attacker and the defender, respectively,

and belong to the interval (0, 1).
Figure 1 provides a detailed illustration of the method used for calculating the strategy

selection probability based on the average distance between selected nodes. In an example
network comprising 10 nodes, we presume that both the attacker and the defender opt for
three nodes for their respective strategies. The shortest paths between each pair of nodes are
then meticulously calculated. The figure shows the process of deriving the average of these
shortest paths, which forms the foundation for imposing constraints on strategy selection.
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Figure 1. The process of calculating the average distances in this model. The red dots denote the
nodes that the attacker chooses to attack and the black dots denote the nodes that the defender
chooses to defend.
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In this model, as the average distance between selected nodes increases, the probability
of choosing their corresponding strategy decreases. We denote the average distance as
Disti

A for the ith attack strategy and Distj
D for the jth defense strategy. We set the strategy

constraint rules as follows:

Ci
A =

exp
(

3
Disti

A

)
(

Disti
A

)3 , ∀Si
A ∈ SA, (3)

and

Cj
D =

exp
(

3
Distj

D

)
(

Distj
D

)3 , ∀Sj
D ∈ SD. (4)

Let θA represent the attack strategy constraint parameter and θD represent the de-
fense strategy constraint parameter. These parameters indicate the strength of the strategy
constraints for the two players. The values of θA and θD depend on the targeted network
structures, the players’ experience, and their subjective preferences. Larger values of θA
and θD indicate weaker constraints, while smaller values indicate stronger constraints.
For the attacker, αi

A is calculated by

αi
A =

θA
(
Ci

A − min CA
)

max CA − min CA
, ∀Si

A ∈ SA, (5)

where min CA and max CA are the minimum and maximum values in CA = {C1
A, C2

A, · · · , Cm
A},

respectively.
For the defender, α

j
D is calculated by

α
j
D =

θD

(
Cj

D − min CD

)
max CD − min CD

, ∀Sj
D ∈ SD, (6)

where min CD and max CD are the minimum and maximum values in CD = {C1
D, C2

D, · · · , Cn
D},

respectively.
Additionally, we propose incorporating an entropy-based measure to quantify the

uncertainty and variability of the strategy selection probabilities. The entropy H of the
attack and defense strategies can be defined as follows:

HA = −∑
i

Pi
A log Pi

A, (7)

and
HD = −∑

j
Pj

D log Pj
D. (8)

These entropy measures provide additional insights into the diversity and unpre-
dictability of these strategies. They serve as a metric for assessing the diversity and unpre-
dictability of these strategies.

2.3. Payoffs

In Section 2.1, we assume that node Vi is successfully removed only if it is attacked by
the attacker and is not protected by the defender. We define the sets of removed nodes and
edges as V̂ ⊆ V and Ê ⊆ E, respectively. Then, the resulting network after its removal can
be denoted as Ĝ = (V − V̂, E − Ê).
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Here, it is evident that V̂ = VA − VA ∩ VD. The set of removed nodes V̂ is equal to
the set of nodes attacked by the attacker VA minus the set of nodes attacked by the attacker
and protected by the defender VA ∩ VD. This can be shown by the following calculation:

V̂ = {Vi ∈ V | Vi ∈ VA and Vi /∈ VD}
= {Vi ∈ VA | Vi /∈ VD}
= VA − VD

= VA − (VA ∩ VD).

(9)

We denote the measure of network performance as Γ, which can be evaluated by the
size of the largest connected component [41], efficiency [42], and other metrics. Additionally,
we define the attacker’s payoff as

Uij
A

(
Si

A, Sj
D

)
=

Γ(G)− Γ(Ĝ)

Γ(G)
∈ [0, 1], (10)

while the defender’s payoff is defined as

Uij
D

(
Si

A, Sj
D

)
=

Γ(Ĝ)− Γ(G)

Γ(G)
∈ [−1, 0], (11)

where Γ is defined as the measure of network performance. In this paper, Γ(G) and
Γ(Ĝ) are the sizes of the largest connected component of network G(V, E) and network
Ĝ = (V − V̂, E − Ê), respectively. The sum of the attacker’s payoff and the defender’s
payoff is zero, indicating a zero-sum game.

3. Solution

In a constrained game, the attacker’s objective is to maximize their payoff under
strategy constraints, while the defender aims to minimize their loss. Therefore, we establish
a linear programming model with two objectives to solve this problem. Let us suppose that
z, ω are the expected payoffs for the attacker and the defender, respectively; then, the model
is defined as follows:

max z
s.t. ∑Si

A∈SA
UA(Si

A, Sj
D) · Pi

A ≥ z, ∀Sj
D ∈ SD

Pi
A ≤ αi

A, ∀Si
A ∈ SA

∑Si
A∈SA

Pi
A = 1

Pi
A ≥ 0, ∀Si

A ∈ SA,

(12)

max ω

s.t. ∑Sj
D∈SD

UD(Si
A, Sj

D) · Pj
D ≥ ω, ∀Si

A ∈ SA

Pj
D ≤ α

j
D, ∀Sj

D ∈ SD

∑Sj
D∈SD Pj

D = 1

Pj
D ≥ 0, ∀Sj

D ∈ SD,

(13)
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where UA(Si
A, Sj

D) is the payoff for the attacker under strategy profile
(

Si
A, Sj

D

)
and

UD(Si
A, Sj

D) is the payoff for the defender. Equation (12) is the optimization model for the
attacker, and Equation (13) is the optimization model for the defender. By solving this
model, the Nash equilibrium

(
P∗

A, P∗
D
)

is obtained. Then, the equilibrium payoff values for
the attacker and the defender are defined as

z(P∗
A, P∗

D) = PT
AUAPD =

(
P1

A, P2
A, · · · , P|SA |

A

)


u11
A u12

A · · · u1|SD |
A

u21
A u22

A · · · u2|SD |
A

...
...

...
u|SA |1

A u|SA |2
A · · · u|SA ||SD |

A




P1

D

P2
D
...

P|SD |
D

, (14)

and

ω(P∗
A, P∗

D) = PT
AUD PD =

(
P1

A, P2
A, · · · , P|SA |

A

)


u11
D u12

D · · · u1|SD |
D

u21
D u22

D · · · u2|SD |
D

...
...

...
u|SA |1

D u|SA |2
D · · · u|SA ||SD |

D




P1

D

P2
D
...

P|SD |
D

. (15)

Due to Equations (10) and (11), we know that this is a zero-sum game, so the payoff
for the attacker is equal to the loss of the defender, which is denoted as z = −ω.

4. Experiment

In this section, we conducted experiments to demonstrate the effectiveness of our
model, using a high-speed rail (HSR) network as an example. In the context of a high-speed
rail network, which spans vast geographical areas with numerous stations and control
centers, the average distance between nodes plays a pivotal role in the security strategy
used. Consider the security strategy for a major HSR network like China’s extensive HSR
system, which connects numerous cities across the country. This strategy must ensure the
safety and integrity of both passengers and infrastructure. The average distance between
stations and control centers is crucial to determine the efficiency and effectiveness of
security measures, from real-time monitoring to emergency response coordination.

For comparison purposes, we divided the experiments into two groups: one under
unconstrained conditions and the other under constrained conditions. For each group of
experiments, we set the number of attackable or defendable nodes to 2, 3, and 4, respectively.
We then applied Equations (12) and (13) to generate Nash equilibrium solutions before
proceeding with the analysis.

Our analysis was conducted on a system equipped with a 12th Gen Intel Core i7-
12700H processor, 32.0 GB of RAM, and a 64-bit operating system running on an x64-based
processor. The equipment is from Lenovo, a manufacturer located in Beijing, China. The
data originated from the targeted network.

4.1. Experiment without Constrained Strategies
4.1.1. Experimental Setting

In our experiments conducted within a target network, Figure 2 offers a comprehensive
visualization of the nodes’ significance under various centrality metrics: degree centrality
(DC), closeness centrality (CC), betweenness centrality (BC), and eigenvector centrality
(EC). This visualization employs a color gradient, with the nodes appearing more red
having a higher value for the corresponding centrality metric.

Degree centrality (DC ) [43]: This is a measure that quantifies the direct influence of
a node on a network. It is based on the principle that nodes with higher degrees have a
greater potential to directly affect their neighbors, thereby increasing their significance
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within the network. The degree of i is ki = ∑n
j=1 aij, which is equal to the number of edges

connected to it. This is calculated by

DC(i) =
ki

N − 1
, (16)

where N denotes the total number of nodes in G and N − 1 is the maximum possible degree.
For normalization, the equation is divided by N-1 based on the degree.
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Figure 2. This figure shows the importance of the nodes in terms of various metrics, including degree
centrality (DC), closeness centrality (CC), betweenness centrality (BC), and eigenvector centrality
(EC). The nodes’ influence is represented by the color of the nodes.

Closeness centrality (CC) [44]: This metric is based on the average time it takes for
information to travel from one node to another. It quantifies how quickly a node can
reach all other nodes in the network. The closeness centrality of a node is calculated as the
sum of the reciprocals of the shortest distances from that node to all other nodes divided
by the number of nodes in the network. This value represents the average transmission
time needed for information to travel from one node to all other nodes in the network.
Nodes with higher closeness centrality values are considered more important because they
have greater access to information and can influence the network more quickly. CC is
calculated by

CC(i) =
1

N − 1 ∑
j ̸=i

1
dij

, (17)

where dij represents the average shortest distance from node Vi to node Vj. If there is no
connection between Vi and Vj, the distance approaches infinity, in which case 1

dij
= 1

∞ = 0.
Betweenness centrality (BC) [45]: This is a measure of the influence of a node on

the flow of information in a network. This measure quantifies how many shortest paths
pass through a particular node and, in turn, how many other nodes are reachable from
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those paths. The betweenness centrality of a node is calculated by summing the number of
shortest paths that pass through each of its neighbors, weighted by the number of shortest
paths that include those neighbors. Nodes with higher betweenness centrality values are
considered more influential as they play a crucial role in connecting different parts of the
network and distributing information efficiently. BC is calculated by

BC(i) =
2

N(N − 1) ∑
s ̸=t ̸=i

gst(i)
gst

, (18)

where gst(i) represents the number of shortest paths from node s to node t through node i.
gst represents the total number of shortest paths from node s to node t.

Eigenvector centrality (EC) [46]: This metric is a measure of the importance of nodes
in a network based on the quality of their connections to other nodes. EC quantifies how
influential a node is by accounting for not only the number of its neighbors but also the
importance of those neighbors. This is calculated by

EC(i) =
1
λ

n

∑
j=1

aij f j, (19)

where aij is the adjacency matrix of the network, f j is the value of the jth entry of the
normalized largest eigenvector, and λ is a constant.

This network consists of 10 nodes and 20 edges. Among the nodes, V1 and V2 have high
values and V7 and V10 have low values. In this model, a objective function is established
based on the size of the largest connected component. We conducted this experiment with
different numbers of nodes to be attacked or defended.

4.1.2. The Nash Equilibrium

The mixed-strategy Nash equilibrium results are presented in Tables 1–3. Notably,
the pure strategies with nonzero probabilities in their equilibrium are listed, as are their
respective probabilities. From the equilibrium results when |VA| = |VD| = 2, we observe
that the attacker has five pure strategies with nonzero probabilities. On the one hand,
the highest probabilities are assigned to the attack strategies {V3, V8}, {V4, V10}, {V5, V7},
and {V6, V9}, all of which have a probability of 0.23077. On the other hand, strategy {V1, V2}
has the lowest probability. Notably, V1 and V2 have high values for the centrality prop-
erties examined in this network. For the defender, strategies {V1, V6}, {V1, V7}, {V1, V9},
and {V2, V8} have the highest probabilities, all equal to 0.15385, with V1 having the highest
value for the centrality properties. When |VA| = |VD| = 3, the nonzero probabilities of each
strategy chosen by both the attacker and defender are given in Table 2. For example, strat-
egy {V2, V6, V8} has the highest probability among the attacker’s strategies, with a value of
0.2093, and the probability of the defender selecting strategy {V1, V6, V9} is 0.25. Similarly,
in the third scenario, where |VA| = |VD| = 4, there are a total of eight attack strategies
and seven defense strategies with nonzero probabilities. Table 3 provides the probabilities
for each strategy. The attacker is more likely to choose strategy {V3, V4, V6, V10}, while the
defender tends to choose strategies {V1, V6, V7, V9} and {V2, V4, V5, V10}.

It is evident that some strategies are much more likely to be chosen than others.
For example, in the three scenarios, certain attack and defense strategies have probabilities
close to 0.2 or 0.3, respectively. Additionally, by comparing the three scenarios using
different values of |VA| and |VD|, we can see that the number of nodes to be attacked or
defended affects the players’ decision-making results. With an increased number of nodes,
players have more flexibility in choosing their strategies, leading to a more complex game.



Entropy 2024, 26, 624 10 of 15

Table 1. The mixed-strategy Nash equilibrium results without constraints (|VA| = |VD| = 2).

Attack strategy {V3, V8} {V4, V10} {V5, V7} {V6, V9} {V1, V2}
Probability 0.23077 0.23077 0.23077 0.23077 0.076923

Defense strategy {V1, V6} {V1, V7} {V1, V9} {V2, V8} {V4, V10}
Probability 0.15385 0.15385 0.15385 0.15385 0.15385

Defense strategy {V1, V5} {V2, V3} {V3, V5}
Probability 0.076923 0.076923 0.076923

Table 2. The mixed-strategy Nash equilibrium results without constraints (|VA| = |VD| = 3).

Attack strategy {V2, V6, V8} {V3, V7, V10} {V7, V9, V10} {V1, V4, V5} {V3, V4, V9}
Probability 0.2093 0.18605 0.13953 0.13953 0.093023

Attack strategy {V3, V7, V9} {V5, V9, V10} {V3, V4, V5}
Probability 0.093023 0.093023 0.046512

Defense strategy {V1, V6, V9} {V1, V8, V10} {V2, V4, V7} {V2, V3, V5} {V3, V4, V5}
Probability 0.25 0.23837 0.14535 0.14535 0.11047

Defense strategy {V1, V2, V7} {V2, V7, V10} {V1, V7, V8} {V1, V6, V7} {V1, V7, V9}
Probability 0.063953 0.017442 0.017442 0.005814 0.005814

Table 3. The mixed-strategy Nash equilibrium results without constraints (|VA| = |VD| = 4).

Attack strategy {V3, V4, V6, V10} {V3, V4, V9, V10} {V6, V7, V8, V9} {V5, V7, V9, V10}
Probability 0.19608 0.13725 0.13725 0.13725

Attack strategy {V1, V2, V5, V8} {V3, V6, V7, V8} {V2, V4, V5, V8} {V3, V4, V7, V8}
Probability 0.11765 0.098039 0.078431 0.039216

Attack strategy {V2, V6, V7, V9} {V4, V5, V7, V9}
Probability 0.039216 0.019608

Defense strategy {V1, V6, V7, V9} {V2, V4, V5, V10} {V1, V3, V8, V10} {V2, V3, V5, V8}
Probability 0.32353 0.26471 0.11765 0.058824

Defense strategy {V1, V3, V7, V8} {V3, V6, V8, V9} {V1, V3, V4, V8} {V2, V3, V4, V5}
Probability 0.058824 0.058824 0.058824 0.029412

Defense strategy {V2, V4, V5, V8}
Probability 0.029412

To explore the nodes that the attacker and the defender are most likely to select in the
Nash equilibrium, we map the probabilities over pure strategies to those over each node
via the following equations:

ρA =
1

|VA|

|SA |

∑
i=1

Pi
A · Si

A, (20)

and

ρD =
1

|VD|

|SD |

∑
j=1

Pj
D · Sj

D, (21)

where ρA = [ p̃1, p̃2, · · · , p̃i, · · · , p̃N ] and ρD = [q̃1, q̃2, · · · , q̃j, · · · , q̃N ] are the probability
distributions over each node for two players. With this approach, the selection probability
distributions for each node are obtained and mapped from the probabilities in Tables 1–3,
as shown in Figure 3.

The nodes with the lowest probabilities of being attacked are V1 and V2, whose degree
centrality, closeness centrality, betweenness centrality, and eigenvector centrality are the
highest. However, the defender allocates the greatest probability to protecting nodes V1
and V2. This finding suggests that nodes with greater scores are generally more likely to be
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protected. As the number of nodes to be attacked or defended increases, the probability
distribution of the nodes becomes more uniform.
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Figure 3. The attack and defense probability distributions for nodes when different numbers of nodes
are attacked or defended.

4.2. Experiments with Constrained Strategies
The Nash Equilibrium

As shown in Section 2.2, θA and θD in Equations (5) and (6) are determined by various
factors. In this experiment, we set θA = 0.25 and θD = 0.05 based on the network structure
shown in Figure 2 and the unconstrained Nash equilibrium results in Tables 1–3. However,
when |VA| = |VD| = 2, there is no solution for which θD = 0.05. Therefore, when
|VA| = |VD| = 2, we set the critical value θD = 0.06.

Tables 4–6 present the mixed-strategy Nash equilibrium results with strategy con-
straints for scenarios where the numbers of attack and defense nodes are equal
(|VA| = |VD| = 2, 3, 4). These tables show the first ten highest probabilities of each at-
tack and defense strategy being chosen by both players.

Table 4. The mixed-strategy Nash equilibrium results with strategy constraints (|VA| = |VD| = 2).

Attack strategy {V1, V2} {V1, V5} {V1, V4} {V4, V7} {V6, V7}
Probability 0.25 0.20602 0.19518 0.12259 0.027353

Attack strategy {V4, V10} {V3, V9} {V3, V7} {V3, V10} {V4, V9}
Probability 0.026268 0.025993 0.025858 0.025724 0.025525

Defense strategy {V1, V2} {V1, V5} {V1, V6} {V1, V8} {V1, V4}
Probability 0.06 0.049444 0.048545 0.048326 0.046842

Defense strategy {V1, V3} {V2, V6} {V2, V8} {V2, V5} {V1, V7}
Probability 0.045837 0.045641 0.045254 0.044132 0.04255

Table 5. The mixed-strategy Nash equilibrium results with strategy constraints (|VA| = |VD| = 3).

Attack strategy {V6, V8, V9} {V1, V3, V4} {V1, V4, V5} {V1, V4, V10} {V2, V4, V7}
Probability 0.048188 0.048188 0.048188 0.048188 0.048188

Attack strategy {V2, V6, V8} {V5, V8, V9} {V5, V8, V10} {V3, V6, V9} {V2, V3, V9}
Probability 0.048188 0.048188 0.048188 0.048188 0.040862

Defense strategy {V1, V2, V4} {V1, V2, V3} {V1, V2, V5} {V1, V2, V6} {V1, V3, V6}
Probability 0.05 0.05 0.05 0.05 0.05

Defense strategy {V2, V5, V8} {V1, V2, V8} {V1, V4, V7} {V1, V5, V8} {V1, V5, V10}
Probability 0.05 0.05 0.05 0.05 0.05
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Table 6. The mixed-strategy Nash equilibrium results with strategy constraints (|VA| = |VD| = 4).

Attack strategy {V1, V2, V5, V9} {V3, V6, V8, V9} {V1, V3, V4, V10} {V1, V3, V7, V10}
Probability 0.035504 0.024047 0.024047 0.024047

Attack strategy {V5, V6, V8, V9} {V1, V4, V6, V10} {V1, V4, V8, V10} {V2, V3, V6, V7}
Probability 0.024047 0.024047 0.024047 0.024047

Attack strategy {V1, V3, V4, V5} {V2, V6, V8, V9}
Probability 0.024047 0.014469

Defense strategy {V1, V2, V3, V6} {V1, V2, V3, V4} {V1, V2, V4, V7} {V1, V2, V4, V8}
Probability 0.05 0.020088 0.020088 0.020088

Defense strategy {V1, V2, V6, V9} {V1, V2, V8, V9} {V1, V5, V8, V10} {V1, V2, V4, V5}
Probability 0.020088 0.020088 0.020088 0.020088

Defense strategy {V1, V2, V5, V10} {V2, V5, V8, V9}
Probability 0.020088 0.020088

When |VA| = |VD| = 2, compared to the result without any constraints, it is obvious
that both the attacker and the defender are more likely to choose strategies {V1, V2} and
{V1, V5}. For the attacker, the probability of selecting strategy {V1, V2} is 0.25, and the
probability of choosing {V1, V5} is 0.20602. For the defender, the probabilities of selecting
{V1, V2} or {V1, V5} are 0.06 or 0.049444, respectively.

When |VA| = |VD| = 3, 4, the probability distribution becomes more uniform. Cer-
tain strategies share equal probabilities. For instance, when |VA| = |VD| = 3, the prob-
abilities of the attacker choosing attack strategies {V6, V8, V9}, {V1, V3, V4}, {V1, V4, V5},
and so on, are all 0.048188. Similarly, the probabilities of the defender selecting defense
strategies {V1, V2, V4}, {V1, V2, V3}, {V1, V2, V5}, and so on, are all 0.05. When |VA| =
|VD| = 4, the probability of the attacker choosing attack strategy {V1, V2, V5, V9} is 0.035504,
and the probability of them choosing strategies {V3, V6, V8, V9}, {V1, V3, V4, V10}, and so
on, is 0.024047. Similarly, the probability of the defender selecting defense strategies
{V1, V2, V3, V6}, {V1, V2, V3, V4}, {V1, V2, V4, V7}, and so on, is 0.020088.

4.3. The Probability Distribution of Each Node

Subsequently, we obtain the distribution of probability across nodes based on
Equations (20) and (21). To analyze the various constraints effectively, we have illustrated
them in Figure 4.
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Figure 4. The probabilities of each of the ten nodes being selected by the attacker or the defender,
with strategy constraints, are compared with those without constraints when different numbers of
nodes are being attacked or defended (|VA| = |VD| = 2, 3, 4).

According to Figure 4, by applying the proposed model, the selection probability of
the 10 nodes in the target network changes substantially. When the number of attackable
or defendable nodes is two, the change in the selection probability for different nodes
is significant. However, as the number of attackable or defendable nodes increases, this
change becomes less apparent. Specifically, when the number of nodes to be attacked or
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defended is two, the selection probabilities V1 and V2 significantly increase for the attacker.
For the defender, the selection probability of V1 decreases, while the selection probability of
the other nodes does not change significantly. When the number of attackable or defendable
nodes is three, there is a small fluctuation in the selection probability of V3, V4, V5, · · · , V10
for both the attacker and the defender. When the number of nodes is four, only small
changes occur.

According to our experiments, we have found key insights that set apart unconstrained
and constrained scenarios. Constraints significantly impact the choices of both attackers
and defenders. This shows that constraints are not just theoretical; they affect real-world
security strategies. Without constraints, decision makers focus on single node metrics
when choosing strategies. But with constraints, they must think broadly, considering node
interconnections and dependencies. This broadens the strategic landscape, mirroring the
complexity of actual security situations.

5. Conclusions

Currently, infrastructure attack and defense scenarios have attracted considerable
attention. The integration of complex network theory and game theory has provided
valuable insights for choosing attack and defense strategies. Modeling an attacker–defender
game helps in the analysis of strategic choices. To fit this to realistic situations, we propose
a strategy constraint rule and a static game model under this rule.

This approach provides foundational understanding but is recognized to be a sim-
plification of complex realities. In practice, strategic choices are subject to a multitude of
constraints, including, but not limited to, resource limitations, temporal dynamics, and reg-
ulatory frameworks. The interplay of these factors requires a more integrated model. Future
work will involve the development of a more adaptive algorithm. Therefore, we propose
several perspectives for future research:

(1) Dynamic constraints: Real-world infrastructure systems are dynamic and constantly
changing. Decision makers may face varying constraints over time due to factors such
as resource availability, changes in the threat landscape, or evolving regulations. Future
research may include exploring the implications of dynamic constraints on the game model
and considering how decision makers adapt their strategies based on evolving constraints.

(2) Multiobjective optimization: In addition to constraints, decision makers often need
to consider multiple objectives when selecting strategies for infrastructure protection. These
objectives may include minimizing damage, maximizing system resilience, or optimizing
resource allocation. Future research may include integrating multiobjective optimization
techniques into game models to assist decision makers in selecting strategies that balance
multiple competing objectives under constrained conditions.
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