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Abstract: This paper proposes methods for Machine Learning (ML)-based Beam Alignment (BA),
using low-complexity ML models, and achieves a small pilot overhead. We assume a single-user
massive mmWave MIMO, Uplink, using a fully analog architecture. Assuming large-dimension
codebooks of possible beam patterns at UE and BS, this data-driven and model-based approach aims
to partially and blindly sound a small subset of beams from these codebooks. The proposed BA is
blind (no CSI), based on Received Signal Energies (RSEs), and circumvents the need for exhaustively
sounding all possible beams. A sub-sampled subset of beams is then used to train several ML
models such as low-rank Matrix Factorization (MF), non-negative MF (NMF), and shallow Multi-
Layer Perceptron (MLP). We provide an extensive mathematical description of these models and
the algorithms for each of them. Our extensive numerical results show that, by sounding only 10%
of the beams from the UE and BS codebooks, the proposed ML tools are able to accurately predict
the non-sounded beams through multiple transmitted power regimes. This observation holds as the
codebook sizes at UE and BS vary from 128 × 128 to 1024 × 1024.

Keywords: mmWave MIMO; massive antennas; ML-based Beam Alignment; blind BA; Matrix
Factorization; Multi-Layer Perceptron; non-linear regression

1. Introduction

Driven by the explosive growth trend of large-scale connectivity and higher data rate
systems, wireless data traffic is expected to exponentially increase, growing to 5 zettabytes
per month and reaching a 100 Gps data rate by 2030 [1] Thus, the latency in the 6th Genera-
tion is predicted to reach 0.1 ms, representing 10% of 5G latency, in order to support new
emerging technical needs, including holographic images, Internet of Things applications,
and autonomous driving.

Beam Alignment is frequently defined in the literature as beam sounding, i.e., beam
training. It illustrates a fundamental problem in millimeter-wave Multiple Input, Multiple
Output systems, defined as the exchange of information between the user equipment UE
and the base station BS in order to accurately select the optimal beam-steering direction.
The process of aligning the beams is related to several technical problems, such as beam
forming, beam sweeping, beam tracking, and beam selection. The whole framework that
unites these operations between UE and BS is often denoted as the Beam Management.
To fulfill the BA task, beam patterns stored in large codebooks are used at both UE and
BS. In fact, pencil beams with directional gain are increasingly being used in several
applications in order to alleviate the severe path-loss attenuation and increase capacity
and data throughput. On the other hand, massive MIMO systems provide large gain
in spectral and energy efficiencies compared with conventional MIMO systems. Using
mmWave technology, these systems mainly offer a better communication quality by increas-
ing the system bandwidth and reducing the effects of noise and interference. Due to the
diversification of future 5G and towards 6G applications and intelligent systems, scientists
predict the continuous generation of massive datasets for deep processing through large
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bandwidths, which introduces mmWave bands as the golden spectrum band candidates.
However, the limitations of mmWave communication physical properties of the chan-
nel are crucial: scattering, attenuation, low coherence time related to the Doppler effect,
penetration loss, environmental constraints, and complex channel modeling in realistic
urban scenarios. The major problem we aim to encounter in this paper is the inevitable
high signaling/training overhead. For this reason, the main trade-off is to browse the most
accurate and the least complex ML algorithm that optimizes finding the optimal beam
pair based on sounded instantaneous Received Signal Energies and using the minimum
(possible) amount of training samples.

Contributions: In this current work, we propose ML-based BA methods, for a single
user massive mmWave MIMO, Uplink, with a wide-band channel. We assume a single
radio frequency chain with large codebooks of possible analog beams at BS (also known
as BS codebook) and UE (also known as UE codebook). We define a beam pair as one
beam from the BS and UE codebook. By approximating the SNR with the Receive Signal
Energy (RSE), we bypass the need for CSI, i.e., a blind approach. We sub-sample large
codebooks into smaller sub-sampled BS and UE codebooks, and sound the beam pairs
from the sub-sampled codebooks to generate the training set—a novelty of the approach.
Using the RSE of the sounded beam pairs (sub-sampled codebooks), we propose to train
the following ML methods to predict the RSE of the beam pairs that were not sounded:
Matrix Factorization (MF), non-negative Matrix Factorization (NMF), and feed-forward
(shallow) Multi-Layer Perceptron (MLP).

• We formulate the MF and NMF problems. We propose to use Block Coordinate
Descent (BCD) and Block Gradient Descent (BGD) methods to solve each problem.
We derive in depth all the update equations for these methods. We show that the
BCD method converges to a stationary point from both MF and NMF problems. Our
extensive numerical results show that, sub-sampling 10% of the BS/UE codebooks,
the remaining RSE values can be predicted extremely well (with a training/test error
≈ 10−6) for every antenna configuration.

• We develop at length the equations of a general MLP model, the resulting loss function,
and the corresponding optimization problem. In addition, we derive the equations
of back-propagation for the MLP in question. Using extensive numerical results, we
observe that sounding 10% of original codebooks is sufficient to predict the RSE of the
beam pairs that were not sounded, with negligible training/test error.

• We numerically compare the training/test losses of all the proposed models for a
varying cardinality of codebooks and transmit powers. These results suggest that the
BCD method for MF/NMF outperforms the MLP in terms of training and test error.
Meanwhile, BCD for MF/NMF has a large computational complexity and the MLP
exhibits medium complexity.

• Interestingly, by sounding 10% of the BS/UE codebooks, the proposed ML models can
predict the unknown RSE (beam pairs not sounded) with a negligible test error. Thus,
the proposed methods achieve a 90% reduction in pilot signaling overhead, compared
with the SotA benchmark, without any noticeable loss in performance.

Notations: Matrices and vectors are respectively written in boldface upper-case and
lower-case letters. We use Tr[AAA], AAAT , AAA−1, AAAH , |AAA|, ||AAA||F for the trace, transpose, inverse,
conjugate transpose, determinant, and Frobenius norm of a matrix AAA and the n × n identity
matrix. [A]i,j is used to denote the (i, j)th entry of a matrix AAA. We denote the Hadamard
product by ◦, while [aaa]+ := max(aaa, 0) illustrates a Euclidean projection of aaa on RD

+ and is
applied element by element on aaa. We denote |x| the absolute value of x and [x]t as the entry
t of a vector xxx.

Methods/Experiment: The proposed approach is data driven and model based. The
dataset is generated following the Saleh Valenzuela wide-band mmWave system model. It
is based on Received Signal Energies for each and every beam pair in the massive MIMO
Uplink setup stored in separate .csv files. The model-based solution to the empirical
risk minimization includes deriving a closed-form solution to the formulated non-convex
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optimization problem, stating the theoretical guarantees of convergence and empirically
illustrating the success of the proposed partial and blind Beam Alignment procedure using
different algorithms. All simulations are executed on Infres GPU servers and the Comelec
laboratory PC at Télécom Paris, having the following characteristics: Intel(R) Core(TM)
i5-8365U CPU @ 1.60 GHz, 16 Go (RAM), x64 processor, and 64-bit operating system under
the license of Windows 10 Enterprise LTSC 2018, version 1809. The manufacturer is Dell
and is located in Paris, France. All python packages used in this work (numpy, scipy, keras,
pytorch, matplolib..) are related to python 3.9 release. In fact, the experimental protocol
is based on offline grid-search cross-validation, which requires GPU processing for the
selection of optimal hyperparameters and online training/prediction for Matrix Factoriza-
tion, non-negative Matrix Factorization, and Multi-Layer Perceptron. The comparison is
conducted following a Quality of Service-based approach, simulating a variety of MIMO
configurations and architectural setups, investigating the impact of varying the Received
Signal Energy regime and empirically stating intersections and differences in the impact of
the transmit power on model behaviors, loss values, optimal signaling overhead ratio, and
optimal hyperparameters.

• Problem Statement: The main challenge addressed in this study is the high signal-
ing overhead in Beam Alignment for mmWave MIMO systems, which hampers the
efficient selection of optimal beam-steering directions.

• Research Questions and Hypotheses: This study investigates whether machine learn-
ing methods can effectively reduce the signaling overhead required for accurate
beam-pair prediction in mmWave MIMO systems.

• Objectives and Aims: The primary objective is to develop and evaluate ML-based
BA methods that minimize the training overhead while maintaining high accuracy in
predicting the RSE for unsounded beam pairs.

• Significance and Rationale: The study proposes a novel approach to BA using ML
techniques, which can lead to a substantial reduction in pilot signaling overhead and
enhance the efficiency of future wireless communication systems.

2. Literature Survey

In conventional standards, Exhaustive BA, also called Brute Force BA, is the de facto
approach for the alignment process. It is based on sounding all available beams at both
UE and BS codebooks in order to exhaustively select the optimal beam pair. One obvious
drawback is the fact that the resulting signaling overhead scales as the product of the
UE and BS codebook sizes. At 60 GHz, the Exhaustive BA has been adopted in several
mmWave WLAN or WPAN communication technologies, e.g., IEEE 802.15.3c [2] and IEEE
802.11ad [3]. It is conventionally applied in small MIMO configurations using small code-
book sizes (e.g., codebooks of size 8 × 8 for LTE) and guarantees optimal performance.
For cellular networks [4], V2X communications, Unmanned Aerial Vehicles, or High-Speed
Train applications, the infeasibility of brute-force-based BA pushes scientists to reduce the
large signaling overhead from using massive antennas systems. State-of-the-art methods
can be divided into two categories: classic BA and learning-based BA. Traditional tech-
niques tend to use a more and more structured Beam Alignment design such as hierarchical
multi-level codebooks [5] (training beamforming vectors are constructed with different
beam widths at different levels) and an overlapped beam pattern [6], where the main idea is
to augment the amount of information carried by each channel measurement, reducing the
required channel estimation time and beam coding [7], where we assign a unique code sig-
nature to each beam angle in addition to subspace estimation/decomposition-based BA [8].
Compressed sensing-based algorithms [9] are also used in this context, taking advantage of
channel sparsity. Therefore, we state two intersections in classic methods: they generally
rely on CSI exchange and Exhaustive BA. In contrast, lately, Machine Learning (ML)-based
BA has emerged and is continuously leading to some promising results. For instance, sta-
tistical models such as Kolmogorov model-based BA in [10] with sub-sampled codebooks
reduce the signaling overhead: 15% of Exhaustive BA provides accurate predictions for
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optimal beams at UE and BS in a partial BA procedure, similar to our approach. Deep
learning through shallow neural networks is increasingly used by Wireless Communication
scientists, where we distinguish two major paradigms: first, the ML methods related to
Supervised Learning (SL) via a Support Vector Machine and Multi-Layer Perceptrons for
joint analog beam selection in [11], convolutional neural networks for beam management in
sub-6 GHz in [12] and for calibrated beam training in [13], recurrent neural networks such
as Long Short-Term Memory network for beam tracking in [14–16], auto-encoders for beam
management in [17], and several other neural architectures, and second, Reinforcement
Learning (RL) in [18–20], generally used to resolve the problems of Multi-Armed Bandit
and Markov decision process. In addition, neural architectures have the ability to extract
features from the hidden interactions between BS and UE, providing fast and accurate
estimations through different MIMO setups and channel realizations, especially when
applied to massive datasets where more and more data/train samples are embedded. This
work is an extension of [21]. In this paper, we extend the channel model to wide-band and
we add multiple RF-chains at BS in a fully analog low-complexity architecture, where we
investigate more ML tools for partial and blind BA. This paper is one of the first attempts
to apply MF/NMF models and shallow Multi-Layer Perceptrons to a blind and partial
Beam Alignment for massive mmWave SU-MIMO. Our work in [22] is related to the same
approach and objectives, where we quantize the output of each RF-chain.

3. System Model

In this section, we illustrate the mmWave MIMO point-to-point system model. We
consider an Uplink transmission from multiple-antenna user equipment UE using a sin-
gle radio frequency chain and a multiple-antenna base station BS using multiple radio
frequency chains. The proposed ML methods are performed at the BS, which has higher
computational resources than UE. Figure 1a,b provide a diagram representation of the
proposed architecture. UE and BS are respectively equipped with Uniform Linear Ar-
rays of NT and NR antenna. We propose a low-cost/complexity fully analog architec-
ture where UE has one radio frequency chain and BS has Nr f radio frequency chains.
UE selects its analog beamformer fff u ∈ CNT from a codebook of feasible beam choices,
u ∈ T , where T is the corresponding index set. Moreover, BS selects its analog combiner
WWWi ∈ CNR×Nr f from a codebook i ∈ R with R as the index set of the codebook. We de-
note with CT the number of possible beamforming vectors at UE, i.e., the size/cardinality
of the UE codebook, |T | = CT and CR, and the size/cardinality of the BS codebook,
|R| = CR. Both beamforming and combining are fully performed in the analog domain
using phase shifters at UE and BS; thus, they satisfy the following constant modulus
constraints, ∀ r ∈ {1, . . . , NR}, ∀ t ∈ {1, . . . , Nr f }:

WWWi ∈ CNR×Nr f , | [ WWWi ]r,t | =
1

Nr f NR

fff u ∈ CNT , | [ fff u ]t | =
1

NT
, ∀ t ∈ {1, . . . , NT}

(a) (b)
Figure 1. Proposed BA diagram representation: (a) fully analog MIMO architecture using a single RF
chain at UE and multiple RF chains at BS; (b) simplified illustration of Beam Alignment problem.



Entropy 2024, 26, 626 5 of 23

For our proposed approach, BS is responsible for receiving signal energies, denoted as
RSE, in order to learn their patterns and features for the purpose of accurately predicting
the optimal beam indexes from their corresponding codebooks and send them to UE. We
adopt the wide-band channel model GGG ∈ CNR×NT given by

GGG(k) =

√
1

Nc

Nc

∑
l=1

HHHle−j2πlk/Nc , ∀ k ∈ {1, . . . , NC} (1)

where Nc represents the number of sub-carriers over the whole bandwidth through an
OFDM scenario, k is the index of the sub-carrier k, and HHHl ∈ CNR×NT is the narrow band
channel model representing the time domain channel impulse response with L-tapped

delays given by HHHl =
√

NT NR
L ∑L

i=1 ρi aaaR(θ
(R)
i )aaaH

T (θ
(T)
i ), where L is number of paths (rank)

of the channel; θ
(R)
i and θ

(T)
i are the angles of arrival at BS and the angles of departure

from UE, noting AoA/AoD to correspond to the ith path (and both assumed to be uniform
over [−π/2, π/2]); ρi is the complex gain of the ith path such that ρi ∼ CN (0, 1), ∀i; and
last but not least, aaaR(θ

(R)
i ) ∈ CNR and aaaT(θ

(T)
i ) ∈ CNT are the array response vectors at

both UE and BS, respectively. We further assume that the channel is completely unknown
to both UE and BS. Henceforth, in this paper, we shall denote the beam pair (u, i) as the
combination of the UE beamformer indexed u from the UE codebook T and combiner
indexed i in the BS codebook R. The signal at BS resulting from applying the beam pair
(u, i), yyyu,i ∈ CNr f is expressed as

yyyu,i = WWWi
HGGG(k) fff usu + nnni, ∀ (u, i) ∈ T ×R, (2)

where su = 1
√

Pu is the transmitted pilot symbol associated with fff u (having power
√

Pu)
and nnni = WWWH

i nnn is the effective additive white Gaussian noise AWGN with unit variance
(σ2 = 1). We define the received Signal-to-Noise Ratio (SNR) for the beam pair (u, i)
as SNRu,i = Pu||WWWH

i GGG(k) fff u||22, ∀ (u, i) ∈ T × R. We assume a fully blind approach;
i.e., neither BS nor UE has any knowledge of GGG. Thus, computing the above SNR expression
is not feasible due to the fact that BS is assumed not to know GGG. Thus, in this work, we
will approximate the SNR of the beam pair (u, i) using the corresponding instantaneous
Received Signal Energies (RSEs) expressed as RSEu,i = ||yyyu,i||22, ∀(u, i) ∈ T ×R . In other
words, we will assume that RSEu,i ≈ SNRu,i for each beam pair (u, i) ∈ T ×R.

Benchmark: Exhaustive BA: The de facto method for Beam Alignment is Exhaustive
BA. It is accomplished by exhaustively sounding, jointly, the beams of both UE and BS code-
books, recording all entries of RSE, and exhaustively searching SSS for the indexes of the beam
pair that maximize RSE at BS, i.e, (u⋆, i⋆) = argmax

(u,i)∈T ×R
RSEu,i. Thus, the RSE matrix is com-

puted/recorded Nr f -entries, with each of pilot symbol, since Nr f samples are simultaneously
received at the BS for every pilot transmission (see Figure 2). Consequently, the pilot signaling
overhead of the Exhaustive BA is Ω = |T ×R| / Nr f = CT CR / Nr f , which implies that the
overhead of this benchmark scales poorly with the BS and UE codebooks.

Proposed partial Beam Alignment using sub-sampled codebooks: Recall the desig-
nation of the beam pair (u, i) as the beamforming vector of the index u in the UE codebook
of beams and the combining vector of the index i in the BS codebook of beams. First, we
select (at random) the indexes of the sub-sampled codebooks of beams at UE and BS, RS and
TS, such that RS ⊂ R and TS ⊂ T , and |RS| ≪ |R| |TS| ≪ |T |. The idea behind this
approach is to only sound beam pairs from the sub-sampled codebook of beams, RS and
TS. We thus define the training set, K, as the sub-sampled codebook indexes at UE and BS,
i.e., K := {(u, i) | (u, i) ∈ TS ×RS}. Then, the RSE of the sounded beam pairs (training
set) is given to several ML methods, and the learned ML model is used to predict the RSE
of non-sounded beam pairs.



Entropy 2024, 26, 626 6 of 23

Figure 2. Exhaustive Beam Alignment: |T | = |R| = 4, Nr f = 2 RF-Chains at BS. Record 2 beam
pairs for each pilot symbol transmission until the matrix is complete. Signaling overhead, Ω = 4×4

2 .

We formalize this proposed method below. We express both the received signal yyy(u,i)
and RSE for the beam pair (u, i) resulting from the sounded beam pairs (i.e., training set),
as follows:

yyyu,i = WWWi
HGGG(k) fff usu + nnni, ∀ (u, i) ∈ TS ×RS (3)

RSEu,i = ∥yyyu,i∥
2
2 , ∀ (u, i) ∈ TS ×RS. (4)

The dataset is formulated using the following incomplete RSE matrix, SSS ∈ RCT×CR(:=
R|T |×|R|):

[ SSS ]u,i :=

{
RSEu,i , if (u, i) ∈ TS ×RS

Unknown RSE , if (u, i) /∈ TS ×RS
(5)

where [SSS]u,i denotes the element (u, i) of SSS, ∀(u, i) ∈ T ×R. Evidently, the value of RSE is
undefined for the beam pairs that were not sounded, designated as unknown-RSE matrix
coefficient. Those are the missing entries, which are predicted using one of the following
proposed ML methods: (i) low-rank MF/NMF and (ii) shallow (feed-forward) MLP, where
we utilize the sounded RSE entries as the training set, K. Then the training set, K, is fed
into one of the above ML models, which will predict the RSE of non-sounded coefficients in
SSS, denoted as ‘Unknown’, in (5) (see Figure 3). Finally, the pilot signaling overhead for the
above-proposed sub-sampled codebook method is Ω = |TS ×RS| / Nr f = |K| / Nr f . We
split the RSE dataset into a training set K and a test set L such that K∩L = {}. In this paper,
RSEu,i denotes the true value (label) of the RSE for the beam pair (u, i) in the training set K,
and R̂SEu,i denotes the true value (label) of the RSE for the beam pair (u, i) in the test set L.

Signaling overhead ratio: It is defined as η := overhead of learning-based BA
overhead of Exhaustive BA = |TS |×|RS |

|T |×|R| =
|K|

CTCR
, where TS and RS are, respectively, the sizes of the UE and BS sub-sampled codebooks

used in our proposed partial beam sounding, while T and R refer to the original size of
the codebooks, and 0 < η ≤ 1 measures the signaling overhead of all the proposed MF,
MLP, and AE methods compared with that of Exhaustive BA. Evidently, a small value for
η is desired to reduce the signaling overhead of our proposed method. However, a low
η implies that the size of the training set is small. As a result, the proposed ML method
will not be able to extract enough data patterns due to the (too) small number of training
samples, resulting in a larger prediction error. As one of the contributions of this work, we
will (empirically) find as small a value for η as possible while still having extremely small
training and prediction error.
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Figure 3. Proposed partial Beam Alignment using sub-sampled codebooks: |T | = |R| = 4, Nr f = 2
RF-Chains: record 2 beam pairs for each pilot symbol transmission until sounded beams are recorded.
The missing entries represent the predicted entries. Signaling overhead, Ω = 3×3

2 .

Conjecture: Note that, from the equations of the narrow-band channel model HHH and the
wide-band channel model GGG(k), it is simple to verify that rank(HHH) ≤ L and rank(GGG(k)) ≤ LNC.
Assume that Pu → ∞. Thus, we can approximate the RSE matrix as

[SSS]u,i = ∥yyyu,i∥
2
2 = ∥WWWi

HGGG(k) fff u
√

Pu + nnni∥2
2

Pu→∞
≈ Pu∥WWWi

HGGG(k) fff u∥2
2 , ∀(u, i) ∈ T ×R (6)

If Pu → ∞, then it can be shown that the RSE matrix SSS is such that rank(SSS) ≤ LNC. This implies
that if Pu → ∞, then SSS ∈ RCR×CT is a low-rank matrix, i.e., rank(SSS) ≤ LNC ≪ min(CT, CR).

While the proof for this necessary condition eludes the authors, we empirically ob-
served that if Pu is large, then the number of non-zero singular values of SSS, {σi(SSS)}

rank(SSS)
i=1 ,

satisfies the above upper bound, i.e., | {σi(SSS)}
rank(SSS)
i=1 | ≤ LNC.

Remark 1. Recall the expression for the effective rate, r, r = (1 − Ω
T ) log(1 + RSEu,i), where

Ω is the pilot signaling overhead and T is the number of symbols per block. Thus, the problem of
maximizing r is written as the following series of equivalent problems:

(u⋆, i⋆) := arg max∀(u,i)∈T×R r ⇔ arg max∀(u,i)∈T×R log(1+ RSEu,i) ⇔ arg max∀(u,i)∈T×R
RSEu,i, where the last ⇔ is due to the fact that the log(x) is a strictly monotonically increasing function
in x. This result implies finding the optimal beam pair (u⋆, i⋆) that maximizes r is equivalent to finding
the best beam pair that maximizes the RSE.

Remark 2. The information (number of entries) needed to represent the RSE matrix SSS ∈ CCR×CT

is measured as rank(SSS)(1 + CT + CR). This result is evident from performing the SVD on SSS
and counting the resulting number of entries. Thus, if SSS is severely rank deficient, i.e., extremely
compressible, then methods such as MF/NMF will exhibit extremely small training and test error.
Conversely, if SSS is full rank, i.e., not compressible, then the training and test of MF/NMF will be
quite large.

4. Matrix Factorization and Non-Negative Matrix Factorization
4.1. MF and NMF Problem Formulation

The intuition behind low-rank MF is to model the RSE of the sounded beam pairs (i.e.,
entries of SSS that are known as TS ×RS) as an inner product between two D-dimensional
latent vectors/factors, θθθu, ψψψi, as illustrated in Figure 4. Specifically, the RSE of the beam pair
(u, i), denoted as [SSS]u,i, is modeled as [SSS]u,i := θθθT

uψψψi , θθθu ∈ RD , ψψψi ∈ RD , ∀ (u, i) ∈ K(:=
TS ×RS), where D is the size/dimension/complexity of the Matrix Factorization model
latent factors and θθθu ∈ RD , ψψψi ∈ RD are the MF model parameters (to be optimized).
In addition, due to the low-rank MF model, D is assumed to be much smaller than the
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dimensions of SSS, i.e., D ≪ (CT , CR). The RSE of the beam pair (u, i) is known from
sounding the sub-sampled codebooks (i.e., label). The general formulation of our loss
function ℓu,i describes the distance between the true value RSEu,i and the predicted value
θθθT

uψψψi, which corresponds to the MF output/prediction: ℓu,i := (RSEu,i − θθθT
uψψψi)

2 , ∀ (u, i) ∈
K(:= TS ×RS). The Empirical Risk (also known as training error) is defined as the average
across all the individual loss function ℓu,i. We define the regularized Empirical Risk function
as the above empirical risk in addition to the following regularization terms:

∑
(u,i)∈K

[
1
|K|

(
[SSS]u,i − θθθT

uψψψi

)2
+ λi∥ψψψi∥2

2 + µu∥θθθu∥2
2

]
= f ((θθθu, ψψψi)(u,i)∈K) (7)

where {λi ≥ 0, µu ≥ 0 | ∀(u, i) ∈ K} is the set of regularization hyperparameters used to
balance the MF/NMF model, preventing any overfitting or underfitting. The Empirical
Risk Minimization corresponding to the MF model is given by

(P1) := {θ̂θθu, ψ̂ψψi}


argmin

{θθθu ,ψψψi}(u,i)∈K

f (θθθu, ψψψi)

s. t. θθθu ∈ RD, ψψψi ∈ RD

For the Matrix Factorization variant NMF, the optimization problem is given by

(P2) := {θ̂θθu, ψ̂ψψi}


argmin

{θθθu ,ψψψi}(u,i)∈K

f (θθθu, ψψψi)

s. t. θθθu ∈ RD
+, ψψψi ∈ RD

+

where {θ̂θθu, ψ̂ψψi} denotes the optimal latent vectors for MF and NMF. The test loss (also knows
as test error) is given by applying the general loss on the unknown data samples (non-sounded

beams) using optimal MF/NMF parameters θ̂θθu and ψ̂ψψi: =
1
|L| ∑(u,i)∈L

(
R̂SEu,i − θ̂θθ

T
uψ̂ψψi

)2
,

where L is the test set of our learning model.

Figure 4. Toy Example: Matrix Factorization with |T | = 5, |R| = 7, D = 3. MF results into two
rectangular matrices to be optimized: MF uses the RSE of known beams (yellow) to predict/complete
unknown beams (gray). The product of the latent factors θθθT

2 and ψψψ5 gives the unknown value of RSE2,5.

4.2. Solutions for MF

We resolve the MF problem (P1) using the following methods: (i) Block Coordinate
Descent (BCD) often denoted as Alternating Least Squares (ALSs), (ii) BCD with Stochastic
Gradient Descent, and (iii) Block Gradient Descent (BGD), which merges BCD and Gradient
Descent (GD) definitions.

BCD for MF (BCD MF): BCD proceeds by splitting the optimizing problem (P1)
into sub-problems, supposing that all other blocks are known/fixed. We will show that
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each sub-problem is strongly convex in each block, and the BCD algorithm converges to a
stationary point. The application of BCD to the MF problem results in two sub-problems,
S1 and S2, which are solved iteratively. At iteration k, the sub-problem (S1) is defined by
fixing the block {ψψψ

(k)
i }∀i and the update/solve block {θθθu}∀u only,as follows:

(S1) : θθθ
(k+1)
u = argminθθθu∈Rd f ({θθθu , ψψψ

(k)
i })

= ∑
(u,i)∈K

[([S]u,i − θθθT
uψψψ

(k)
i )2 + µu∥θθθu∥2

2 + λi∥ψψψ
(k)
i ∥2

2]

Moreover, the sub-problem (S2) is defined by fixing the block {θθθ
(k+1)
u }∀u in (P1) and the

update/solve block {ψψψi}∀i, only, as follows:

(S2) : ψψψ
(k+1)
i = argminθθθi∈Rd f ({θθθ

(k+1)
u , ψψψi})

= ∑
(u,i)∈K

[([S]u,i − θθθ
(k+1)
u ψψψi)

2 + µu∥θθθ
(k+1)
u ∥2

2 + λi∥ψψψi∥2
2]

We will rewrite S1 into as series of equivalent problems as follows:

(S1) := argminθθθu∈Rd ∑
(u,i)∈K

[[S]2u,i − 2[S]u,iθθθ
T
uψψψ

(k)
i + θθθT

uψψψ
(k)
i θθθ

(k)T

i θθθu + µu∥θθθu∥2
2]

⇔ argminθθθu∈Rd ∑
u

[−2θθθT
u ∑

i
([S]u,iψψψ

(k)
i ) + θθθT

u ∑
i
(ψψψ

(k)
i ψψψ

(k)T

i )θθθu + µu∥θθθu∥2
2]

⇔ argminθθθu∈Rd ∑
u∈Ui

[−2θθθT
u (rrr(k)u ) + θθθT

u (QQQ
(k)
u )θθθu + µu∥θθθu∥2

2] = ∑
u∈Ui

hu(θθθu),

θθθ
(k+1)
u = argminθθθu∈Rd [−2θθθT

urrr(k)u + θθθT
u ( QQQ(k)

u + µuIIID )θθθu] = f1(θθθu), ∀u ∈ Ui,

where Ui is the set of row indexes u in the RSE matrix corresponding to the column i in

the known entries of the RSE matrix, QQQ(k)
u = ∑i(ψψψ

(k)
i ψψψ

(k)T

i ) and rrr(k)u = ∑i([S]u,iψψψ
(k)
i ). We

derive the closed-form solution for the sub-problem S1 by finding the global min of f1(θθθu),
as follows:

∇ f1(θθθu) = 0 ⇔ −2rrr(k)u + 2( QQQ(k)
u + µuIIID )θθθu = 0 ⇔ θθθu = ( QQQ(k)

u + µuIIID )−1rrr(k)u

Similarly, we rewrite the sub-problem (S2) into the following series of equivalent problems
by stating the last one:

(S2) : ψψψ
(k+1)
i =argminψψψi∈Rd [−2ttt(k+1)T

i ψψψi +ψψψi
T( PPP(k+1)

i + λiIII )ψψψi] = f2(ψψψi) , ∀ i ∈ Iu,

where Iu is the set of column indexes i in the RSE matrix corresponding to the row u in the

known entries of the RSE matrix, ttt(k+1)
i = ∑u( [SSS]u,iθθθ

(k+1)T

u ) and PPP(k+1)
i = ∑u( θθθ

(k+1)
u θθθ

(k+1)T

u ).
Next, we derive a closed-form solution for the sub-problem S2 by finding the global min of
f2(ψψψi), as follows:

∇ f2(ψψψi) = 0 ⇔ −2ttt(k+1)
i + 2( PPP(k+1)

i + λiIIID )ψψψi = 0 ⇔ ψψψi = ( PPP(k+1)
i + λiIIID )−1ttt(k+1)

i

↔ ψψψ
(k+1)
i = ((∑

u
( θθθ

(k+1)
u θθθ

(k+1)T

u )) + λiIIID )−1(∑
u
( [S]u,iθθθ

(k+1)T

u ))

Thus, BCD updates to solve MF are given as follows:{
θθθ
(k+1)
u = (∑i ψψψ

(k)
i (ψψψ

(k)
i )T) + µuI)−1(∑i[SSS]u,iψψψ

(k)
i )

ψψψ
(k+1)
i = ((∑u θθθ

(k+1)
u (θθθ

(k+1)
u )T) + λiI)−1(∑u[S]u,iθθθ

(k+1)
u )
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∀(u, i) ∈ K , k = 0, 1, . . . , IM (8)

where (k) represents the index of the BCD iterations, (u,i) are the codebook indexes at UE
and BS, and [SSS]u,i denotes the RSE of the (u,i) beam couple. The solution {θ̂θθu, ψ̂ψψi}(u,i)∈K is
reached after the interval/gap between consecutive iterations reaches a predefined ϵ or a
max number of iterations, IM. We have the following result.

Corollary 1. The sequence of updates {θθθ
(k)
u , ψψψ

(k)
i | ∀(u, i) ∈ K}k generated by BCD, in (8), is

non-increasing (in k) and converges to a stationary point as k → ∞.

Proof. See Appendix A.

Block Stochastic Gradient Descent (BSGD) for MF (SGD MF): SGD MF proceeds by
taking T plain SGD steps (mini-batch size = 1). BGD proceeds by taking T SGD steps for
each block BCD. We first choose at random a single training sample (u, i) ∈ K. The BSGD
update for the sub-problem (S1) is done by performing SGD for f1(θu) = ∑u∈Ui

hu(θu),

i.e., choosing at random a single index u ∈ Ui and computing the plain SGD ∇̂ f1(θu) =

∇̂
(
∑u∈Ui

hu(θu)
)
= hu(θu), where u is a random index from Ui, and ∇̂ f1(θu) is the plain

SGD on f1(). The corresponding update is given as

θθθ
(k+1)
u = θθθ

(k)
u − αk

̂∇ f1(θθθ
(k)
u ) ,= θθθ

(k)
u − αk∇hu(θθθ

(k)
u ) u ∈ Ui

= θθθ
(k)
u + 2αk( (∑

i
([S]u,iψψψ

(k)
i ))− ( (∑

i
ψψψ
(k)
i ψψψ

(k)T

i ) + µuIIID )θθθ
(k)
u ), u ∈ Ui, k = 1..T

where u is a single index chosen at random from Ui, QQQ(k)
u = ∑i(ψψψ

(k)
i ψψψ

(k)T

i ), rrr(k)u = ∑i([S]u,iψψψ
(k)
i ),

(k) is the iteration index for SGD, and ∇̂ f1(θθθu) is the plain SGD over one random sample
u ∈ Ui. Similarly, the update for the sub-problem (S2) is done by taking T plain SGD steps

of f2(ψψψ) = ∑i∈Iu hi(ψψψi), i.e., the SGD, ∇̂ f2(ψψψi) = ∇̂(∑i∈Iu hi(ψψψi)) = hi(ψψψi), where i is single
random index from Iu. Thus, the SGD MF update for the sub-problem (S2) is expressed as

ψψψ
(k+1)
i = ψψψ

(k)
i − αk

̂∇ f2(ψψψ
(k)
i ) = ψψψ

(k)
i − αk∇h2(ψψψ

(k)
i ) , i ∈ Iu

= ψψψ
(k)
i + 2αk( (∑

u
( [SSS]u,iθθθ

(k)T

u ))− ( ∑
u
( θθθ

(k)
u θθθ

(k)T

u ) ) + λiIIID )θθθ
(k)
u ), i ∈ Iu, ∀k = 1..T

where i is a single index chosen randomly from Iu, ttt(k)i = ∑u( [SSS]u,iθθθ
(k)T

u ), PPP(k)
i = ∑u( θθθ

(k)
u θθθ

(k)T

u ),

and ∇̂ f2(ψψψi) is the plain SGD gradient computed with one sample i ∈ Iu, chosen at random.
We write the SGD MF updates asθθθ

(k+1)
u = θθθ

(k)
u + 2αk( (∑i([S]u,iψψψ

(k)
i ))− ( (∑i ψψψ

(k)
i ψψψ

(k)T

i ) + µuIIID )θθθ
(k)
u ), u ∈ Ui

ψψψ
(k+1)
i = ψψψ

(k)
i + 2αk( (∑u( [SSS]u,iθθθ

(k)T

u ))− ( ∑u( θθθ
(k)
u θθθ

(k)T

u ) ) + λiIIID )θθθ
(k)
u ), i ∈ Iu

∀ k = 0, 1, . . . , T, (9)

where u is a random index chosen from Ui, and i a random index from Iu. 0 ≤ αk ≤ 1 is
the step size for SGD.

BGD for MF (BGD MF): Rather than having a closed-form solution for each optimiza-
tion block, BGD proceeds by taking T gradient steps for each block T gradient step. We
skip the details here for space limitations. Thus, the BGD updates for the MF problem are
expressed asθθθ

(k+1)
u = θθθ

(k)
u + 2αk( (∑i([S]u,iψψψ

(k)
i ))− ( (∑i ψψψ

(k)
i ψψψ

(k)T

i ) + µuIIID )θθθ
(k)
u )

ψψψ
(k+1)
i = ψψψ

(k)
i + 2αk( (∑u( [SSS]u,iθθθ

(k)T

u ))− ( ∑u( θθθ
(k)
u θθθ

(k)T

u ) ) + λiIIID )θθθ
(k)
u )
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∀(u, i) ∈ K , k = 0, 1, . . . , T, (10)

where (u,i) are the codebook indexes at UE and BS, k is the GD iteration index, and α(k) is
the BGD step size (0 < α(k) < 1).

4.3. Solutions for NMF

Our proposed NMF follows the exact steps as in MF, with the main difference of
constraining the latent vectors being non-negative θθθu ∈ RD

+ , ψψψi ∈ RD
+, ∀ (u, i) ∈ K.

Likewise, we solve the NMF problem, (P2), using BCD, SGD, and BGD.
BCD for NMF (BCD NMF): The derivations of BCD for NMF (11) are identical to

those of BCD for MF (8), followed by the corresponding projection operation. The updates
of BCD for NMF derivations are given byθθθ

(k+1)
u =

[
(∑i ψψψ

(k)
i (ψψψ

(k)
i )T) + µuI)−1(∑i[SSS]u,iψψψ

(k)
i )

]
+

ψψψ
(k+1)
i =

[
((∑u θθθ

(k+1)
u (θθθ

(k+1)
u )T) + λiI)−1(∑u[S]u,iθθθ

(k+1)
u )

]
+

∀(u, i) ∈ K , k = 0, 1, . . . , IM (11)

where (k) is the BCD iteration index, and [aaa]+ := max(aaa, 0) is applied element by element on
aaa, i.e., a Euclidean projection of aaa on RD

+. Since the projection is Euclidean (non-expansive
operator), the corollary stated in the previous subsection applies to the BCD for NMF too.

Block Stochastic Gradient Descent (BSGD) for NMF (SGD NMF): The SGD NMF
derivations are exactly the same as that of SGD MF, followed by a projection []+. We thus
express the SGD NMF updates asθθθ

(k+1)
u =

[
θθθ
(k)
u + 2αk( (∑i([S]u,iψψψ

(k)
i ))− ( (∑i ψψψ

(k)
i ψψψ

(k)T

i ) + µuIIID )θθθ
(k)
u )

]
+

, u ∈ Ui

ψψψ
(k+1)
i =

[
ψψψ
(k)
i + 2αk( (∑u( [SSS]u,iθθθ

(k)T

u ))− ( ∑u( θθθ
(k)
u θθθ

(k)T

u ) ) + λiIIID )θθθ
(k)
u )

]
+

, i ∈ Iu

∀ k = 0, 1, . . . , T, (12)

where u is a random index chosen from Ui, i is a random index from Iu, [aaa]+ := max(aaa, 0),
and α(k) is the SGD step size (0 < α(k) < 1).

BGD for NMF (BGD NMF): The solution and derivations for BGD NMF are the same
as those for BGD MF, followed by a projection []+, i.e,θθθ

(k+1)
u =

[
θθθ
(k)
u + 2αk( (∑i([S]u,iψψψ

(k)
i ))− ( (∑i ψψψ

(k)
i ψψψ

(k)T

i ) + µuIIID )θθθ
(k)
u )

]
+

ψψψ
(k+1)
i =

[
ψψψ
(k)
i + 2αk( (∑u( [SSS]u,iθθθ

(k)T

u ))− ( ∑u( θθθ
(k)
u θθθ

(k)T

u ) ) + λiIIID )θθθ
(k)
u )

]
+

∀(u, i) ∈ K , k = 0, 1, . . . , T, (13)

where [aaa]+ := max(aaa, 0), (k) is the GD iteration index and α(k) is the GD step size (0 <
α(k) < 1). We use a constant step size αk = α for all these methods.

4.4. Prediction for MF and NMF

For both MF and NMF, the predicted RSE of the beam-pair (u, i), for beam indexes
that were not sounded, is expressed as

{R̂SEu,i := (θ̂θθu)
Tψ̂ψψi | ∀(u, i) ∈ L} (14)

where L is the test set and {θ̂θθu)T , ψ̂ψψi} are optimal solutions to MF (or NMF). Afterwards,
we search for the optimal beam pair at UE and BS as the one with the highest RSE value
over both training and test sets, as follows:

(u⋆, i⋆) = argmax(u,i)∈L∪K (θ̂θθu)
Tψ̂ψψi. (15)
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4.5. Proposed BA Algorithm Using MF/NMF

Due to the fact that the updates given in a closed-form solution, we can quantify
the computational complexity of all of the above methods. As seen from the updates for
BCD MF and BCD NMF, we have to invert two D × D matrices (for the sum problems S1
and S2). Thus, the (per-iteration) computational complexity of BCD MF and BCD NMF is
approximated as CBCD MF = CBCD NMF = O(2D3). Moreover, for BGD MF and BGD NMF,
one has to compute two full-batch gradients over all training samples in K (for the sub-
problems S1 and S2). Consequently, the complexity, per-iteration, for BGD MF and BGD
NMF is approximated as CBGD MF = CBGD NMF = O(2|K|). Finally, for SGD MF and SGD
NMF, since we use a mini-batch size = 1 (for the sub-problems S1 and S2), the resulting
per-iteration computational complexity is approximated as CSGD MF = CSGD NMF = O(2).
Solving the MF and NMF problem, we employ methods such as BCD, BGD, or SGD. All
details are shown in Algorithm 1.

Algorithm 1 Proposed MF/NMF-Based BA Method.

Input: { fff u}∀u∈T , {WWWi}∀i∈R, η, Pu
- Generate randomly sub-sampled codebooks, TS,RS, satisfying (|TS|.|RS|)/(|T | × |R|) = η
- Sound beam pairs from training set, K := TS ×RS.
- Record corresponding RSE in and generate mat. SSS, in (5)
- Select model: MF or NMF
- IF MF model selected

solve (P1) with BCD for MF, in (8) or solve (P1) with BGD for MF, in (10) or solve (P1) with SGD
for MF, in (9). At the end of training, return optimal latent vectors, {θ̂θθu, ψ̂ψψi}(u,i)∈K

- IF NMF model selected
solve (P2) with BCD for NMF, in (11) or solve (P2) with BGD for NMF, in (13) or solve (P2) with

SGD for NMF, in (12). At the end of training, return ideal latent vectors, {θ̂θθu, ψ̂ψψi}(u,i)∈K
- Use ideal latent vectors {θ̂θθu, ψ̂ψψi}(u,i)∈K , to predict unknown RSE of test set, L, in (14)
- Search training and test sets, for beam pair w/ largest RSE, (15)

Output: fff u⋆ , WWWi⋆

While, for MF BCD and NMF BCD, the only hyperparameter is the model size D, MF
BGD and NMF BGD require, in addition to D, αk, the GD step size as hyperparameters.

4.6. Numerical Simulations

This section illustrates our numerical setup. The number of antennas at UE and BS ∈
{128, 256, 512, 1024}. We set up NT = CT and NR = CR. The overhead ratio regime η ∈
{0.7, 0.5, 0.3, 0.1}. The number of OFDM sub-carriers Nc = 64 and the number of channel
paths L is 2. We vary the transmitted power, Pu ∈ {1, 10−1, 10−2}. We use DFT codebooks
at UE and BS. The optimal hyperparameters are chosen to minimize test loss. The model di-
mension D ∈ {2, 3, 4, 5, 6}, the learning rate αk ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}, and
the regularization factors {λ, µ} ∈ {10−2, 10−3, 10−4, 10−5, 10−6, 10−7}. For each MIMO
configuration and for each Pu regime, we randomly generate and store the resulting
RSE matrices.

We propose to investigating six models in total (BCD MF, BCD NMF, BGD MF,
BGD NMF, SGD MF, SGD NMF) with respect to three transmitted power regimes: high
Pu = 1W, medium Pu = 10−1 W, and low Pu = 10−2 W with fixed σ2 = 1. In
Table 1, we provide a summary for all proposed system parameters. We use the train-
ing Normalized MSE (NMSE) to evaluate the training error, expressed as Train NMSE =

1
|K| (∑(u,i)∈K(

θ̂θθT
u ψ̂ψψi−RSEu,i

RSEu,i
)2). We also define Test NMSE = 1

|L| (∑(u,i)∈L(
R̂SEu,i−θ̂θθT

u ψ̂ψψi

R̂SEu,i
)2). The

range of training error and the overall behavior of BCD-based models are different and
distinctive from GD models in both MF and NMF; for instance, BGD-based models’ error
range are around ×10−7, while BCD-based models are around ×10−4. Thus, GD is more
accurate. However, BCD converges faster and the cost function drops to low values from
the very first iterations. In addition, for MF and NMF, the train NMSE decreases with
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the increase in the overhead ratio η, as seen in Figure 5. Low and medium Pu regimes are
characterized by noisy links between UE and BS and represent a more challenging exper-
imental environment. BCD-based models tend to be faster in reaching low error values,
while BGD-based models are more accurate. (For instance, BSGD generally ameliorates
the quality of prediction compared with BGD).

Table 1. System parameters and hyperparameters.

System Configuration for All Proposed Models

System parameter Numerical value

number of antennas NT at UE 128, 256, 512, 1024

number of antennas NR at BS 128, 256, 512, 1024

codebook cardinality |T | at UE 128, 256, 512, 1024

codebook cardinality |R| at BS 128, 256, 512, 1024

overhead ratio η regime 0.7, 0.5, 0.3, 0.1

number of OFMD sub-carriers Nc 64

number of channel paths L 2 (NLoS)

transmitted power Pu (W) 1, 10−1, 10−2

MF/NMF dimension DMF 2, 3, 4, 5, 6

MF/NMF learning rate αk 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

MF/NMF regularization factors λ, µ 10−2, 10−3, 10−4, 10−5, 10−6, 10−7

MLP number of layers J 1, 2, 3

MLP number of neurons per layer DMLP 8, 16, 32, 64, 128

MLP batch size B 2, 4, 8, 16, 32, 64, 128

MLP learning rate βk 10−1, 10−2, 10−3, 10−4

(a) (b) (c)

(d) (e)

Figure 5. MF/NMF train/test performance and learning curves: (a) 512 × 512 train/test loss in
function of the overhead ratio; (b) learning curve: 256 × 256 with overhead 0.1 BCDMF; (c) learning
curve: 1024 × 1024 with overhead 0.1 BCDNMF; (d) learning curve: 512 × 512 with overhead
0.1 BGDMF; (e) learning curve: 128 × 128 with overhead 0.1 BCDSGD.
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Regarding MF/NMF simulation figures, Figure 5a states the decrease of train/test
NMSE in function of the overhead ratio (more training samples result in fewer errors);
Figure 5b,c track the instant drop in loss values from the very first iterations for BCD-based
models; and Figure 5d,e present the progressive convergence of cost function among the
iterations when we use BGD-based models. In summary, Table 2 outlines the optimal
(minimum) signaling overhead ratio required for the all proposed system configurations,
the optimal model (holding the smallest total cost function), the related combination of
optimal hyperparameters, and the corresponding train/test error values. When the signal
is affected with much noise, it is harder to keep the same range of error when compared
with high a Pu regime. In fact, MF models keep the same (minimum) signaling overhead
(0.1) regardless of the transmitted power regime, being able to accurately predict with just
10% of sounded beams. Thus, the proposed MF/NMF methods are able to reduce the pilot
signaling overhead by 90% compared with Exhaustive BA with negligible training and
test errors.

Table 2. QoS minimum overhead required for MF/NMF for all proposed Pu regimes.

a | MF/N MF | QoS Minimum Overhead Required for Pu = 1 W

MIMO setup Optimal hyperparameters Min Overhead Train NMSE Test NMSE

128 by 128 BGD NMF{D = 2, (λ, µ) = (0.0001, 0.0001), αk = 0.001} 0.1 8.407746 × 10−6 9.147875 × 10−6

256 by 256 BGD MF{D = 3, (λ, µ) = (0.0001, 0.0001), αk = 0.001} 0.1 4.102708 × 10−6 7.344720 × 10−6

512 by 512 BGD MF{D = 4, (λ, µ) = (0.0001, 0.0001), αk = 0.001} 0.1 8.374633 × 10−7 9.417057 × 10−7

1024 by 1024 SGD NMF{D = 4, (λ, µ) = (0.0001, 0.0001), αk = 0.01} 0.1 1.219227 × 10−7 1.616363 × 10−7

b | MF/N MF | QoS Minimum Overhead Required for Pu = 10−1 W

MIMO setup Optimal hyperparameters Min Overhead Train NMSE Test NMSE

128 by 128 SGD NMF {D = 2, (λ, µ) = (0.0001, 0.0001), αk = 0.001} 0.1 0.000191 0.000276

256 by 256 SGD NMF {D = 3, (λ, µ) = (0.0001, 0.0001), αk = 0.001} 0.1 4.648861 × 10−5 5.775554 × 10−5

512 by 512 BGD NMF{D = 4, (λ, µ) = (0.0001, 0.0001), αk = 0.001} 0.1 1.052556 × 10−5 1.170430 × 10−5

1024 by 1024 BGD NMF {D = 4, (λ, µ) = (0.0001, 0.0001), αk = 0.001} 0.1 1.600790 × 10−6 1.695907 × 10−6

c | MF/N MF | QoS Minimum Overhead Required for Pu = 10−2 W

MIMO setup Optimal hyperparameters Min overhead Train NMSE Test NMSE

128 by 128 SGD MF {D = 2, (λ, µ) = (0.0001, 0.0001), αk = 1 × 10−6} 0.1 0.115517 0.118776

256 by 256 BGD MF {D = 3, (λ, µ) = (0.0001, 0.0001), αk = 0.0001} 0.1 0.016475 0.016679

512 by 512 SGD NMF{D = 4, (λ, µ) = (0.0001, 0.0001), αk = 1 × 10−6} 0.1 0.003371 0.003449

1024 by 1024 BGD MF {D = 4, (λ, µ) = (0.0001, 0.0001), αk = 1 × 10−5} 0.1 0.001681 0.001948

5. Multi-Layer Perceptron
5.1. MLP Problem Formulation

We consider a feed-forward MLP, with J layers, modeled as a composition of J non-
linear functions/layers. Let z0 ∈ R be the MLP input, and zJ ∈ R be the MLP output; see
Figure 6. We denote with {zzz2, . . . , zzzJ−1} all the hidden layers. We assume for simplicity
that the width of all the layers is the same, denoted as D, i.e., {zzz2 ∈ RD, . . . , zzzJ−1 ∈ RD};
see Figure 6. The equation describing layer 1 is given by zzz1 = σ1(ϕϕϕ1z0) = σ1(ϕϕϕ11), where
zzz1 ∈ RD is the output of layer 1, ϕϕϕ1 ∈ RD is the resulting weight vector, and σ1() : R −→ RD

is the non-linear activation function for layer 1. We use one hot encoding for the MLP
input z0 ∈ R, i.e., z0 = 1 for all training samples, ∀(u, i) ∈ K. We express the output of the
hidden layers, {zzzj ∈ RD}J−1

j=2 , as zzzj = σj(ΦΦΦjzzzj−1) , ∀ j ∈ {2, . . . , J − 1}, where zzzj−1 ∈ RD

is the input of the layer j and zzzj ∈ RD is its output , ∀ j ∈ {2, . . . , J − 1}; ΦΦΦj ∈ RD×D

is the weight matrix for the layer j , ∀ j ∈ {2, . . . , J − 1}; and σj−1() : RD −→ RD is the
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element-by-element non-linear activation function for the layer j, ∀ j ∈ {2, . . . , J − 1}.
Finally, the relation for the last layer j = J is expressed as zJ = σJ(ϕϕϕJzzzJ−1), where zJ ∈ R is
the output for layer J, ϕϕϕJ ∈ R1×D is its weight vector, and σJ() : RD −→ R is the non-linear
activation function for the layer J. We express the output of the MLP zJ ∈ R (as a function
of all layers) as

zJ := σJ(ϕϕϕJ . . . σ2(ΦΦΦ2(σ1(ϕϕϕ1)))) (16)

Figure 6. Multi-Layer Perceptron architecture (toy example with J = 4).

The output of MLP is made to fit/approximate all the RSE values at all training
samples; zJ := RSEu,i, ∀(u, i) ∈ K. We define the MSE loss lu,i for the sample (u, i) in the
training set K as the distance between the MLP output zJ and the known RSE label for the
beam pair (u, i), RSEu,i, i.e,

lu,i := (zJ − RSEu,i)
2 = ( σJ(ϕϕϕJ . . . σ2(ΦΦΦ2(σ1(ϕϕϕ1))))︸ ︷︷ ︸

MLP output

− RSEu,i︸ ︷︷ ︸
RSE value

)2 , ∀(u, i) ∈ K

Then, the empirical risk is defined as the average of the individual loss lu,i across the
training set K, (1/|K|)∑(u,i)∈K lu,i. The empirical risk minimization for the MLP is given
in (P3).

(P3) := {(ϕϕϕ1
∗, ΦΦΦ2

∗, . . . , ϕϕϕJ
∗)


argmin

ϕϕϕ1,ΦΦΦ2,...,ΦΦΦJ−1,ϕϕϕJ

1
|K| ∑(u,i)∈K lu,i(ϕϕϕ1, ΦΦΦ2, . . . , ΦΦΦJ−1, ϕϕϕJ)

s. t. ϕϕϕ1 ∈ RD, ΦΦΦ2 ∈ RD×D, . . . , ΦΦΦJ−1 ∈ RD×D, ϕϕϕJ ∈ R1×D

5.2. MLP Learning

We propose to learn the optimal MLP weights via back-propagation (BP). We choose
an arbitrary mini-batch of samples of size B ⊆ K and define the mini-batch loss as

lB :=
1
|B| ∑

u,i∈B
(σJ(ϕϕϕJ . . . σ2(ΦΦΦ2(σ1(ϕϕϕ1))))− RSEu,i)

2 , ∀ (u, i) ∈ B (17)

We express the partial derivative of the loss corresponding to the mini-batch lB with respect
to each layer ΦΦΦj, j{1, . . . , J} as

∂lB
∂ΦΦΦj

=
1
|B| ∑

(u,i)∈B
(δjzj−1

T ), ∀j ∈ {1, ..J} , (18)
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where

δj
∆
=

{
(ΦΦΦj+1

Tδj+1) ◦ σj
′
, j < J

2(zJ − RSEu,i) ◦ σj
′
, j = J , (u, i) ∈ B

, σ
′
j

∆
=

∂σ(u)
∂u

= [
∂σ(u1)

∂u1
, . . . ,

∂σ(udj
)

∂udj

]

T

,

j = 1, . . . , J and ◦ denotes the Hadamard product. We express the BP weight update of the
mini-batch loss lB , for all layers ∀j ∈ {1, . . . , J}, as

ΦΦΦ(k+1)
j = ΦΦΦ(k)

j − β j
(k) ∂lB

∂ΦΦΦj

∣∣∣
ΦΦΦ(k)

j

, ∀j ∈ {1, . . . , J}, k = {1, . . . , T} (19)

where (k) is the BP iteration index, ΦΦΦ(k)
j is the value of ΦΦΦj at iteration k, β j

(k) is the BP step

size (learning rate) for the layer j at iteration k, and ∂lB
∂ΦΦΦj

|
ΦΦΦ(k)

j
is the partial derivative given

in (18) evaluated at ΦΦΦ(k)
j .

Back-propagation algorithm with mini-batch
Choose the mini-batch B as a random subset of the training set K.

1. Compute the loss function lB for all samples in the mini-batch (u, i) ∈ B in (17).
2. Compute the partial derivative ∂lB

∂ΦΦΦj
of the mini-batch loss lB with respect to ΦΦΦj in (18).

3. Update the weights of each layer as in (19).

We assume that the BP learning rate is the same for all layers, β
(k)
j = βk, ∀j ∈ {1, . . . , J}.

5.3. Prediction Using MLP

The MLP prediction for the sample (u,i) in the test set L, using optimal weights ϕϕϕ1
∗,

ΦΦΦ2
∗, . . . , ϕϕϕJ

∗ is as follows:

ẑJ = σJ(ϕϕϕJ
∗ . . . σ2(ΦΦΦ2

∗(σ1(ϕϕϕ1
∗)))), ∀(u, i) ∈ L (20)

Therefore, the test MSE is defined as

1
|L| ∑

(u,i)∈L

(
R̂SEu,i − σJ(ϕϕϕJ

∗ . . . σ2(ΦΦΦ2
∗(σ1(ϕϕϕ1

∗))))
)2

(21)

We then select the optimal indexes u⋆ and i⋆ related to the highest RSEu,i value, as follows:

(u⋆, i⋆) = argmax(u,i)∈L∪K {RSEu,i|∀(u, i) ∈ K} ∪ { ˆRSEu,i|∀(u, i) ∈ L} (22)

5.4. Proposed BA Algorithm Using MLP

The Multi-Layer Perceptron-based Beam Alignment is specified in Algorithm 2.

Algorithm 2 Proposed MLP-Based BA Method.

Input: { fff u}∀u∈T , {WWWi}∀i∈R, η, Pu
- Generate randomly sub-sampled codebooks, TS,RS, satisfying (|TS|.|RS|)/(|T | × |R|) = η
- Sound beam pairs from training set, K := TS ×RS.
- Record corresponding RSE and generate RSE mat. SSS, in (5)
- Train MLP weights (using back-propagation algorithm)

return optimal weights, {ϕϕϕ1
∗, ΦΦΦ2

∗, . . . , ϕϕϕJ
∗}

- Use optimal parameters {ϕϕϕ1
∗, ΦΦΦ2

∗, . . . , ϕϕϕJ
∗}, to predict unknown RSE of test set, L, in (21)

- Search training and test sets, for optimal beam pair (u⋆, i⋆), holding the largest RSE, (22)
Output: fff u⋆ , WWWi⋆
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We assume that the number of neurons per layer D, the number of layers J, the mini-
batch size B = |B|, and the BP learning rate β(k) are hyperparameters. They are tuned
using a grid search cross-validation.

5.5. Numerical Simulations

We define the training and test cost functions as follows:

Train NMSE =
1
|K| ( ∑

(u,i)∈K
(

RSEu,i − σJ(ϕϕϕJ . . . σ2(ΦΦΦ2(σ1(ϕϕϕ1))))

RSEu,i
)2) (23)

Test NMSE =
1
|L| ( ∑

(u,i)∈L
(

R̂SEu,i − σJ(ϕϕϕJ
∗ . . . σ2(ΦΦΦ2

∗(σ1(ϕϕϕ1
∗))))

R̂SEu,i
)2) (24)

Therefore, we used the same system configurations as for MF/NMF, resumed in Table 1.
Moreover, we choose the learning rate βk ∈ {0.1, 0.01, 0.001, 0.0001}, while the batch size
B ∈ {2, 4, 8, 16, 32, 64, 128}, the number of hidden layers J ∈ {1, 2, 3}. For each layer,
the number of neurons D ∈ {8, 16, 32, 64, 128}. We use the Rectified Linear Units as our
activation function for all layers.

Similar to MF/NMF, train performance is observed when we track the evolution of the
cost function NMSE, applied to the training samples of the set K, in a function of iterations.
The range of considerably low-error values and the overall learning behavior of the MLP
architecture illustrates that our shallow neural network successfully resolves the non-linear
regression problems related to our BA process. For massive setups, MLP reaches around 10−6

error in a high Pu regime. However, this cost value increases as long as the amount of noise
and interference augments. Note that the train NMSE also decreases when we increase the
size of the dataset matrix SSS, which provides more samples for MLP to improve the feature
extraction and the prediction quality. Regarding the unknown beams, test error values in the
numerical result tables are close to the train cost (with no overfitting or underfitting in the
corresponding learning curves). Moreover, the test loss is impacted by the transmitted power
regime the same way as the training process. Identical to GD-based MF/NMF, the MLP
learning curves in Figure 7 plot the same shape of curve with a continuous monotonic decrease
in the train and test cost among the iterations: the convergence is progressive among the
iterations, and at the last epoch, training and test NMSE values land at considerably low error
values and prove that MLP accurately fits to our problem and provides a concrete solution
for ML-based BA. From a QoS perspective, Table 3 resumes the smallest (optimal) signaling
overhead required for a successful beam sounding based on reliable prediction quality. Similar
to MF/NMF, for all the proposed transmitted power, MLP requires 10% of the total beam
pairs to fulfill the RSE matrix.

(a) (b) (c)

Figure 7. MLP Learning curves: (a) learning curve: 256 × 256 with overhead 0.1 MLP; (b) learning
curve: 512 × 512 with overhead 0.1 MLP; and (c) learning curve: 128 × 128 with overhead 0.3 MLP.
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Table 3. QoS minimum overhead required for MLP for all the proposed Pu regimes.

a | MLP | QoS Minimum Overhead Required for Pu = 1 W

MIMO setup Optimal hyperparameters Min overhead Train NMSE Test NMSE

128 by 128 {(J = 3, D = 8), B = 4, βk = 0.0001} 0.1 0.001144 0.002639

256 by 256 {(J = 3, D = 16), B = 16, βk = 0.001} 0.1 3.941522 × 10−5 3.948157 × 10−6

512 by 512 {(J = 3, D = 64), B = 32, βk = 0.0001} 0.1 3.305507 × 10−5 3.335168 × 10−5

1024 by 1024 {(J = 3, D = 64), B = 64, βk = 0.0001} 0.1 9.810028 × 10−6 9.857067 × 10−6

b | MLP | QoS Minimum Overhead Required for Pu = 10−1 W

MIMO setup Optimal hyperparameters Min overhead Train NMSE Test NMSE

128 by 128 {(J = 3, D = 8), B = 4, βk = 0.0001} 0.1 0.007569 0.007662

256 by 256 {(J = 3, D = 16), B = 16, βk = 0.001} 0.1 0.000139 0.000288

512 by 512 {(J = 3, D = 64), B = 32, βk = 0.0001} 0.1 5.419598 × 10−5 5.756302 × 10−5

1024 by 1024 {(J = 3, D = 64), B = 64, βk = 0.0001} 0.1 1.184073 × 10−5 1.72301 × 10−5

c | MLP | QoS Minimum Overhead Required for Pu = 10−2 W

MIMO setup Optimal hyperparameters Min overhead Train NMSE Test NMSE

128 by 128 {(J = 3, D = 8), B = 4, βk = 0.0001} 0.1 0.049559 0.071185

256 by 256 {(J = 3, D = 16), B = 16, βk = 0.001} 0.1 0.017011 0.017634

512 by 512 {(J = 3, D = 64), B = 32, βk = 0.0001} 0.1 0.000141 0.000666

1024 by 1024 {(J = 3, D = 64), B = 64, βk = 0.0001} 0.1 1.700140 × 10−4 1.702889 × 10−4

6. Results and Discussion
6.1. Train/Test Prediction Performance Comparison

For the six MF-based models, we select the best one (minimum test error) to represent
the MF family of methods in this section and compare it with MLP. When we analyze
QoS (Tables 1 and 2), we notice that the transmitted power regime impacts the quality of
prediction by reducing the overall loss. For MF/NMF, we observe that the loss damage is
large. We jump from around 10−8 for massive configurations (256, 512, and 1024) to 10−4

for smaller setups. For MLP, we spot the increase in the overall loss when we decrease
Pu. Thus, MLP seems to be the most robust architecture with respect to changing the
transmitted power. Additionally, we empirically notice that the change in the Pu values
does not impact the optimal hyperparameters selected from cross-validation. Furthermore,
when we track the evolution of the training/test cost in the function of iterations, we
observe balanced models with no signs of overfitting or underfitting. On the other hand,
when the transmitted power decreases, MF/NMF tend to be the most impacted models in
terms of train/test error, while the MLP error is robust.

On the other hand, from a QoS perspective, concerning the evolution of the optimal
(minimum) required signaling overhead and what impact can the Pu regime have on the
optimal required values, in reference to Tables 1 and 2, all the proposed models required
just 10% of the total number of beam pairs at UE and BS for all antenna configurations from
128 × 128 to 1024 × 1024 for all the proposed Pu values. This proves that the transmitted
power impacts the quality of prediction but not the number of beam pairs required for
training. In fact, low Pu leads to damaging the signal quality and subsequently damages
the quantity of useful information to be extracted from the datasets. Finally, the only
cases where the Pu regime impacts the optimal overhead ratio is among the smallest
configurations, for instance, the 16 × 16 setup where it seems normal for all learning
models to demand more data to learn from (more hidden interactions between UE and
BS as features to extract). These are the experimental situations where Exhaustive BA is
technically feasible.
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6.2. Similarities and Differences between Models

All models required just 10% of the beams for training for all the proposed massive
setups. Moreover, all the proposed models are shallow neural architectures with few hidden
layers for low-complexity constraints. Even among the largest configurations, the optimal
dimensions of models picked from the cross-validation illustrate small networks with no
need to require dense architectures. Furthermore, all models succeeded with the matrix
completion task, and they all illustrate a monotonic decrease in loss values as long as we
increase the MIMO setup. Additionally, MF-based models are the most accurate reaching
loss values in the range 10−8 for massive setups in a high Pu regime, and their cross-
validation illustrates smaller grid search where there are fewer hyperparameters to tune.
However, they are the slowest models when applied to high-dimensional MIMO setups.
On the other hand, MLP illustrates a good balance between run time (complexity) and loss
values (prediction quality). It reaches around 10−4 and 10−5 loss for massive configurations.
In addition, the MLP is the most robust model facing the changes in the Pu values. In
Figure 8, for 512 × 512, the figure illustrates the train/test NMSE in the function of each
model and the corresponding transmitted power: in Figure 8a, for Pu = 1W, MF achieves
its best performance, slightly better than MLP with the difference between achieved cost
values at around 10−1. In Figure 8b, when Pu = 10−1W, MF still gets the best performance,
marginally better than MLP with an NMSE value difference of around 10−1. In Figure 8c,
when Pu = 10−2, MF noticeably gets impacted (overall loss around 10−3) while MLP
provides the best prediction performance: this suggests that when Pu is small, MLP is more
robust than MF/NMF, which performs best in high Pu regime. Similarly, almost same
remarks hold for Figure 9 when we simulate the 128 × 128 configuration: in Figure 9a, MF
reaches considerably better performance compared with MLP with 10−4. In Figure 9b,
MLP kept the same range of error, which states again the robustness of the model while
MF got severely impacted (10−3) but sill holds the best performance. In Figure 9c, when Pu
is weak, MF illustrates the worst performance in all simulations. On the other hand, MLP
got slightly impacted with an overall loss of 10−1 and reaches the best quality of prediction.
In Figure 10, we investigate the highest configuration 1024 × 1024. Similar conclusions for
Figures 8 and 9 hold for this figure in terms of best model (MF for Pu = 1W, Pu = 10−1

and MLP for Pu = 10−2). In addition, we aim to investigate the overall impact of varying
the transmitted power. Thus, we track the log(NMSE) values while switching from one Pu
regime to another: In Figure 10, in Figure 10a, for MLP, the curve gap from low/medium is
log(NMSE)medium − log(NMSE)low ≈ −16 − (−12) ≈ −4. The gap in the medium/high
regimes is almost negligible ( log(NMSE)high − log(NMSE)medium ≈ −16 − (−16) ≈ 0.5).
Finally, in Figure 10b, the MF gap is around log(NMSE)medium − log(NMSE)low ≈ −17 −
(−9) ≈ −8 and log(NMSE)high − log(NMSE)medium ≈ −22− (−17) ≈ −5: at each change
of Pu, MF is considerably impacted. To sum up, the choice of the optimal model strongly
depends on the available complexity and the given transmitted power Pu. In fact, MF,
whether through BCD or BGD optimization, is the best model when the transmitted power
is high (Pu = 1W). In this case, BCDMF converges faster but has higher complexity
than BGD. However, SGD for MF/NMF are the slowest models to converge but show
negligible complexity. On the other hand, if we aim to prioritize run time, MLP exhibits
the fastest predictions with good prediction error. Finally, it is wise to opt for MLP if the
system is to operate under various transmitted power regimes where MLP offers good
prediction quality for every Pu value and the available complexity is medium.
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(a) (b) (c)

Figure 8. Train/test NMSE in function of Pu for all proposed models for 512 × 512 using optimal
overhead ratio; (a) 512 × 512 train/test NMSE for Pu = 1 W; (b) 512 × 512 train/test NMSE for
Pu = 10−1 W; (c) 512 × 512 train/test NMSE for Pu = 10−2 W.

(a) (b) (c)

Figure 9. Train/test NMSE in function of Pu for all proposed models for 128 × 128 using optimal
overhead ratio: (a) 128 × 128 train/test NMSE for Pu = 1 W; (b) 128 × 128 train/test NMSE for
Pu = 10−1W; (c) 128 × 128 train/test NMSE for Pu = 10−2 W.

(a) (b)
Figure 10. Log(NMSE) in function of Pu for 1024 × 1024 using optimal overhead ratio: (a) MLP
train/test log(NMSE) in function of Pu using optimal overhead ratio; (b) MF train/test log(NMSE)
in function of Pu using optimal overhead ratio.

7. Conclusions

In this paper, we proposed a blind Machine Learning-based Beam Alignment using
Matrix Factorization, non-negative Matrix Factorization, and Multi-Layer Perceptron. We
assumed an Uplink massive mmWave MIMO system using single RF-chains at UE and
multiple RF-chains at BS though a fully analog architecture. The proposed approach
consists in sounding the RSE of sub-sampled codebooks at UE and BS. The RSE of the
non-sounded beams is predicted using MF, NMF, and MLP models. Our results show
that, by sounding just 10% of the total beam pair samples, we may predict with high
accuracy the unknown RSE values, which massively reduce the large signaling overhead of
Exhaustive BA. Our future work investigates the scalability of our approach to a multi-user
scenario. Robustness and ML-interpretability are other research directions for modeling
industrial deployment.
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Abbreviations

ALS Alternating Least Squares
AoD Angle of Departure
AoA Angle of Arrival
AWGN Additive White Gaussian Noise
BA Beam Alignment
BS Base Station
BCE Binary Cross Entropy
BCD Block Coordinate Descent
BGD Block Gradient Descent
BSGD Block Stochastic Gradient Descent
CSI Channel State Information
DFT Discrete Fourier Transform
GD Gradient Descent
LoS Line of Sight
MF Matrix Factorization
MIMO Multiple Input Multiple Output
ML Machine Learning
MLP Multi-Layer Perceptron
MSE Mean Squared Error
NMF Non-Negative Matrix Factorization
NLoS Non Line of Sight
NMSE Normalized Mean Squared Error
OFDM Orthogonal Frequency Division Multiplexing
QoS Quality of Service
ReLu Rectified Linear Unit
RSE Received Signal Energies
SNR Signal-to-Noise Ratio
UE User Equipment

Appendix A. Proof: BCD Convergence

We will show that the two (below) necessary conditions for convergence of BCD
are satisfied:

(i) The loss function is strongly convex, per block; i.e., we need to show that sub-problem
S1 and S2 have a unique solution.

(ii) The constraints of the MF prob θθθu ∈ Rd , ψψψi ∈ Rd , are separable and individually convex.

Recall that sub-problem S1 is written as

(S1) : θθθu
(k+1) = argminθθθu∈Rd [−2θθθu

Trrru
(k) + θθθu

T(QQQu
(k) + µuIIID)θθθu] = f1(u), ∀u,

Next, we will prove that the equivalent form in (S1), is a strongly convex function; i.e., it
shows that f1(θθθu) is strongly in θθθu. To that end, we derive the corresponding Hessian:

∇2 f1(θθθu) := 2( QQQ(k)
u + µuIIID ), ∀u,
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For this Hessian expression, QQQ(k)
u ⪰ 0 is a Positive Semi Definite (PSD) matrix (by def),

µuIII ≻ 0 is a Positive Definite (PD) matrix, and ( QQQ(k)
u + µuIIID ) ≻ 0 is a PD matrix. Thus,

the Hessian is a PD matrix ∇2 f1(θθθu) ≻ 0, and f1(θθθu) is strongly in θθθu, and the solution to
the sub-problem (S1) is unique. Recall that the sub-problem (S2) is expressed as

(S2) : ψψψi
(k+1) = argminψψψi∈Rd [−2ttt(k+1)T

i ψψψi +ψψψi
T( PPP(k+1)

u + λiIII )ψψψi] = f2(ψψψi) , ∀i ,

Next, we will prove that the equivalent form is a strongly convex function; i.e., it shows
that f2(ψψψi) is strongly in ψψψi. To that end, we derive the corresponding Hessian:

∇2 f2(ψψψi) := 2( PPP(k+1)
i + λi

(i)IIID ), ∀i,

For this Hessian expression, PPP(k+1)
i ⪰ 0 is a PSD matrix (by def), λ

(i)
i III ≻ 0 is a PD matrix,

and ( PPP(k+1)
i + λ

(i)
i IIID ) ≻ 0 is a PD matrix. Thus, the Hessian is a PD matrix ∇2 f2(ψψψi) ≻ 0,

and f2(ψψψi) is strongly convex in ψψψi. Thus, the solution to the sub-problem (S2) is unique.
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