Evolution of Telencephalon Anterior–Posterior Patterning through Core Endogenous Network Bifurcation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Boolean Dynamics
A = Fgf8 | A (t + 1) = D (t) |
B = Emx2 | B (t + 1) = NOT A (t) |
C = Pax6 | C (t + 1) = A (t) AND (NOT B (t)) AND (NOT E (t)) |
D = Sp8 | D (t + 1) = (NOT B (t)) AND (NOT E (t)) |
E = Coup-tfi | E (t + 1) = (NOT A (t)) AND (NOT C(t)) AND (NOT D (t)) |
2.2. ODE
3. Results
3.1. A Coarse-Grained Core Endogenous Network for Telencephalon Already Exists
3.2. Bifurcations Observed with Evolving Hill Coefficient
3.3. Evolution of the Telencephalon Anterior Posterior Patterning by Bifurcations of the Network Dynamic Behavior
3.4. Predictions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briscoe, S.D.; Ragsdale, C.W. Evolution of the Chordate Telencephalon. Curr. Biol. 2019, 29, R647–R662. [Google Scholar] [CrossRef]
- Chakraborty, M.; Jarvis, E.D. Brain evolution by brain pathway duplication. Philos. Trans. R. Soc. B 2015, 370, 20150056. [Google Scholar] [CrossRef]
- Holland, L.Z. The origin and evolution of chordate nervous systems. Philos. Trans. R. Soc. B 2015, 370, 20150048. [Google Scholar] [CrossRef]
- Kaessmann, H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 2010, 20, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Putnam, N.H.; Butts, T.; Ferrier, D.E.K.; Furlong, R.F.; Hellsten, U.; Kawashima, T.; Robinson-Rechavi, M.; Shoguchi, E.; Terry, A.; Yu, J.K.; et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 2008, 453, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. A theory of cortical responses. Philos. Trans. R. Soc. B 2005, 360, 815–836. [Google Scholar] [CrossRef]
- Friston, K.J. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Friston, K.J. Structural and Functional Brain Networks: From Connections to Cognition. Science 2013, 342, 579. [Google Scholar] [CrossRef]
- Gil-Gálvez, A.; Jiménez-Gancedo, S.; Pérez-Posada, A.; Franke, M.; Acemel, R.D.; Lin, C.Y.; Chou, C.; Su, Y.H.; Yu, J.K.; Bertrand, S.; et al. Gain of gene regulatory network interconnectivity at the origin of vertebrates. Proc. Natl. Acad. Sci. USA 2022, 119, e2114802119. [Google Scholar] [CrossRef]
- Friston, K.J. Functional integration and inference in the brain. Prog. Neurobiol. 2002, 68, 113–143. [Google Scholar] [CrossRef]
- Friston, K.J.; Ao, P. Free Energy, Value, and Attractors. Comput. Math. Method 2012, 2012, 937860. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, B. Stem cell biology needs a theory. Stem Cell Rep. 2023, 18, 3–5. [Google Scholar] [CrossRef]
- Nurse, P. Biology must generate ideas as well as data. Nature 2021, 597, 305. [Google Scholar] [CrossRef] [PubMed]
- Smaldino, P. Better methods can’t make up for mediocre theory. Nature 2019, 575, 9. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, R.A. Coming Full Circle-From Endless Complexity to Simplicity and Back Again. Cell 2014, 157, 267–271. [Google Scholar] [CrossRef]
- Kauffman, S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 1969, 22, 437–467. [Google Scholar] [CrossRef]
- Toulouse, T.; Ao, P.; Shmulevich, I.; Kauffman, S. Noise in a small genetic circuit that undergoes bifurcation. Complexity 2005, 11, 45–51. [Google Scholar] [CrossRef]
- Zhu, X.M.; Yin, L.; Hood, L.; Ao, P. Robustness, stability and efficiency of phage lambda genetic switch: Dynamical structure analysis. J. Bioinform. Comput. Biol. 2004, 2, 785–817. [Google Scholar] [CrossRef]
- Ao, P. Laws in Darwinian evolutionary theory. Phys. Life Rev. 2005, 2, 117–156. [Google Scholar] [CrossRef]
- Kwon, C.; Ao, P.; Thouless, D.J. Structure of stochastic dynamics near fixed points. Proc. Natl. Acad. Sci. USA 2005, 102, 13029–13033. [Google Scholar] [CrossRef]
- Ao, P.; Galas, D.; Hood, L.; Zhu, X.M. Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses 2008, 70, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Hood, L. Systems biology: Integrating technology, biology, and computation. Mech. Ageing Dev. 2003, 124, 9–16. [Google Scholar] [CrossRef]
- Ao, P. Towards predictive neural network dynamical theory Comment on “The growth of cognition: Free energy minimization and the embryogenesis of cortical computation” by Wright and Bourke. Phys. Life Rev. 2021, 36, 30–32. [Google Scholar] [CrossRef] [PubMed]
- Prokop, A. Towards the First Principles in Biology and Cancer: New Vistas in Computational Systems Biology of Cancer. Life 2021, 12, 21. [Google Scholar] [CrossRef]
- Yuan, R.S.; Zhu, X.M.; Wang, G.W.; Li, S.T.; Ao, P. Cancer as robust intrinsic state shaped by evolution: A key issues review. Rep. Prog. Phys. 2017, 80, 042701. [Google Scholar] [CrossRef] [PubMed]
- Giacomantonio, C.E.; Goodhill, G.J. A Boolean Model of the Gene Regulatory Network Underlying Mammalian Cortical Area Development. PLoS Comput. Biol. 2010, 6, e1000936. [Google Scholar] [CrossRef] [PubMed]
- Giacomantonio, C.E.; Goodhill, G.J. A computational model of the effect of gene misexpression on the development of cortical areas. Biol. Cybern. 2014, 108, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Goodhill, G.J. Theoretical Models of Neural Development. IScience 2018, 8, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Marlétaz, F.; Firbas, P.N.; Maeso, I.; Tena, J.J.; Bogdanovic, O.; Perry, M.; Wyatt, C.D.R.; de la Calle-Mustienes, E.; Bertrand, S.; Burguera, D.; et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 2018, 564, 64–70. [Google Scholar] [CrossRef]
- Takatori, N.; Butts, T.; Candiani, S.; Pestarino, M.; Ferrier, D.; Saiga, H.; Holland, P. Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Dev. Genes Evol. 2008, 218, 579–590. [Google Scholar] [CrossRef]
- Benito-Gutiérrez, È.; Gattoni, G.; Stemmer, M.; Rohr, S.D.; Schuhmacher, L.N.; Tang, J.; Marconi, A.; Jékely, G.; Arendt, D. The dorsoanterior brain of adult amphioxus shares similarities in expression profile and neuronal composition with the vertebrate telencephalon. BMC Biol. 2021, 19, 110. [Google Scholar] [CrossRef] [PubMed]
- Ao, P.; Galas, D.; Hood, L.; Yin, L.; Zhu, X.M. Towards Predictive Stochastic Dynamical Modeling of Cancer Genesis and Progression. Interdiscip. Sci. 2010, 2, 140–144. [Google Scholar] [CrossRef] [PubMed]
- François, P. Evolution In Silico: From Network Structure to Bifurcation Theory. Adv. Exp. Med. Biol. 2012, 751, 157–182. [Google Scholar] [PubMed]
- Oster, G.; Alberch, P. EVOLUTION AND BIFURCATION OF DEVELOPMENTAL PROGRAMS. Evol. Int. J. Org. Evol. 1982, 36, 444–459. [Google Scholar] [CrossRef]
- Holland, L.Z. Evolution of new characters after whole genome duplications: Insights from amphioxus. Semin. Cell Dev. Biol. 2013, 24, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Pani, A.M.; Mullarkey, E.E.; Aronowicz, J.; Assimacopoulos, S.; Grove, E.A.; Lowe, C.J. Ancient deuterostome origins of vertebrate brain signalling centres. Nature 2012, 483, 289–294. [Google Scholar] [CrossRef]
- Jandzik, D.; Hawkins, M.B.; Cattell, M.V.; Cerny, R.; Square, T.A.; Medeiros, D.M. Roles for FGF in lamprey pharyngeal pouch formation and skeletogenesis highlight ancestral functions in the vertebrate head. Development 2014, 141, 629–638. [Google Scholar] [CrossRef]
- Sugahara, F.; Aota, S.; Kuraku, S.; Murakami, Y.; Takio-Ogawa, Y.; Hirano, S.; Kuratani, S. Involvement of Hedgehog and FGF signalling in the lamprey telencephalon: Evolution of regionalization and dorsoventral patterning of the vertebrate forebrain. Development 2011, 138, 1217–1226. [Google Scholar] [CrossRef]
- Osorio, J.; Mazan, S.; Rétaux, S. Organisation of the lamprey (Lampetra fluviatilis) embryonic brain: Insights from LIM-homeodomain, Pax and hedgehog genes. Dev. Biol. 2005, 288, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Tank, E.M.; Dekker, R.G.; Beauchamp, K.; Wilson, K.A.; Boehmke, A.E.; Langeland, J.A. Patterns and consequences of vertebrate Emx gene duplications. Evol. Dev. 2009, 11, 343–353. [Google Scholar] [CrossRef]
- Miyake, A.; Nakayama, Y.; Konishi, M.; Itoh, N. Fgf19 regulated by Hh signaling is required for zebrafish forebrain development. Dev. Biol. 2005, 288, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Wullimann, M.F.; Rink, E. Detailed immunohistology of Pax6 protein and tyrosine hydroxylase in the early zebrafish brain suggests role of Pax6 gene in development of dopaminergic diencephalic neurons. Dev. Brain Res. 2001, 131, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Ganz, J.; Kaslin, J.; Freudenreich, D.; Machate, A.; Geffarth, M.; Brand, M. Subdivisions of the adult zebrafish subpallium by molecular marker analysis. J. Comp. Neurol. 2012, 520, 633–655. [Google Scholar] [CrossRef] [PubMed]
- Ganz, J.; Kroehne, V.; Freudenreich, D.; Machate, A.; Geffarth, M.; Braasch, I.; Kaslin, J.; Brand, M. Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000Research 2014, 3, 308. [Google Scholar] [CrossRef] [PubMed]
- Love, C.E.; Prince, V.E. Expression and retinoic acid regulation of the zebrafish nr2f orphan nuclear receptor genes. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2012, 241, 1603–1615. [Google Scholar] [CrossRef] [PubMed]
- Penberthy, W.T.; Zhao, C.; Zhang, Y.; Jessen, J.R.; Yang, Z.; Bricaud, O.; Collazo, A.; Meng, A.; Lin, S. Pur alpha and Sp8 as opposing regulators of neural gata2 expression. Dev. Biol. 2004, 275, 225–234. [Google Scholar] [CrossRef]
- Kawakami, Y.; Esteban, C.R.; Matsui, T.; Rodríguez-León, J.; Kato, S.; Izpisúa Belmonte, J.C. Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgf8 expression and limb outgrowth in vertebrate embryos. Development 2004, 131, 4763–4774. [Google Scholar] [CrossRef]
- Püschel, A.W.; Gruss, P.; Westerfield, M. Sequence and expression pattern of pax-6 are highly conserved between zebrafish and mice. Development 1992, 114, 643–651. [Google Scholar] [CrossRef]
- O’Leary, D.D.; Chou, S.J.; Sahara, S. Area patterning of the mammalian cortex. Neuron 2007, 56, 252–269. [Google Scholar] [CrossRef]
- Rakic, P.; Ayoub, A.E.; Breunig, J.J.; Dominguez, M.H. Decision by division: Making cortical maps. Trends Neurosci. 2009, 32, 291–301. [Google Scholar] [CrossRef]
- Theil, T.; Aydin, S.; Koch, S.; Grotewold, L.; Rüther, U. Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 2002, 129, 3045–3054. [Google Scholar] [CrossRef] [PubMed]
- Levit, G.S.; Hossfeld, U.; Naumann, B.; Lukas, P.; Olsson, L. The biogenetic law and the Gastraea theory: From Ernst Haeckel’s discoveries to contemporary views. J. Exp. Zool. Part B 2022, 338, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Furuta, Y.; Piston, D.W.; Hogan, B.L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 1997, 124, 2203–2212. [Google Scholar] [CrossRef] [PubMed]
- Storm, E.E.; Garel, S.; Borello, U.; Hebert, J.M.; Martinez, S.; McConnell, S.K.; Martin, G.R.; Rubenstein, J.L. Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 2006, 133, 1831–1844. [Google Scholar] [CrossRef] [PubMed]
- Shimogori, T.; Banuchi, V.; Ng, H.Y.; Strauss, J.B.; Grove, E.A. Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development 2004, 131, 5639–5647. [Google Scholar] [CrossRef] [PubMed]
- Sahara, S.; Kawakami, Y.; Izpisua Belmonte, J.C.; O’Leary, D.D. Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Dev. 2007, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Tole, S.; Grove, E.; McMahon, A.P. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 2000, 127, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Johnson, J.E.; O’Leary, D.D. Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J. Neurosci. Off. J. Soc. Neurosci. 1999, 19, 10877–10885. [Google Scholar] [CrossRef]
- Garel, S.; Huffman, K.J.; Rubenstein, J.L. Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. Development 2003, 130, 1903–1914. [Google Scholar] [CrossRef]
- Storm, E.E.; Rubenstein, J.L.; Martin, G.R. Dosage of Fgf8 determines whether cell survival is positively or negatively regulated in the developing forebrain. Proc. Natl. Acad. Sci. USA 2003, 100, 1757–1762. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Yao, M.; Xiong, R.; Su, Y.; Zhu, B.; Chen, Y.-C.; Ao, P. Evolution of Telencephalon Anterior–Posterior Patterning through Core Endogenous Network Bifurcation. Entropy 2024, 26, 631. https://doi.org/10.3390/e26080631
Sun C, Yao M, Xiong R, Su Y, Zhu B, Chen Y-C, Ao P. Evolution of Telencephalon Anterior–Posterior Patterning through Core Endogenous Network Bifurcation. Entropy. 2024; 26(8):631. https://doi.org/10.3390/e26080631
Chicago/Turabian StyleSun, Chen, Mengchao Yao, Ruiqi Xiong, Yang Su, Binglin Zhu, Yong-Cong Chen, and Ping Ao. 2024. "Evolution of Telencephalon Anterior–Posterior Patterning through Core Endogenous Network Bifurcation" Entropy 26, no. 8: 631. https://doi.org/10.3390/e26080631
APA StyleSun, C., Yao, M., Xiong, R., Su, Y., Zhu, B., Chen, Y. -C., & Ao, P. (2024). Evolution of Telencephalon Anterior–Posterior Patterning through Core Endogenous Network Bifurcation. Entropy, 26(8), 631. https://doi.org/10.3390/e26080631