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Abstract: We present a new combinatorial approach to the Ising model incorporating arbitrary
bond weights on planar graphs. In contrast to existing methodologies, the exact free energy is
expressed as the determinant of a set of ordered and disordered operators defined on a planar
graph and the corresponding dual graph, respectively, thereby explicitly demonstrating the Kramers–
Wannier duality. The implications of our derived formula for the Random-Bond Ising Model are
further elucidated.
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1. Introduction

The well-established duality between order and disorder phases observed in the two-
dimensional Ising model was initially exploited by Kramers and Wannier to pinpoint its
criticality [1], predating the celebrated solution of Onsager’s free energy [2–4]. Furthermore,
Kadanoff and Ceva illustrate that the correlation function can be derived by contemplating
the disorder operator defined on the dual graph [5], providing substantial insights into the
underlying physics [6]. However, the standard methodologies used for the computation
of free energy—either algebraically or combinatorially [7]—exhibit the Kramers–Wannier
(KW) duality only in the final form after extensive calculations. Despite a tremendous
volume of work over the last century devoted to the exact solution of the Ising model,
a formula for calculating its free energy with manifest KW duality is still absent in the
literature. This gap limits the utility of the exact free energy in broader contexts. For
example, in the case of a Random-Bond Ising Model (RBIM) employed for understanding
spin glasses, deriving an explicit free energy remains challenging.

It is worth mentioning that the combinatorial approach, pioneered by Kac and Ward [8],
provides an alternative pathway to derive Onsager’s free energy. In particular, for a planar
graph G = (V, E) with n = |V| and m = |E|, Kac and Ward introduced a determi-
nant formula,

ζF(G, u)−1 := det(I2m − uTKW) = Z2
ising(1 − u2)m, (1)

where u := tanh(βJ) represents the coupling constant, and the Kac–Ward (KW) operator
TKW is a 2m × 2m matrix, further elucidated in the subsequent discussion. The original
derivation of the Kac–Ward formula (1) was based on heuristic arguments and lacked
logical completeness. To address this deficiency, Feynman, in unpublished work cited by
Harary [9,10], postulated a path-integral form for the Kac–Ward determinant as

ζF(G, u)−1 = ∏
[p]

(
1 − (−1)w(p)ul(p)

)
, (2)

which allows to prove (1) directly. This elegant identity draws an analogy with Riemann’s
zeta function, where the Euler product is over all prime cycles, with l(p) and w(p) repre-
senting the length and winding number of the prime cycles p, respectively. The subscript F
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highlights the fermionic character of the Ising model, which assigns a negative weight to
odd numbers of windings. This formula was later formally proved by Sherman [11–13]
and Burgoyne [14]. A variant of the combinatorial formulation, mapping the Ising model
to the dimer model using Pfaffians, was developed by Green and Hurst [15] and later
expanded by others [16–19]. This approach essentially corresponds to a skew-symmetric
version of Equation (1) via a similarity transformation. More recently, a resurgence of the
combinatorial approach [20–22] focuses on the discrete version of the conformal invariance
of the critical Ising model on planar graphs [23].

The combinatorial approach can be seamlessly generalized to accommodate an ar-
bitrary set of bond weights u := {ue|e ∈ E}, thereby presenting a robust numerical tool
for probing RBIM. However, Equation (1) reveals little physical insight. For example, the
KW duality indicates that ζF should remain invariant (up to some prefactor) under the
transformation u → u∗ := (1 − u)/(1 + u) on the dual graph G∗, i.e.,

ζF(G, u) ∼ ζF(G∗, u∗).

Regrettably, the manifestation of the KW duality only emerges following the resolution
of the determinant, a process that is impractical for numerous disordered systems. This
hidden symmetry within Equation (1) remains far from obvious and poses a significant
challenge. It was only recently proven that Equation (1) indeed satisfies KW duality under
general conditions [24,25]. Consequently, despite its elegance, the combinatorial approach
is primarily utilized as a numerical tool. To the best knowledge of the author, no explicit
free energy formula demonstrating manifest KW duality for an arbitrary planar graph and
weight set has yet been identified.

In this paper, we propose a new free energy formula for the Ising model with arbitrary
bond weights on planar graphs. Contrasting with existing methodologies, our formula is
expressed as the determinant of the summation of local ordered and disordered operators,
each defined on vertices V and dual vertices V∗, thereby explicitly exhibiting the KW duality.
In addition, it establishes a tangible connection with nonlocal ordered and disordered
operators, offering insights into the nature of duality. We elucidate the implications of our
formula in the context of RBIM.

2. Ihara Zeta Function

To hint at the existence of the manifest dual formula, we initiate our discussion with a
warm-up exercise by considering the bosonic counterpart of Equation (2),

ζB(u)−1 = ∏
[p]

(
1 − ul(p)

)
. (3)

This definition, known as the Ihara zeta function [26,27], serves as a p-adic analogue of the
Selberg zeta function that counts the number of closed geodesics on a hyperbolic surface.
Analogous to Equation (1), we express

ζB(u)−1 = det(I2m − uT), (4)

where T denotes the 2m × 2m Hashimoto’s edge adjacency operator [28] in analogy to the
KW operator KKW . Specifically, T applies on the space of oriented edges {E, Ē}, where
an edge ē ∈ Ē denotes the directional inverse of a corresponding edge e ∈ E. The matrix
Te′ ,e = 1 only if the oriented edge e follows e′ backtracklessly, meaning that the terminal
vertex of e is the starting vertex of e′ and e′ ̸= ē. The equivalence of Equations (3) and (4)
can be demonstrated directly by applying the logarithm and aligning the power expansion
term by term.

For a regular graph of degree q + 1, the Ihara zeta function displays self-duality under
the transformation u → q/u, which mirrors Riemann’s functional equation. However, in
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similarity to its fermionic counterpart, Equation (4) does not explicitly reveal this duality.
Intriguingly, a second formula exists, as proposed in Ihara’s original paper [26],

ζB(u)−1 = (1 − u2)m−n det(In − uA + u2Q), (5)

where A is the adjacency matrix, and Q is the diagonal matrix with the degree diminished
by one. Assuming the graph is (q + 1)-regular, that is, Q = qIn, it becomes evident that

ζ−1
B (G, u) ∼ ζ−1

B (G, q/u).

Consequently, Equation (5) presents a manifestly dual formula for the bosonic zeta function.
The derivation of Equation (5) from Equation (4) provides illuminating insights. Here,

we present a streamlined approach based on the original proof by Bass [29–31]. We intro-
duce the matrix

S := T + J,

where Je′ ,e = δe′ ,ē and Se′ ,e enumerate all successors e′ following e, including its inverse ē. A
key observation arises from the factorization of the matrix

S = YtX,

where X and Y are n × 2m matrices with Xv,e = 1 or Yv,e = 1 if v is the starting vertex or the
terminal vertex of the orient edge e, respectively. Leveraging this factorization, we obtain

det(Im − uT) = det((I2m + uJ)− uS)

= (1 − u2)m det
(

In − uX(I2m + uJ)−1Yt
)

= (1 − u2)m−n det
(

In − uA + u2Q
)

,

where the second line ensues from the generalized matrix determinant lemma and
det(I2m + uJ) = (1 − u2)m. The third line employs the identity

(I2m + uJ)−1 = (1 − u2)−1(I2m − uJ),

while noting A = XYt and Q = XJYt − In. This completes the proof of Equation (5). The
critical component of this proof involves the use of the generalized matrix determinant
lemma, predicated on the factorability of S, which can be reinterpreted as an index theorem
over a chain complex [32].

Consider a more generalized setup involving an arbitrary set of weights u := {ue|e ∈ E}
assigned to each edge. By employing a similar approach, we obtain

ζB(u)−1 = ∏
e∈E

(1 − u2
e )det

(
In − Ã(u) + D̃(u)

)
, (6)

where Ã represents the weighted adjacency matrix defined as

Ãv,v′ :=
uvv′

1 − u2
vv′

,

and D̃ denotes the weighted degree defined as

Dv,v = ∑
(v,v′)∈E

u2
vv′

1 − u2
vv′

.

Specifically, for the ±J disorders, i.e., ue = uτe with τe = ±1, Equation (6) simplifies to

ζB(u)−1 = (1 − u2)m−n det(In − uA′ + u2Q),
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where A′ includes entries of 0 and ±1 to account for bond disorders. It becomes evident
that A′ + I serves as the adjacency matrix of the percolation model, thereby mapping the
Ihara zeta function with ±J disorder to a percolation problem.

3. Manifestly Dual Formula

Consider the fermionic case represented by Equation (2), where the winding number
is suitably defined only after immersion into a surface with a given spin structure. This
marks a notable distinction from its bosonic counterpart in Equation (3) and creates a host
of technical challenges when applying a similar approach to the one used for the bosonic
zeta function. For ease of discussion, our examination is confined to a planar graph G
embedded in a plane. However, extending this discussion to surfaces with a higher genus
is straightforward.

To explicitly reveal the KW duality, we embed the dual graph G∗ over G. In this
arrangement, each vertex of G is located inside a face of G∗, and vice versa; each edge in
G intersects with the corresponding edge in G∗. For technical convenience, we require
these intersections to be perpendicular. Note that the embedding need not be isoradial in
general. Figure 1a illustrates such an embedding, where red and blue colors represent G
and G∗, respectively.

ē e
θL

θR

θ∗
R

θ∗
L

v

v∗

(a)

d†v∗

dv

v

v∗

(b)

Figure 1. (a) The embedding of both G (red) and its dual G∗ (blue). The quadrilateral q is delineated
by a vertex v and a neighboring dual vertex v∗, along with their respective edges. The relationships
θL + θ∗R = θR + θ∗L = π/2 are satisfied. (b) The local order and disorder operators, dv and d†

v∗ , are
applied to quadrilaterals, which are highlighted by different color regions. Each operator acts as a
curl operator around the vertex v and the dual v∗, respectively.

A crucial element in our depiction involves the quadrilaterals (gray domain in
Figure 1a). Each quadrilateral is formed by two neighboring edges in both G and G∗,
along with a vertex pair (v, v∗), where v ∈ V and v∗ ∈ V∗. We denote the angles associated
with the left and right edges of v and v∗ as θL and θR, and θ∗L and θ∗R, respectively. These
angles satisfy the relations

θL + θ∗R = θR + θ∗L = π/2,

as depicted in Figure 1a. The collection of 2m quadrilaterals, which collectively tile the
entire plane, plays a critical role in our new formulation.

The Kac–Ward operator TKW in Equation (1) is defined similarly to Hashimoto’s edge
adjacency operator T. However, we must introduce a phase change between two consecutive
edges to account for the fermionic nature. Specifically, we impose a gauge transformation

(TKW)e′ ,e = eiα(e′ ,e)/2 = ie−iβ(ē,e′)/2
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if edge e′ follows e without backtracking, where α(e′, e) is the exterior angle from e to e′,
and β(ē, e′) is the interior angle between e′ and its inverse ē (Figure 2a). This condition
ensures that the summation of the half exterior angles contributes to a total π phase change
over a cycle, effectively capturing the fermionic sign in Equation (2).

ee′

v

β(ē, e′)

α(e′, e)(a)

ē e

e′′

e′

β(ē, e′)

θRθL

v

(b)

Figure 2. (a) The exterior angle α(e′, e) and the interior angle β(ē, e′) for the KW operator satisfy
α(e′, e) = π − β(ē, e′). (b) The angles between two neighboring edges attached to a quadrilateral
satisfy β(ē, e′) = β(ē, e′′)− θe′ − θe′′ .

Following a similar approach as that applied to the bosonic zeta function, we introduce
the gauged successor operator

S′ := TKW − i J,

appending an additional element between edge e and its inverse ē with weight ie−iπ = −i.
However, S′ no longer exhibits factorability, preventing directly applying the matrix deter-
minant lemma in this scenario. To tackle this issue, we follow the strategy developed by
Cimasoni [24,25], introducing operator Q between neighboring edges e and e′ that share a
common starting vertex v. Specifically, for each quadrilateral q, the operator Q maps its
right edge e to the left edge e′ while inducing a phase shift

Qe,e′ := ei(θL+θR)/2.

As illustrated in Figure 2b,

Qe′ ,e′′ e
−iβ(e′′ ,e)/2 = e−iβ(e′ ,e)/2

if e′ ̸= ē. However, the fermionic nature possesses a non-trivial monodromy, resulting in a
branch cut after a rotation of 2π. This observation leads to the discontinuity

S′ − QS′ = −2i J. (7)

As the operator Q acts on the edges attached to the quadrilaterals, it facilitates a natural
factorization

Q = LtR,

where L and R are 2m × 2m matrices associating each quadrilateral q with its left and right
edges, respectively. Moreover, we assign weights Lq,e := eiθL(q)/2 and Rq,e := eiθR(q)/2.
Building on this factorization, we find
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det(I − Q)det(I − uTKW) = det(I + iuJ − Q(I − iuJ))

= (1 + u2)m det(I − R(I − iuJ)(I + iuJ)−1Lt)

= (1 + u2)m det
(

I − 1 − u2

1 + u2 RLt − 2u
1 + u2 Re−iπ/2 JLt

)
,

where the first equality follows from Equation (7), and the second stems from the gener-
alized matrix determinant lemma and det(I + iuJ) = (1 + u2)m. We then introduce the
discrete curl operator

d := RLt,

acting on the space of quadrilaterals, with elements

dq′ ,q = ei(θL(q)+θR(q′))/2,

when the quadrilaterals q′ and q share a common edge with q′ positioned counterclockwise
next to q. This definition suggests that d can be decomposed into a set of operators dv,
each acting on the quadrilaterals around vertex v. Therefore, d = ∑v∈V dv, as depicted in
Figure 1b. Similarly, the dual operator d∗ = ∑v∗∈V∗ dv∗ is the summation of the operators
dv∗ around the dual vertex v∗. Observe that

(d†
∗)q′ ,q = e−i(π/2−(θL(q)+θR(q′))/2

holds if q possesses a left edge e and q′ a right edge ē (see Figure 1). This yields

d†
∗ = Re−iπ/2 JLt,

which applies to quadrilaterals around dual vertices clockwise. Taken together, we obtain

ζ−1
F = 2−n(1 + u2)m det

(
I2m − 1 − u2

1 + u2 d − 1 − u∗2

1 + u∗2 d†
∗

)
, (8)

where we employ the identities det(I − W) = (1 − (−1))n = 2n and

1 − u∗2

1 + u∗2 =
2u

1 + u2 .

Drawing parallels with Equation (6), we can generalize Equation (8) to incorporate a set of
bond weights u as follows:

ζ−1
F (G, u) = 2−n ∏

e∈E
(1 + u2

e )det
(

I2m − D(u)− D†
∗(u

∗)
)

, (9)

where

D := R
1 − u2

1 + u2 Lt,

and D∗ represent the weighted curl operators around the vertices in V and V∗, respectively.
These operators permit a natural decomposition

D(u) = ∑
v

Dv(u), D(u∗) = ∑
v∗

Dv∗(u∗). (10)

The determinant present in Equation (9) is manifestly symmetric under the dual transfor-
mation, thereby reinstating the KW duality for an arbitrary set of bond weights [24,25]
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2−|V| ∏
e∈E

(1 + ue)ζF(G, u) = 2−|V∗ | ∏
e∈E

(1 + u∗
e )ζF(G∗, u∗), (11)

where we applied the identity
1 + u2

e
1 + u∗

e
2 =

1 + ue

1 + u∗
e

.

4. Order and Disorder Operators

Equation (9) suggests that the fermionic zeta function

ζ−1
F = det(I − H(u))

constitutes the characteristic polynomial of a non-Hermitian Hamiltonian:

H := D(u) + D†(u∗) = ∑
v∈V

Dv(u) + ∑
v∗∈V∗

D†
v∗(u

∗).

Assuming the ±J disorders of ue = uτe, where τe = ±1, the equation simplifies to:

H =
1 − u2

1 + u2 ∑
v∈V

dv +
2u

1 + u2 ∑
v∗∈V∗

d̃†
v∗ , (12)

where
(d̃v∗)q,q′ = ei(θL(q)+θR(q′))/2τe,

applicable for two quadrilaterals sharing the dual vertex v∗ and edge e. Evidently, only the
dual curl operator D∗ represents the disorder, while the curl operator D remains unaffected
by the disorder. Thus, we interpret Dv and Dv∗ as local order and disorder operators,
respectively, echoing the nonlocal disorder operator introduced by Kananoff and Ceva [5].

To establish a connection explicitly, consider a defect that changes a line L of ferro-
magnetic bonds to antiferromagnetic, i.e., τe = −1 only for e ∈ L. The corresponding
correlation function of nonlocal disorder operators involves a shift in the free energy:

∆F = − kT
2

ln det(I − H′G), (13)

where G = (I − H0)
−1 represents Green’s function of the ferromagnetic Hamiltonian

H0 :=
1 − u2

1 + u2 d − 1 − u∗2

1 + u∗2 d†
∗,

and the defect operator

H′ :=
2u

1 + u2 ∑
v∗∈L

(d̃v∗ − dv∗).

It becomes apparent that nonlocal disorder operators correspond to a line integral over the
local disorder operator Dv∗ . Consequently, the KW duality presented in Equation (9) reflects
an exact interchange of local order and disorder operators under the duality transformation.

5. Implication to RBIM

We now turn to the implications of our new formula for the RBIM. For the sake of
technical convenience, our discussion will primarily focus on ±J disorder on a square
lattice, i.e.,

P(τ) = (1 − p)δ(τ − 1) + pδ(τ + 1).

A straightforward generalization applies to arbitrary disorder. As we demonstrated earlier,
the free energy of ±J bond disorder is dictated by the spectrum of Equation (12), where
only the disorder operator d̃∗ accounts for the bond disorders τe.
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In the absence of disorder (p = 1), it is straightforward to diagonalize H via the
Fourier transform, which consequently recovers Onsager’s free energy. Considering a
scenario where p is close to 1, we can apply the Dyson series expansion to Equation (13).
This approach enables us to determine the critical coupling uc(p) as a series expansion of
disorder probability 1 − p. At the leading order, we find

uc(p) = (
√

2 − 1)(1 + 2
√

2(1 − p)) + O((1 − p)2). (14)

This result aligns with the findings initially obtained using the replica trick [33].
We now turn our attention to the zero-temperature limit β → ∞ of Equation (12). In

this limit, (1 − u2)/(1 + u2) ≈ 2e−2βJ and 2u/(1 + u2) ≈ 1. Consequently, in this scenario,
disorder operators dominate the spectrum. Direct computation yields

det(I − d†
v∗) = 1 + Wv∗ , (15)

where the frustration Wv∗ := ∏e∈P(v∗) τe = ±1 is defined as the product of edge disorders
around the plaquette of the corresponding dual vertices v∗. It is clear that when the
plaquette is frustrated, i.e., Wv∗ = −1, the determinant acquires a correction from the

order operator d with an order at most e−2βJ . On average, there is a 1−(2p−1)4

2 chance of
Wv∗ = −1, which results in a lower bound of the ground state energy density:

e/J ≥ −2 +
1 − (2p − 1)4

2
. (16)

This finding is consistent with the results in Refs. [34,35] obtained using geometric approaches.

6. Conclusions

In conclusion, we have unveiled a novel combinatorial approach to Ising models with
arbitrary bond weights. In contrast to previous methods, our new formulation distinctly
manifests the KW duality via order and disorder operators. We have presented preliminary
implications for RBIM at the leading order, and our findings are consistent with results
derived from alternative approaches. However, our method has the distinct advantage of
seamlessly integrating with the standard framework of perturbative techniques, thereby
simplifying the extension to higher-order terms. This also opens up the potential to employ
non-perturbative methodologies for a more nuanced understanding of the phase diagram
of RBIM. Additionally, our approach can be directly applied to other planar graphs, such
as triangular and hexagonal lattices. On the other hand, it has been suggested that the
RBIM may exhibit a disorder duality based on the replica argument, potentially localizing
the multicritical point [36]. The exactness of this duality and its connection to our method
remains unclear. We aim to explore these questions in future research.

Our methodology can also be readily generalized to anyonic statistics by consid-
ering a non-half-integer phase shift, a topic we plan to discuss elsewhere. Further, a
non-Abelian generalization seems feasible. These generalizations have close ties with
parafermionic models [37]. Moreover, given that the Ihara zeta function can generalize to
high-dimensional objects [38], it is enticing to contemplate a similar higher-dimensional
generalization for its fermionic counterpart. Such an extension may hold promise for a
solution to the 3D Ising model.
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Abbreviations
The following abbreviations are used in this manuscript:

KW Kramers–Wannier
RBIM Random-Bond Ising Model
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