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Abstract: The emergence of cancers involves numerous coding and non-coding genes. Understanding
the contribution of non-coding RNAs (ncRNAs) to the cancer neighborhood is crucial for interpreting
the interaction between molecular markers of cancer. However, there is a lack of systematic studies
on the involvement of ncRNAs in the cancer neighborhood. In this paper, we construct an interaction
network which encompasses multiple genes. We focus on the fundamental topological indicator,
namely connectivity, and evaluate its performance when applied to cancer-affected genes using
statistical indices. Our findings reveal that ncRNAs significantly enhance the connectivity of affected
genes and mediate the inclusion of more genes in the cancer module. To further explore the role
of ncRNAs in the network, we propose a connectivity-based method which leverages the bridging
function of ncRNAs across cancer-affected genes and reveals the non-coding RNAs extended omni-
genic module (NeOModule). Topologically, this module promotes the formation of cancer patterns
involving ncRNAs. Biologically, it is enriched with cancer pathways and treatment targets, providing
valuable insights into disease relationships.

Keywords: cancer module; connectivity pattern; heterogeneous network; non-coding RNAs

1. Introduction

The development of cancers involves multiple variant sites which affect numerous
coding and non-coding genes. Most variants are located in non-coding regions and have
small effect sizes on cancers [1,2]. Many ncRNAs play an important role in regulating
the complex molecular and biological processes of cancer. Simultaneously, ncRNAs can
be categorized into several types based on their size. The common types include long
non-coding RNAs (lncRNAs), microRNAs (miRNAs), and pseudogenes. Existing studies
indicate that miRNAs can regulate both coding genes and ncRNAs, including oncogenes
such as RAS and WNT, as well as tumor suppressor genes such as TP53 and PTEN [3].
Moreover, this regulatory relationship can promote cancer development. For example, miR-
31 targets genes such as RAS and WNT, thus accelerating cell proliferation and metastasis
in lung cancer [4]. Extensive in vivo experiments have demonstrated that certain ncRNAs
function as tumor suppressors or oncogenic factors. For example, lncRNA MEG3 can
increase the expression level of p53 to activate apoptosis and reduce the proliferation of
lung cancer [5]. Aside from this, recent studies have found that ncRNAs can function as
biomarkers for cancer diagnosis [6]. Therefore, in-depth study of ncRNAs may offer new
insights into cancer development and treatment.

The omnigenic model of genetic architecture suggests that cancer risk is influenced
by the combined effects of core gene variants and peripheral gene variants. Core genes
have a strong effect on the occurrence of cancer, while peripheral genes have a relatively
weak effect value. Peripheral genes regulate core genes, which directly impact cancer
development through a network. Additionally, the majority of variants with weak effects
are found in non-coding regions [7]. The occurrence of cancer is often associated with
mutations in multiple genes and interactions between genes [8]. The Cancer Genome Atlas
(TCGA) [9] provides publicly available cancer genome datasets for research. Additionally,
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research on gene interactomes is becoming more mature, and there are many databases
providing experimentally validated gene–gene interactions [10,11]. These interactions
also reflect many physiological and pathological processes, such as cell proliferation and
differentiation [10]. To study cancer neighborhoods, a general model is used to construct
an interaction network, where a specific neighborhood represents a subgraph in the net-
work [12]. On the one hand, the cancer neighborhood can elucidate the positioning of
cancer-related genes in networks and unveil the relationship among cancers. For example,
cancers with overlapping neighborhoods show significant symptom similarities and comor-
bidity characteristics [13]. Therefore, studying cancer neighborhoods based on interaction
networks is crucial for understanding cancer mechanisms and treatment strategies.

However, current research on cancer neighborhoods primarily focuses on mesoscale
subgraphs composed of some coding genes. There is no clear definition or description
of neighborhoods involving ncRNAs. Some studies propose that coding genes affected
by cancer form densely connected local subgraphs, known as cancer modules. Existing
methods for identifying cancer modules using network models are mostly based on this as-
sumption. For example, Zhou et al. [14] used a clustering approach to detect dense clusters
in co-expression networks as cancer modules and predicted potential cancer prognostic
genes. Some researchers have expanded the concept of cancer modules to include ncRNAs
closely associated with oncogenes, thus incorporating ncRNAs into the neighborhood [15].
However, the hypothesis that cancer-related coding genes and ncRNAs are closely linked
to form regional modules has not been fully substantiated. In fact, opposing findings argue
that subgraphs of cancer-coding genes are fragmented [16]. The credibility of denseness
as a characteristic of cancer genes in a network and the extent of ncRNA involvement in
cancer neighborhoods remain to be further validated.

Current studies on ncRNAs in cancer mainly include, among other subjects, the
association between ncRNAs and cancer and the functional annotation of ncRNAs [17,18].
These studies uncovered ncRNAs associated with cancer and provided new insights into
the study of cancer-related biological processes. To the best of our knowledge, there have
been limited systematic studies on the involvement of ncRNAs in cancer neighborhoods,
despite their importance in understanding the impact of ncRNAs on cancer. It is widely
recognized that cancer development is closely linked to genetic variations and abnormal
gene expression. In addition, some studies utilize differential gene expression patterns
between normal and cancer samples to investigate cancer-affected genes [19]. In addition,
the expression level is a key factor in the development of ncRNA-based diagnosis and
therapy. Previous studies also pointed out that abnormal expression of miRNAs can alter
multiple apoptotic pathways, leading to the occurrence of cancers [20]. Therefore, analyzing
gene expression data can help identify potential diagnostic markers and critical oncogenes,
with significantly differentially expressed genes considered to be cancer-affected genes.
Understanding how ncRNAs regulate these genes remains an important issue in the field
of anti-cancer research.

This paper investigates the interaction pattern between cancer-affected non-coding
genes and coding genes using an interaction network (IN). We explore the role of ncRNAs
in the omnigenic cancer neighborhood based on topological metrics, including density,
conductance, spatial network association, and connectivity. We observe significant differ-
ences in the connectivity metrics with and without the participation of ncRNAs in a cancer
neighborhood. This suggests that the cancer neighborhood is a fragmented subgraph
formed by cancer-affected coding genes. But in this subgraph, ncRNAs act as bridges
between coding genes, revealing the topological regularity of ncRNAs in the cancer neigh-
borhood. We introduce a connectivity-based method, labeled NeOModule, to identify the
cancer neighborhood involving participation of ncRNAs. Additionally, through biological
function enrichment analysis, we discover the role of ncRNAs in enhancing and facilitating
the formation of pathways related to cancer. We also find that NeOModule can effectively
describe cancer relationships in practical applications.
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2. Materials and Methods

To investigate the interaction between cancer-affected genes in the entire genome
and the resulting neighborhood, we followed five steps. (1) A heterogeneous interaction
network (IN) including multiple gene types (see Supplementary Note S1 in Supplementary
Material) was constructed. (2) We performed differential expression analysis of the gene
expression values between cancerous and normal samples. Subsequently, we projected the
differentially expressed genes onto the IN to obtain the subgraphs which were affected by
cancer. (3) We quantified the topological features of these subgraphs within the IN. (4) We
identified the cancer neighborhood involving ncRNAs. (5) Finally, we explored the roles of
ncRNAs within the cancer neighborhood (Figure 1).
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Figure 1. Schematic diagram of cancer neighborhood with participation of ncRNAs. (a) Construction
of an interaction network (IN) using data from multiple sources. The blue and green circles represent
coding genes (mRNAs) and ncRNAs, respectively. A multicolored edge indicates its existing in
multiple databases. (b) Perturbation degree calculated by fold change of genes in a cancer state based
on expression data from The Cancer Genome Atlas (TCGA). We circled the considerably affected
genes under some sophisticated given thresholds, and the sizes of the nodes are proportional to the
fold change values. (c) Comparation of the topological features of the Coding Omnigenic Module
(COModule) and NeOModule. (d) A connectivity-based method to detect cancer neighborhoods
with ncRNA participation. Red nodes represent Iso_mRNAs. (e,f) Applications of the NeOModule in
cancer relationship analysis and drug repositioning. Purple nodes indicate drug targets.
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First, we obtained the interactions from various sources, including FANTOM [21],
miRBase [22], human interactome [23], OncoBase [24], LncACTdb [25], RNAInter [10],
LncRNADisease [26], miRecords [27] and miRTarBase [28]. Specifically, we used the union
of genes in FANTOM, the miRNAs in miRbase, and the genes in PPI as background nodes
in the network and added the union of interactions in the above multiple databases as
edges in the network. Finally, we obtained a heterogeneous interaction network (IN) with
24,215 nodes and 314,748 edges (supplementary data S1.xlsx). In the IN, the interactions
between coding genes accounted for about 87.39% of the total, the interactions between
ncRNAs accounted for 11.49%, and the interactions between non-coding and coding genes
accounted for 1.12%. Most of the nodes in IN have a small degree, and only a few nodes
have a relatively large degree, which is consistent with the real biological network. Details
of the interactions in the IN are shown in Figure S1.

Next, to study the cancer neighborhood involving ncRNAs across various cancers and
systematically verify its universality, we collected expression data from The Cancer Genome
Atlas (TCGA) for 12 cancers (details in Supplementary Note S2, Data 2.xlsx) with high inci-
dence and mortality rates [29]. We performed differential expression analysis of the genes
using the DESeq2 [30] and Limma tools [31] for the expression data and quantified the per-
turbation degree of gene g (fold change fg; see Appendix A.2) in a cancer state. Each cancer
had an average of 3344 considerably affected genes under sophisticated given thresholds,
including nearly 2995 differentially expressed coding mRNAs (DE_mRNAs) and 349 dif-
ferentially expressed non-coding RNAs (DE_ncRNAs, 106 lncRNAs, 195 miRNAs, and
48 pseudogenes). Then, from the omnigenic perspective, we analyzed the topological
structural properties of the subgraphs composed of many cancer-related genes and the
interactions among them. We tested the results under an optional perturbation threshold
β for the coding genes. In order to facilitate the subsequent description, we will use the
following terms and abbreviations.

DE_mRNA is the affected coding gene set in a cancer state, in which DE_mRNAs(β) ={
g
∣∣g ∈ mRNAs, fg ≥ β

}
, and this comprises all coding genes in the IN with a perturbation

degree fg ≥ β.
DE_ncRNA is the affected non-coding gene set in a cancer state, in which

DE_ncRNAs =
{

g
∣∣g ∈ ncRNAs, fg ≥ γ

}
, γ are given sophisticated thresholds for lncR-

NAs, miRNAs and pseudogenes respectively.
COModule stands for the Coding Omnigenic Module, which is the induced

largest connected component (LCC) of DE_mRNAs in the IN network. The LCC is
an interconnected functional subgraph structure formed by cancer perturbation nodes
and is a commonly used representation in disease module studies [32]. Here, we have
COModule(β) ≜ LCC of DE_mRNAs(β).

NeOModule stands for the Non-Coding RNAs Extended Omnigenic Module, which
is the LCC of DE_mRNAs(β) ∪ DE_ncRNAs in the IN, indicating the neighborhood after
importing DE_ncRNAs. where NeOModule(β) ≜ LCC of DE_mRNAs(β) ∪ DE_ncRNAs.

Iso_mRNA represents the isolated coding gene set, in which genes do not belong to
the COModule but are connected and extended by ncRNAs into the NeOModule.

sLCC represents our quantifying the connectivity of a subgraph by measuring the size
of the largest connected component (sLCC).

Our main focus was to monitor the alterations in the topological features of the
COModule derived from DE_mRNAs in the IN alone, with the NeOModule formed by
adding DE_ncRNAs. Across the 12 cancers, we noted that 70.28% of the DE_mRNAs were
interconnected in the IN, forming the COModule. After incorporating ncRNAs, 75.64% of
the genes involved with each other constituted a significantly larger subgraph, namely the
NeOModule.

We used several topological indicators such as density, conductance and spatial net-
work association [16] (spatialNA) to measure the subgraphs (see Appendix A.3). Density
quantifies the denseness of the internal edges in the subgraph, while conductance represents
the degree of interaction between the internal nodes and external nodes in the subgraph
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(see Supplementary Note S3 in Supplementary Material). We compared the results with
1000 random subgraphs as counterparts and calculated the significance using the Z-score
(see Appendix A.1). Research has shown that the topological characteristics of random
graphs in disease modules exhibit normal distribution characteristics, such as the LCC
size [33,34]. Based on the assumption of a standard normal distribution, we believe that if
the statistical significance of a certain topological value has a Z-score ≥ 1.65 (one-sided test
empirical p-value < 0.05), then this means that the subgraph performs significantly better
than the random counterparts in terms of that specific topological feature.

As shown in the schematic diagram in Figure 2a, for COAD, 4894 DE_mRNAs under
a low perturbation threshold β = 1 formed COModule(1) (sLCC = 4090, Z-score = −4.10).
When increasing the perturbation threshold, 2918 DE_mRNAs under a medium pertur-
bation threshold β = 1.5 formed COModule(1.5) (sLCC = 2014, Z-score = −6.55). Then,
156 DE_mRNAs formed COModule(4.7) under a high perturbation threshold of
β = 4.7 (sLCC = 16, Z-score = 2.08). The Z-score was lower than zero, indicating that
the DE_mRNAs were relatively more fragmented and did not exhibit significant connectiv-
ity characteristics. In the 12 cancers we studied, we observed that when the threshold β was
approximately 1.5, the connectivity significance of the omnigenic DE_mRNAs reached its
floor values and showed obvious fragmentation (Figure S2). The connectivity significance
reached its peak when β was about 4, and the Z-score was higher than that of the random
gene sets, indicating noticeable connectivity. However, there were only 16 DE_mRNAs
which were most correlated with COAD risk in a connected component among the
156 highly affected genes. Next, we examined the performance of the average statistics of
density, conductance, and spatialNA. For the COModules of 12 cancers (Figure 2b–d), the
average Z-scoredensity = −5.05, Z-scoreconductance = 4.51, and Z-scorespatialNA = −10.71.
This means that the DE_mRNAs showed loose connections within the COModule, fre-
quently interacting with outside genes, and the degree of aggregation was significantly low
as β ∈ {1.5, 2, 2.5, 3}. These findings challenge the conclusions of studies which relied on
the denseness hypothesis but confirm that the COModule did not have the characteristics
of being tightly connected within and loosely connected outside the module. Another
question we addressed was whether these topological features would remain the same after
adding ncRNAs to the omnigenic module or not. Then, we explored the role of ncRNAs in
a cancer omnigenic neighborhood. We measured the topological metrics of the NeOMod-
ule. The average statistics for density, conductance, and spatialNA in the 12 cancers were
Z-scoredensity = −2.77, Z-scoreconductance = 3.15, and Z-scorespatialNA = −10.62, respec-
tively (Figure 2b–d). However, the connectivity of the NeOModules exhibited significant
divergence from the COModules (Figures 2e and S3). Specifically, the Z-score of the sLCC
for NeOModule(1.5) improved by 7.15 compared with the significant fragmentation in
COModule(1.5) on average (p-value = 1.83× 10−5). The Z-score of the connectivity’s sLCC
for NeOModule(3) improved by an average of 6.86 (p-value = 1.83 × 10−5) compared with
that of COModule(3). The ncRNAs synergized with the COModules and connected the
Iso_mRNAs. In other words, ncRNAs play the role of improving connectivity and making
more coding genes participate in NeOModules. This connectivity pattern is the underlying
property of ncRNAs in cancer neighborhoods rather than other density-based ones.

Furthermore, we calculated the proportion of Iso_mRNAs introduced by ncRNAs. The
results indicate that in over half of the 12 cancers, more imported mRNAs were introduced
in the NeOModules (Figure 2f,g). For the high perturbation thresholds in particular (β = 3),
the NeOModule was extended significantly more than for the low perturbation thresholds.
This indicates that ncRNAs play a substantial role in expanding the highly affected regions
of DE_mRNAs. In our tests, the number of lncRNAs participating in the NeOModules
ranged from 56 to 92, the number of miRNAs ranged from 59 to 310, the number of
pseudogenes ranged from 12 to 37, and the number of imported Iso_mRNAs ranged from
139 to 216. These ncRNAs are genes which can link DE_mRNAs and Iso_mRNAs to form a
connected disease module. Additionally, many triple competing endogenous RNA (ceRNA)
interactions which have been studied are thought to be closely related to gene regulation
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and disease [25,35]. We observed that significantly more triples (ncRNAs-miRNAs-mRNAs)
were formed in the NeOModules (β = 3, rank-sum test p-value = 8.33 × 10−5), indicating
that ncRNAs as connector were more likely to participate in the functional triples, which in
turn formed detectable ceRNA interactions.
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Figure 2. Topological characteristics of cancer omnigenic neighborhood. All abscissa values represent
the perturbation cutoffs β. (b–g) Four groups of results for β = 1.5, 2, 2.5, 3. (a) Curve of the
connectivity significance sLCC Z-scores of DE_mRNAs(β) in COAD. The light blue line corresponds
to the most fragmented position at about β = 1.5. The purple bars show the frequency distribution of
the affected degree values (|log FC| ̸= 0 ). (b–d) The statistics of density, conductance, and spatialNA
for the COModules and NeOModules. (e) The connectivity significance sLCC Z-scores for the
COModules and NeOModules. (f) The ratio of Iso_mRNAs in NeOModules, with the p-values
comparing results between β = 1.5 and β ∈ {1.5, 2, 2.5}. (g) Significance of the number of Iso_mRNAs
at each perturbation threshold. (h) Number of triples (ncRNAs-miRNAs-mRNAs) in NeOModules.
(i) Statistical significance p-value for the number of triples in the NeOModules.

Based on these observations and analysis, we proposed a connectivity-based method
(see Appendix A.5) to mine the cancer omnigenic neighborhood with ncRNA participation.

3. Results
3.1. ncRNAs Expand Cancer Pathways

To explore the function of the NeOModule in cancers, we conducted enrichment
analysis of the genes in the NeOModule for each cancer by utilizing four established func-
tional gene datasets (Table 1). The results (Figure 3a,b) revealed significant enrichment of
the disease-related genes in the NeOModule, underscoring its importance in elucidating
disease development and potentially offering insights into cancer relationships. Addition-
ally, the genes within the NeOModule showed significant enrichment of cancer drugs,
suggesting that the NeOModule was relevant to cancer therapy and might help us carry
out drug repositioning with known drugs. Then, we conducted KEGG pathway analysis
on the NeOModules of cancers and found that they could be enriched with significant
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cancer-related functional pathways. For example, we found that the NeOModule of BRCA
was significantly enriched in the PI3K-Akt signaling pathway, with a p-value = 6.17× 10−5.
This is an oncogenic signaling pathway of widespread concern [36]. Interestingly, it was
also significantly enriched in the systemic lupus erythematosus (SLE) pathway, with a
p-value = 5.20× 10−15, suggesting that patients with BRCA are also at risk of SLE. Previous
studies have also suggested that SLE may be associated with BRCA and pointed out that
patients with SLE may have reduced risk of BRCA [37]. Therefore, the genes in the NeO-
Module were not only related to cancer but also considerably enriched in some pathways
associated with cancer. However, another critical question is which effect ncRNAs have on
the function of the NeOModule.
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Figure 3. The function of the NeOModule in cancer and the role of ncRNAs. (a,b) The enrichment of
the NeOModule and COModule in different functional gene sets. (c,d), The H19-centered subgraphs
in COAD, which are NeOModuleH19(1.5) and NeOModuleH19(2). Blue, green, and red nodes rep-
resent DE_mRNAs, DE_ncRNAs, and Iso_mRNAs, respectively. (e) KEGG pathways significantly
enriched by the COModule of COAD. (f) KEGG pathways significantly enriched by the NeOModule
of COAD. KEGG pathways with an orange pentagram on the left were more significantly enriched
by the NeOModule than the COModule.
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Table 1. The information of the functional gene dataset.

Gene Set Number of Genes Source

GWAS 19,110 http://www.ebi.ac.uk/gwas/
(accessed on 10 September 2016)

OMIM 16,291 https://omim.org/
(accessed on 10 September 2016)

ClinVar 5420 https://www.ncbi.nlm.nih.gov/clinvar/
(accessed on 10 September 2016)

Drug Target 2256 Network-based prediction of drug combinations

To investigate the function of ncRNAs in the NeOModule and their association with
cancer, we conducted pathway enrichment analysis on the genes in a specific NeOModule.
Specifically, by comparing the differences in the pathways enriched by gene sets without
and with the participation of ncRNAs, we analyzed whether new pathways emerged and
if the originally enriched pathways changed. Also, we investigated the reasons underlying
these pathway changes. Initially, we extracted the NeOModule of COAD when β = 1.5,
focusing on H19, one of the lncRNAs studied the earliest [38], to generate a subgraph
represented by NeOModuleH19(1.5) (Figure 3c). We confirmed that the overexpression of
H19 not only posed a risk factor for reducing the survival in patients with colon cancer
but was also associated with the cell proliferation and metastasis of colon cancer cells.
Next, we used DAVID [39] to conduct KEGG pathway enrichment analysis for the genes in
COModuleH19(1.5) and expanded the coding genes in NeOModuleH19(1.5). We regarded
pathways with a p-value ≤ 0.05 as significantly enriched pathways. We found that some
coding genes in COModuleH19(1.5) were only enriched in microRNAs in the cancer path-
way hsa05206. As a result of H19’s involvement, several Iso_mRNAs were integrated into
the subgraph, leading to the enrichment of coding genes in NeOModuleH19(1.5) not just in
hsa05206 but also in two novel pathways, namely the hsa05200 cancer pathway and the
hedgehog signaling pathway hsa04340. The hsa05200 pathway contained two Iso_mRNAs,
which were SHH and HHIP. This led to NeOModuleH19(1.5) being enriched in hsa05200.
Furthermore, previous studies have implicated hsa04340 in colon cancer [40,41]. With
regard to SHH and HHIP, Gerling et al. [40] pointed out that SHH is up-regulated in colon
cancer (log FC(SHH) = 2.191), and its expression correlates with the treatment of COAD.
HHIP (log FC(SHH) = −1.751) was also confirmed to have reduced expression in COAD
patients [41]. In short, the participation of ncRNAs enriches cancer pathways beyond
consideration of the coding genes in DE_mRNAs alone. This facilitates the identification of
cancer-related pathways.

Next, we obtained another H19-centered subgraph with 19 genes, which was
NeOModuleH19(2), in COAD (Figure 3d). We analyzed all triples involved in the subgraph
one by one. The structure of the triples here was in the form of lncRNA-miRNA-mRNA. A
total of six triples were involved in this subgraph, including one lncRNA, five miRNAs, and
two mRNAs. These five miRNAs all showed significantly low expression (log FC ≤ −1),
and all of them were verified to be associated with colon cancer in the dbDEMC [42]
and MNDR [43] databases. Among them, miR-18a, miR-19b, and miR-20a belong to the
miR-17-92a cluster, which is usually described as an oncogene [44]. We also mentioned that
H19 was highly expressed in COAD. According to the hypothesis of ceRNAs [45], when
the miRNA in a triple is expressed less, and one RNA which interacts with the miRNA is
highly expressed, the mRNA which interacts with the miRNA should be highly expressed.
Here, the two mRNAs were ABCG2 and E2F1. E2F1 (log FC(E2F1) = 1.757) was indeed
highly expressed in COAD, and it has been shown to be involved in the proliferation
and apoptosis of colon cancer cells [46]. Therefore, we inferred that H19 and E2F1 can
compete to bind these five miRNAs, and such a ceRNA relationship may be associated with
COAD. Another mRNA ABCG2 (log FC(ABCG2) = −5.075) was expressed less in colon
cancer. Although it was pointed out that ABCG2 is related to colon cancer, the differential
expression of this gene plays an important role in the photodynamic therapy of colon

http://www.ebi.ac.uk/gwas/
https://omim.org/
https://www.ncbi.nlm.nih.gov/clinvar/
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cancer [47], and studies have shown that there is still controversy over the expression of
ABCG2 [48]. Therefore, the NeOModule can help us explain the incidence and diagnosis of
cancer using the ceRNAs associations formed by cancer-related factors.

To delve deeper into the function of ncRNAs and underscore their importance in
cancer, we curated cancer modules from previous studies and extended the collected
modules through the IN and DE_ncRNAs related to cancer. Furthermore, we compared
the pathways enriched by the COModules and NeOModules. We first obtained a COAD
module containing six coding genes [49]. The modules before and after expansion were
recorded as the COModule of COAD and the NeOModule of COAD, respectively. Then,
KEGG enrichment analysis was performed on both modules. Lastly, we found the top 10
significantly enriched pathways (Figure 3e,f). We found that compared with the pathways
enriched by the COModule, the NeOModule of COAD had three significantly enhanced
pathways, namely hsa04630, hsa04151, and hsa05202, which have been confirmed to be
related to cancers [34,49,50]. Among them, hsa05202 is a transcriptional dysregulation
pathway in cancer, and it has been considered to be the main cause of abnormal phenotypes
in tumor cells. Additionally, hsa05202 was thought to effectively distinguish cancer-related
and unrelated lncRNAs [51]. New pathways enriched by the NeOModule (pathways not
significantly enriched by the COModule) included hsa04310, hsa05200, hsa05206, hsa05210,
has04390, and hsa05213, of which the first five pathways were all considered to be related
to colon cancer [34,52,53]. While the other pathway, hsa05213, relates to endometrial
cancer, previous studies have shown that patients with endometrial cancer may have colon
cancer at the same time [54]. For another pathway, hsa04640, which was weakened but
still significant, we did not find an association between this pathway and cancer, and the
relationship remains to be verified.

Additionally, we collected a BRCA module containing 35 coding genes [55], denoting
the collected module as the COModule and the module expanded with ncRNAs as the
NeOModule of BRCA. We analyzed several new pathways—hsa04110, hsa05206, and
hsa04060—enriched by the NeOModule due to the participation of ncRNAs (Figure S4).
For hsa04110, the ncRNAs in the NeOModule introduced mRNAs such as MCM2, which
made it significantly enriched in this pathway. Previous studies have shown that cell
cycle-based regulatory markers such as MCM2 and PHH3 can help identify tumors with
poor prognoses but which respond well to systemic therapy [56]. For hsa05206, genes
such as MMP9 and CCNE1 in this pathway are introduced by miRNAs in the NeOModule.
Moreover, miR-497 (log FC = 1.451) in breast cancer cells regulates the growth of cancer
cells by targeting CCNE1 [57]. Liu et al. [58] found that genes such as CXCL10 (CXCL10
in NEM_BRCA is introduced by ncRNAs) may be involved in breast cancer neoadjuvant
chemotherapy through the hsa04060 pathway. Therefore, the involvement of ncRNAs
makes cancer-related pathways more prominent and rank higher in all pathways. This
underscores the importance of considering ncRNAs in advancing cancer pathway research.

3.2. Application of NeOModules

To explore the advantages of the NeOModule in characterizing cancer, we utilized
NeOModules of 12 different cancers to analyze their relationships. We quantified similar-
ities based on the NeOModules, COModules, and Iso_mRNAs of these cancers. Taking
the NeOModule as an example, we calculated the Jaccard coefficient between genes in the
NeOModules of two cancers (see Appendix A.4).

In order to verify whether the cancer associations portrayed by the NeOModules were
accurate, we obtained disease similarity data from four known sources (Table 2) as reference
answers, including Medical Subject Headings (MeSH) [59], symptom similarity data [60],
disease ontology similarity data [61], and disease comorbidity data [62]. Specifically, we
conducted a correlation analysis between the known sophisticated similarities and our
results (Figure 4a–c). The results show that compared with the COModules, the similarities
between cancers obtained by the NeOModules and Iso_mRNAs showed greater relevance
to existing studies. In particular, the correlation calculated by the comorbidity relationship
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was the highest. When β = 2.5 (results under different perturbation thresholds in Figure S5),
the correlations between the NeOModules and the four datasets mentioned above increased
by 203.58%, 31.84%, 5.44%, and 15.06%, respectively, compared with the COModules. The
Iso_mRNAss increased by 1001.95%, 49.90%, 6.53%, and 29.04%, respectively, compared
with the COModules. Especially for the MeSH data, when we did not consider ncRNAs,
the correlation (rCOModule = 0.03) between cancers observed by the COModules and MeSH
was rather weak, while the correlation observed by the NeOModules was greatly improved
(rNeOModule = 0.10, rIso_mRNAs = 0.37). This demonstrates that NeOModule can accurately
depict the relationships between cancers, highlighting the critical role of considering
ncRNAs in cancer research.
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Figure 4. Application of NeOModule in understanding disease relationship. (a–c) Relationships
between cancers characterized by COModules, NeOModules, and Iso_mRNAs of 12 cancers and
the associations between similarities calculated by our methods and previous studies (β = 2.5).
The known similarity data used in the four columns from left to right are for comorbidity, DOID,
symptoms, and MeSH similarity. The numbers in the upper left corner of each figure denote the
Pearson correlation coefficients between the cancer-affected subgraphs and other established datasets.
(d) ROC curves for the prediction of drugs to treat the corresponding cancers according to the
COModules and NeOModules under different perturbation degrees. The numbers in the lower right
corner are the corresponding AUC values. (e) AUC values obtained by COModules and NeOModules
of 12 cancers in drug prediction when β = 1.5.



Entropy 2024, 26, 640 11 of 17

Table 2. The number of genes in the disease similarity data.

Disease Similarity Data Number of Genes

Symptom similarity 1596
Disease ontology similarity 1125

Comorbidity data 376
MeSH 5080

We considered whether drug prediction based on a NeOModule might reveal more
accurate therapeutic relationships between drugs and cancer or not. We first collected FDA-
approved drugs for 12 cancers from repoDB [63] and obtained a total of 107 cancer-drug
association pairs between 12 cancers and 65 drugs. Drug target data were collected from
a study by Cheng et al. [23]. Next, we calculated the distance through the NeOModules,
COModules, and drugs. Then, we ranked the drugs according to the distance from small to
large and verified whether the top-ranked drugs could be used to treat the corresponding
cancers through 107 cancer-drug pairs. The results show that the NeOModule outper-
formed the COModule in terms of drug prediction (Figure 4d). In 12 cancers, the AUC
of the NeOModules increased by 21.93%, 18.06%, 21.72%, and 22.57% compared with the
COModules (results under different perturbation thresholds in Figure S6). Therefore, we
believed that the distances between the cancers and drugs were changed because ncRNAs
were involved in the cancer neighborhoods, thus improving the prediction accuracy of the
drug-cancer treatment relationships. This further illustrates the importance of NeOModules
in cancer research.

4. Discussion

We investigated a cancer neighborhood with the involvement of ncRNAs using an
interaction network and cancer expression data. Initially, we constructed an IN compris-
ing multiple types of genes. Secondly, several topological features were employed to
characterize the properties of the COModule and the NeOModule under two different
conditions. Then, we employed the Z-score to assess the effectiveness of topological fea-
tures. It was found that only connectivity showed a significant difference between the two
subgraphs. Based on connectivity, we defined the cancer neighborhood involving ncRNAs
as a significantly connected and detectable subgraph formed by cancer-affected coding
genes and ncRNAs. The ncRNAs played an important role in topologically connecting the
fragment cancer-affected genes. Furthermore, we proposed a connectivity-based method to
detect a cancer neighborhood NeOModule with ncRNAs for each cancer. The nodes in the
NeOModules were significantly related to disease-related genes. Additionally, there were
many important pathways contained in the NeOModules. The NeOModule showed a close
relationship with cancer both at the node level and the pathway level. More importantly,
ncRNAs enhanced the identification of cancer-related pathways at the biological level. We
also found that the NeOModule was more effective in characterizing disease relationships
than focusing only on coding genes.

Overall, this paper provides a new tool for cancer research. The results show that our
method can effectively detect the NeOModule that characterizes cancer. However, there
are still some potential problems which can be considered in follow-up works. First, we
only considered differential expression genes. Currently, multiomics data of cancer are
gradually being enriched, such as somatic mutation or methylation. These studies might
bring us a further understanding of the relationship between ncRNAs and cancer. Second,
only a small subset of ncRNAs was included in our study. The number of ncRNAs was
about 23.65% of all genes in the IN, while previous studies have shown that only about
2% of the region in the human genome can encode proteins. On one hand, the naming of
ncRNAs in separate databases is not strictly unified. On the other hand, the accumulation
of experimentally verified ncRNA interaction information is relatively slow. Although there
are many ncRNA-related interactions predicted by calculation tools, further verification is
still needed. Last but not least, the selection of the threshold for perturbed cancer genes
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is still a topic worthy of discussion. However, the understanding of ncRNAs provides a
new channel for us to further understand the mechanism of cancer and find drugs based
on ncRNAs involved in cancer pathways. It is also quite necessary to consider ncRNAs in
subsequent studies.
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Appendix A

Appendix A.1. Connectivity Significance Test

We use the size of the largest connected component (sLCC) to describe the connectivity
of a subgraph. To measure whether the connectivity of a subgraph was significant, we
compared the sLCC of the target subgraph with random subgraph. Finally, the connectivity
significance of the target subgraph was quantified by the Z-score as follows:

Z-score =
sLCCtarget − µ(sLCCrandom)

σ(sLCCrandom)
, (A1)

where sLCCtarget is the size of the largest connected component of the target subgraph,
sLCCrandom is the sLCC of the target subgraph, µ represents the mean of the sLCC of
multiple random subgraphs, and σ is the variance. The method of selecting a random
subgraph was as follows. For the target subgraph consisting of k nodes, we randomly
selected k nodes in the IN to form a random subgraph. For the target subgraph composed
of m mRNAs, we performed 1000 random selections in the IN, selecting m mRNAs each
time to form a random subgraph, and we calculated the connectivity significance Z-score
of the target subgraph based on the 1000 random subgraphs; For the target subgraph

https://www.mdpi.com/article/10.3390/e26080640/s1
https://www.mdpi.com/article/10.3390/e26080640/s1
https://github.com/wangbingbo2019/NeOModule
https://github.com/wangbingbo2019/NeOModule
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containing m + n nodes expanded by n ncRNAs, we randomly selected m + n nodes in
the IN 1000 times, each time forming a random subgraph. A larger Z-score indicates that
the cancer-related subgraph has more significant connected components compared with
random subgraphs of the same node size in the network.

Appendix A.2. Acquisition of Affected Genes

We computed the fold change index ( fg = |log2 FC|) to quantify the differential
expression levels, which represent the perturbation degree fg of a gene g in a state of
cancer. According to the curve of the Z-score changing with fg for the coding gene set in
various cancers (Figure 2a), we found that when fg = 1.5, the Z-score reached its minimum
value. At this time, the cancer module reached maximum fragmentation. When fg > 1.5,
the module gradually tended to be integrated, and thus we chose fg = 1.5 as the initial
threshold in this study and continued to make the conditions more stringent, screening
the set of coding genes that are significantly disturbed by cancer and expressing them
as DE_mRNAs. Previous studies have shown that lncRNA expression is approximately
10 fold lower than that of coding genes [66]. Therefore, when obtaining the DE_mRNAs,
we selected an lncRNA threshold of 0.15. Referring to a study by Xue Liu et al. [67], we set
the selection threshold of the miRNAs and pseudogenes to 1.

Appendix A.3. Topology Indicators

The density of a subgraph GS represents the denseness of the edges in it, which is
usually calculated as follows:

Density =
2|ES|

|VS|(|VS| − 1)
, (A2)

where ES represents the number of edges in a subgraph GS, and VS represents the number
of nodes.

The conductance of a subgraph GS is used to measure the interaction degree between
the internal nodes and external nodes, which is calculated as follows:

Conductance =
|BS|

|BS|+ 2|ES|
, (A3)

where BS = {(u, v)|(u, v) ∈ E, u ∈ VS, v ∈ V\VS } is the boundary set of GS and V indicates
the nodes in the IN. The smaller the conductance value is, the less the subgraph is connected
to the outside.

A spatial network association of GS was used to measure the denseness of the nodes,
which was calculated using the shortest distance between the nodes [1]:

SpatialNA(l) =
2

(|VS|) 2 ∑i pi∑j(pj − p)I(LG(i, j) < l) (A4)

If node i is in GS, then pi = 1; otherwise, pi = 0. Meanwhile, p = |VS|/n , and n is the
number of nodes in the IN. If the shortest path length between i and j is less than l, then
I(LG(i, j) < l) = 1; otherwise, I(LG(i, j) < l) = 0. Here, a curve is formed by l from 2 to
lmax and its corresponding value SpatialNA(l). The area under the curve is denoted by
K(l). The larger K(l) is, the more the subgraph GS is aggregated in the IN. We set lmax = 5
in our experiments according to the distance of the nodes in the IN.

Appendix A.4. Computing Similarity Metrics for Cancer Relationships

We quantified the similarity of the disease modules, such as the NeOModules, CO-
Modules, and Iso_mRNAs, to characterize the cancer relationships. Taking the NeOModule



Entropy 2024, 26, 640 14 of 17

as an example, we calculated the Jaccard coefficient between nodes in the NeOModules of
two cancers:

Jaccard(NeOModule 1, NeOModule2) =
|NeOModule1 ∩ NeOModule2|
|NeOModule1 ∪ NeOModule2|

, (A5)

where NeOModule1 and NeOModule2 represent the node sets of the NeOModules
corresponding to the two cancers, |NeOModule 1 ∩ NeOModule2| represents the number
of elements in the intersection of the sets NeOModule1 and NeOModule2, and
|NeOModule 1 ∪ NeOModule2| represents the number of elements in the union of sets

NeOModule1 and NeOModule2. The closer the Jaccard coefficient is to 1, the more overlap
the NeOModules of the two cancers have, and the more similar the cancers are.

In order to verify whether the cancer associations described by the NeOModule were
accurate, we collected the existing cancer relationships of the 12 cancers in the study
from four databases as the ground truth. We used x1 = {x11, x12, . . . x1n} to represent the
cancer associations described by our method, x2 = {x21, x22, . . . x2n} to represent the cancer
associations described in the known database, and n as the number of cancer relationship
pairs. We calculated the correlation between vector x1 and vector x2 to characterize the
similarity between our results and the known comorbidity. The closer the correlation was
to 1, the more consistent the cancer associations described by our method were with the
known associations.

Appendix A.5. Detection of Cancer Neighborhood

Building upon the connectivity role of ncRNAs, we present a connectivity-based
method (Figure A1) for detecting cancer neighborhoods involving ncRNAs. For a cancer
type, we first obtained the DE_mRNAs. Then, we pinpointed the ncRNAs which serve a
significant bridging function. Finally, we obtained the cancer neighborhood of the cancer.
When the perturbation threshold of the genes was β for a certain cancer, the omnigenic
and coding subgraphs were NeOModule(β) and COModule(β), respectively. For the
NeOModule(β) of a cancer, we found the set of coding genes (seed set) and non-coding
genes (candidate set). The connectivity significant to each node and edge in the network
can be calculated using the C3 algorithm [68], which represents the ability of nodes or
edges to significantly connect fragments in a network.
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