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Supplementary Notes 
Supplementary Note S1. Interaction Network 

We collect and integrate data from the following multiple sources to construct the 
heterogeneous interaction network. 
(1) RNAInter [1] (http://www.rna-society.org/rnainter/) database integrates 
experimentally validated and computationally predicted RNA-related interaction 
entries collected from the literature and other databases. This database includes 
lncRNAs, miRNAs and other types of RNA. We collect interactions supported by 
strong experimental evidence from RNAInter (download in 2020.8). Then, we preserve 
only the entries related to Homo sapiens. Finally, 26568 entries without repetition are 
obtained, where includes 10530 nodes. 
(2) miRecords [2] (http://c1.accurascience.com/miRecords/) database integrates 
experimentally validated data collected from literatures, as well as predicted 
interactions between animal-related miRNAs and their targets. The targets are genes 
that can encode proteins. We collect experimentally verified interactions and obtain 
Homo sapiens-related entries (download in 2020.6, fourth edition). In order to avoid 
affecting results, we delete the co-expression interactions between miRNAs and targets. 
Finally, we get 1356 nodes and 1692 entries without duplicates. 
(3) LncRNADisease [3] (http://www.cuilab.cn/lncRNAdisease) database integrates 
experimentally validated data collected from literatures, and the association between 
lncRNAs and human diseases predicted by computational tools. We collect 
experimentally verified interactions between RNAs (download in 2020.4, version 
2015). In order to avoid the bias of follow-up experiments, we remove co-expressed 
interactions and end up with 148 entries without duplication, which contains 177 nodes. 
(4) miRTarBase [4] (http://miRTarBase.cuhk.edu.cn/) database first performs natural 
language processing on the text to obtain articles related to miRNAs function, and then 
integrates interactions between miRNAs and targets obtained by literature mining. This 
database contains interactions for multiple species. We collect human-related entries 
and which are supported by strong experimental evidence in miRTarBase (download in 
2020.6, version 8.0). Finally, we get 8489 entries without duplicates, including 3589 
nodes. 
(5) The BIOGRID [5] (https://thebiogrid.org/) database integrates physical and genetic 
interactions of genes/proteins, covering multiple species. We collect all interactions in 
BIOGRID (download in 2020.6, version 3.5.186), retaining only human-related genetic 
interactions. Finally, we get 3303 nodes and 8335 entries without duplication. 
(6) The OncoBase [6,7] database integrates tissue-specific mutations related to somatic 
non-coding genes and 3D genomic data. We collect 3D genomic data, which includes 
three types of interaction data: promoter-promoter, promoter-enhancer, and enhancer-
enhancer (download in 2018.8). We retain the promoter-enhancer interaction and finally 
get 65578 entries, including 22810 nodes. 
(7) LncACTdb [8] (http://www.bio-bigdata.net/LncACTdb/index.html) database 



integrates experimentally validated ceRNA interactions, including various RNAs such 
as lncRNAs and circRNAs. We collect entries related to human interaction (download 
in 2020.10), resulting in 2681 entries with 1668 nodes. 
(8) Human interactome. There are 234714 protein-protein interactions and 16348 nodes 
collected from the study of Cheng et al. [9]. Since proteins are encoded by genes and 
there is a corresponding relationship between proteins and encoded genes, the nodes in 
PPI network we obtain are genes. 

After collecting the above data, we use the union of genes in FANTOM[10], 
miRNAs in miRBase and genes in PPI as background genes to construct a network. The 
data from (1) to (8) sources are directly mapped to background genes according to the 
node name. If both nodes of an edge are in the background genes, the current edge is 
retained, otherwise, it is not retained. Finally, a network with 24215 nodes and 314748 
edges without isolated points is obtained. We call this heterogeneous network IN 
(Interaction Network). 
  



Supplementary Note S2．Cancer related expression data 

We collect publicly available expression datasets from TCGA for 12 common 
cancers, including gene expression RNA-seq and miRNA mature strand expression 
RNA-seq [11-12]. According to the differences of data characteristics, DESeq2 [13] 
and Limma [14] are used to perform differential expression analysis for gene expression 

data and miRNA expression data, respectively. Finally, we get p-value and 2log FC  

for each gene or miRNA. For convenience, we denote 2log FC  as log FC . FC refers 

to the fold change value. That is, the ratio of the expression value for a gene in the 
disease sample to the expression value in the normal sample is taken logarithmically to 
obtain FC for the gene. The log FC of a gene quantifies the degree to which the gene is 

affected by cancer. A gene whose log FC  is not 0 means that the expression of the 

gene is different between the disease samples and the normal samples, that is, the gene 
is differentially expressed. The greater the log FC of a gene deviates from 0, the higher 
the degree of differential expression of the gene. The number of samples related to each 
cancer is shown in Table S1.  
Supplementary Table S1. The number of samples involved in gene expression data 

Cancer 
Name 

# Samples of gene expression 
RNAseq 

# Samples of miRNA expression 
RNAseq 

BLCA 427 429 
BRCA 1215 832 
COAD 328 261 
ESCA 196 195 
KIRC 606 311 
KIRP 323 321 
LIHC 217 420 
LUAD 576 495 
LUSC 553 380 
READ 105 92 
THCA 572 569 
UCEC 190 430 

 
  



Supplementary Note S3. The analysis of topological features 

The network HIN is represented by ( ) =  G V E， . { }1 2 = , ,..., nV v v v  represents node 

set, which includes coding genes and non-coding genes. E V V⊆ ×   represents 

interactions between genes. For a given cancer, the set of log FC  corresponding to 

genes are perturbed by cancer and is expressed as { }1 2, ,..., nF f f f= . We use the FC 

indicator ( log FCgf = ) to quantify the level of differential expression and represent 

the degree to which node g is perturbed by cancer ( gf ). 

Any subgraph in G can be represented as ( ),S S SG V E=  , where SV V∈   and 

( ) ( ){ }, , , ,S S SE u v u v E u V v V= ∈ ∈ ∈ . 

3.1 Connectivity significance test of cancer perturbed neighborhood 
For the perturbed subgraph COModule or NeOModule of a given cancer, the statistical 
significance of its topological features is tested as follows.  
To test whether a subgraph is a significantly connected or not in the network, we take 

( )NeOModule β  as an example to illustrate. First, we randomly select 1,000 gene sets in 

HIN as counterparts. Each set has the same size and the proportion of gene types as 

( )DE_mRNAs  DE_ncRNAsβ ∪  . Simultaneously, we quantified the connectivity of 

( )NeOModule β   by measuring the size of the largest connected component (sLCC). 

Finally, the connectivity significance of is quantified by Z-score as: 
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It should be noted the abscissa selection of Figure 2(a) is based on the following method. 
First, the set of perturbation degree values of all differentially expressed coding genes 

in a cancer is mF . Then, we divide the values in set mF  into t values as thresholds 

( 50t =  in this paper). Next, denoting the obtained thresholds as { }1 2, ,..., mtfs fs fs fs= . 

We use equation (2) to define each threshold ifs . 
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Where ( )max mF  and ( )min mF  represent the maximum value and minimum value in 



set mF , respectively. Finally, ifs fs∀ ∈ , we take ifs  as the perturbation threshold β  

for coding genes and obtain the connectivity significance of subgraph corresponding to 
each threshold as ordinate value in Figure 2(a). 
3.2 Density of subgraph 

The density of a subgraph SG  represents the denseness of edges in it, which is usually 

calculated by the equation (3). 
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To test the statistical significance of the density, we compare the density of SG  with 

random subgraphs and quantify it with Z-score. First, the density of SG  is denoted as 

densityOBS . Next, we select the subgraph from network randomly and guarantee the size 

of random graph is the same as SG . In addition, the number of connected component 

and the proportion of gene types in random subgraph are consistent with that in SG .The 

density of each random subgraph is recorded as densityREF . The average ( )densityREFμ  

and standard deviation ( )densityREFσ  of densityREF  are used to calculate the statistical 

significance of subgraph density. 
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3.3 Conductance of subgraph 
The conductance of subgraph is used to measure the interaction degree between internal 

nodes and external nodes of SG , which is calculated by equation (5). 
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( ) ( ){ }, , , ,S S SB u v u v E u V v V V= ∈ ∈ ∈ \ is the boundary set of SG , V indicates nodes 

in the HIN network. The smaller the conductance value is, the less the subgraph is 
connected to its outside. That is, the tighter the subgraph structure is.  
3.4 Spatial network association of subgraph 

The spatial network association of SG  is used to measure the denseness of nodes in G, 

which is calculated by the shortest distance between nodes [15]. 
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If node i is in SG  , 1ip =  . Otherwise, 0ip =  . Sp V n=   and n is the number of 

nodes in G. If the shortest path length between i and j is less than l, then 

( )( ), 1GI i j l< = . Otherwise, ( )( ), 0GI i j l< = . Here, a curve is formed by l from 

2 to maxl  and its corresponding value ( )SpatialNA t  . The area under the curve is 

denoted as ( )K l . The larger ( )K l  is, the subgraph SG  is more aggregated in the 

graph G. We set max 5=l  in our experiments according to the distance of nodes in HIN. 

The statistical significance quantification of conductance and spatial network 

association are similar to that of density. We denote their results as conductanceZ   and 

spatialNAZ , respectively. 

  



Supplementary Note S4. The functional profile of NeOModule 
In order to investigate whether genes in NeOModule of a specific cancer are 

composed of genes with significant function, we analyze it with the help of a known 
data set. First of all, we collect four functional gene sets which mainly correlate with 
diseases and therapy of diseases. The detail information about four datasets is shown in 
Table S2. Then, we calculate the enrichment significance of genes in NeOModule on 
the four known datasets, and compare them with the enrichment results of other genes 

( 0 log FC β< <  ) in this cancer that are differentially expressed but not within the 

threshold of perturbation. Finally, we quantify the enrichment results of different gene 
sets on the 4 functional gene datasets by p-values obtained from the hypergeometric 
distribution and excess overlap [16] between gene sets, respectively. When the p-value 
of the hypergeometric distribution is less than 0.05 and the excess overlap value is 
greater than 1, we consider genes in NeOModule are significantly enriched for 
functional genes. 
Supplementary Table S2 The sources and numbers of functional gene dataset 

gene sets # genes Source 

GWAS 19110 http://www.ebi.ac.uk/gwas/ 

OMIM 16291 https://omim.org/ 

ClinVar [14] 5420 https://www.ncbi.nlm.nih.gov/clinvar/ 

Drug target [9] 2256 Network-based prediction of drug 
combinations 

 
  



Supplementary Note S5. The subgraph centered on H19 in NeOModule 
The process of obtaining H19-centered subgraph in NeOModule is as follows. 
(1) Input: 

A cancer neighborhood NeOModule 
(2)Process: 

Collect neighborhood of H19 in NeOModule as H19NE  

Record mRNAs in H19NE  as NeighM  

While 0NeighM ≠  

j NeighM∀ ∈ , collect neighborhood of jNeighM  

Record mRNAs in 
1

NeighM
jj

NeighM
=  as NeighM  

H19 H19NE NE NeighM=   

(3) Output: 

The induced subgraph of H19NE  in NeOModule. 

 
  



Supplementary Note S6. Module expansion 
We record module of coding gene for a cancer collected from previous study as 

COModule. First, we obtain ( )DE_mRNAs 1.5 DE_ncRNAs  and the induced 

subgraph NeOModule corresponding to the set. Then, we get ncRNAs belong to 

neighborhoods of COModule in NeOModule and represent these ncRNAs as 1S . 

( ) ( ){ }1 2 1 2 1 2 2,  in NeOModule, , Neigh , ncRNAsCOModule COModulS ev v v v v v= ∈ ∈ ∈

. The set of mRNAs in neighborhoods belong to ncRNAs is represented as 2S . 

Concretely, ( ) ( ){ }2 2 1 2 1 1 2 1 2= , , , Neigh , mRNAsS v v v v S v S v∈ ∈ ∈ . Finally, the gene 

set in module expanded by ncRNAs is 1 2NeOModule COMo Sle Sdu=   . 

Supplementary Note S7. The distance between cancer and drug 
For a subgraph perturbed by cancer, we quantify the distance between the subgraph and 
each drug with proximity method. If the set of genes in the subgraph and the set of drug 
targets for a drug are represented as S and T. The distance beween both two sets can be 
calculated by equation (7). 

 ( )1 min ,s S
t T

d d s t
T ∈

∈

=    (7) 

Then, by comparing the distances between the subgraph with random sets of drug 
targets with the same size, we obtain the statistic Z-score to measure how far the set T 
is from the subgraph S. Next, sorting drugs by Z-score and choose corresponding Z-
score as threshold to predict the relationship between drug and cancer. Finally, the ROC 
curve and AUC score are calculated by obtaining FDA-approved drugs from repoDB 
as validation data. 
  



Supplementary Figures 
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Figure S1. The details of interactions in the IN. The left figure shows the number of 
interactions among various genes in the network. Each number is the number of 
interactions between one gene type  and the other gene type. For example, 15,993 is 
the number of interactions between protein-coding genes and miRNAs...The right 
figure shows degree distribution of nodes in the HIN. The degree of most nodes is small, 
which is consistent with the existing understanding of biological networks. 

 
Figure S2. The connectivity curve of coding genes perturbed by each cancer. Each dot 
in this figure is the connectivity significance value of genes are perturbed when 

perturbation threshold is β . The abscissa of the light blue line is 1.5β = . The medium 

purple area in this figure represents the frequency distribution of the perturbed degree 

of all differentially expressed genes ( log FC 0≠ ) in a specific cancer. 



 
Figure S3. The topological features of COModule(𝛽) and NeOModule(𝛽). (a)-(c) The 
density, conductance and spatial network association of COModule and NeOModule 
for 12 cancers. (d)The connectivity significance Z-score of lncRNAs and miRNAs in 
HIN.  

 
Figure S4. The top 10 pathways with the most least p-values enriched by NeOModule 
of BRCA. 



 

 



 
Figure S5. Associations between cancers characterized by NeOModule, COModule 
and Iso_mRNAs of 12 cancers and the correlation between similarities calculated by 
our study and similarities from existing studies under different perturbation thresholds. 

 
Figure S6. Performance of COModule and NeOModule in drug prediction for 12 
cancers under different perturbation thresholds. (a) Boxplots for cancer outcomes of 
drug prediction AUC greater than 0.5 with both COModule and NeOModule. The AUC 
of COModule and NeOModule in drug prediction of 12 (100%), 10 (83.33%), 8 

(66.67%), 8 (66.67%) cancers are greater than 0.5 respectively when { }1.5,2,2.5,3β ∈ . 

(b) AUC of COModule and NeOModule in drug prediction for 12 cancers. 
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