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Abstract: To optimize the utilization and analysis of tables, it is essential to recognize and understand
their semantics comprehensively. This requirement is especially critical given that many tables lack
explicit annotations, necessitating the identification of column types and inter-column relationships.
Such identification can significantly augment data quality, streamline data integration, and support
data analysis and mining. Current table annotation models often address each subtask independently,
which may result in the neglect of constraints and contextual information, causing relational ambigui-
ties and inference errors. To address this issue, we propose a unified multi-task learning framework
capable of concurrently handling multiple tasks within a single model, including column named
entity recognition, column type identification, and inter-column relationship detection. By integrating
these tasks, the framework exploits their interrelations, facilitating the exchange of shallow features
and the sharing of representations. Their cooperation enables each task to leverage insights from the
others, thereby improving the performance of individual subtasks and enhancing the model’s overall
generalization capabilities. Notably, our model is designed to employ only the internal information of
tabular data, avoiding reliance on external context or knowledge graphs. This design ensures robust
performance even with limited input information. Extensive experiments demonstrate the superior
performance of our model across various tasks, validating the effectiveness of unified multi-task
learning framework in the recognition and comprehension of table semantics.

Keywords: tabular data; natural language processing; table semantic annotation; table interpretation;
multi-task learning

1. Introduction

Tables are employed in a wide variety of applications, from simple personal records to
complex enterprise data management systems, making them one of the most prevalent and
important data formats in documents, web pages, and databases. Regardless of whether
the data are textual, numerical, or boolean, tables are adept at presenting information in a
compact and clear format, thus supporting efficient storage, retrieval, and analysis. These
attributes confer significant advantages to tables in data management, ensuring that data
remains organized and accessible, and allowing for effective data cleaning, aggregation,
and searching [1]. In addition, tables provide a rich and structured source of information for
various tasks, including question-answering systems, information extraction, knowledge
graph construction, and fact verification [2,3]. The absence of essential metadata, such
as column names and relationships, considerably complicates these tasks, especially for
web-sourced tables that often lack proper annotations. To exploit the full potential of tables,
it is crucial to accurately interpret the semantics of the columns and their interrelations.
This underscores the necessity for precise table annotation, which augments readability
and usability, establishing a robust foundation for various purposes of tables.

Table semantic annotation, also known as table semantic interpretation, refers to the
assignment of semantic tags to elements of a table. Advancements in table annotation
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primarily follow two principal directions: those based on knowledge graph methodologies,
and those rooted in deep learning paradigms. Early research mainly utilized look-up-based
methods [4–6], relying on real-time queries to knowledge bases (e.g., DBpedia and Wiki-
data) and keyword matching within cell entities, or leveraging relational structures and
contextual information from knowledge bases for annotation. Regrettably, the coverage of
knowledge bases often falls short of fully supporting all entities and relationships present
within tables. Inspired by the efficacy exhibited by pre-trained language models (PLMs),
recent years have seen the emergence of pre-trained models specifically tailored for tabular
data [7,8]. These models generally adopt self-supervised learning paradigm of PLMs.
Nevertheless, the unique nature of data cells within tables, lacking the strong interconnec-
tion properties of textual or graphical data, resulting in models that, even after extensive
pre-training on large-scale tabular corpus, still fall short of the generalization capabilities of
PLMs. Despite significant progress having been made within table semantic annotation
in recent years, several challenges remain. The primary issue is the high computational
resource demand. Both query-based and pre-training methods necessitate significant com-
putational resources, particularly evident in tabular pre-training due to the processing
massive data. Another challenge is the limitation on table length. Existing models impose
restrictions on input data length, potentially leading to truncation of table content and
loss of critical information. Furthermore, current table annotation models typically focus
solely to the detection of column types, neglecting inter-column dependencies, which needs
further academic inquiry and technique refinement.

To confront aforementioned issues, we prioritize task correlations while simultane-
ously addressing other relevant concerns. In tabular data, it is customary for cells within
one column to pertain to a consistent semantic type, while different columns collectively
contribute to the overarching theme of one table. Figure 1 presents a headerless table,
which requires annotation of column types and their relationships. The exemplified table’s
theme is “film”, with columns representing film titles, belonging countries, and directors,
delineating distinct yet interconnected concepts. Identifying column types depends on
recognizing commonalities among values within each column, with additional contextual
cues potentially derived from the values and types of other columns. This principle also
applies to discerning relationships between columns. For instance, distinguishing the
first column as “film” narrows possible types for the third column, making it unlikely to
represent “engineer” or “player”. Therefore, a comprehensive understanding of the table’s
semantics necessitates consideration of its entire context. Column types and inter-column
relationships are intricately intertwined, exhibiting many shared features. Identifying
column types can help ascertain inter-column relationships, and vice versa, discerned rela-
tionships can provide insights conducive to determining column types. However, existing
table annotation methods typically operate within a single task, ignoring intrinsic interde-
pendencies among tasks, leading to suboptimal information extraction and misalignment
with the thematic coherence. To address this issue and exploit the latent interaction between
subtasks, we propose an innovative model based on joint multi-task learning, unifying
various annotation tasks within one framework. It initially linearizes the entire table by
columns, and then concatenates them into encoder to generate contextual representations
for each column. Subsequently, the model undergoes iterative training cycles, during which
supervision signals from diverse subtasks are alternately integrated. In addition to primary
tasks of identifying column types and inter-column relationships, we incorporate a basic
yet valuable task of Named Entity Recognition (NER) within columns. Recognizing named
entities in columns can provide foundational entity information and has been proven to
be efficient in subsequent experiments. Through multi-task learning, it fosters dynamic
exchange of information across entities, column types, and inter-column relationships,
resulting in more expressive data representations without the need for external knowl-
edge bases or additional page content. Furthermore, this approach facilitates better data
leveraging by model, consequently promoting both the overall generalization capacity and
learning efficiency.
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? ? ?

Fight Club USA Fincher

Lord Of The Rings New Zealand Jackson

American Beauty USA Mendes

Film Country Person

Country

Director

Figure 1. An example of table semantic annotation. The goal is to assign semantic tags to columns
and column pairs within the table.

Our contributions are threefold:

• We introduce a novel representation learning framework based on multi-task learning
for table semantic annotation. The central concept is the integration of diverse tasks
into a unified learning architecture, leveraging inter-task correlations and domain
knowledge among multiple table semantic annotation subtasks. This enables model
to concurrently learn and understand both commonalities and differences among
different subtasks, thereby augmenting performance of each individual subtask.

• Our model achieves remarkable performance without relying on external knowledge
bases, linked web resources, or pre-trained tabular models, instead utilizing only target
datasets. This not only reduces dependence on external resources, but also mitigates
implementation costs and complexities, offering more flexibility and scalability.

• Extensive experimentation validates the superiority of our proposed model in multi-
task learning and representation learning, as well as its advantages in data utilization
and training efficiency.

2. Related Work
2.1. Table Semantic Annotation

Research on table semantic annotation primarily concentrates on predicting column
types, a critical task in understanding and utilizing tabular data. Related work covers the
development of advanced feature extraction techniques, the application of deep learning
algorithms, and the integration of external knowledge graphs (KGs). These feature-based
approaches capture the semantics embedded within tables through extraction of man-
ual, statistical, and semantic features. For example, SemanticTyper [9] uses TF-IDF and
statistical test methods to extract semantic features from tables. Sherlock [10] refines fea-
ture extraction by incorporating character distributions, semantic embeddings, and global
statistics at multiple levels of granularity. Building upon Sherlock, Sato [11] introduces
additional features, such as topic elements and contextual information, thereby improving
the semantic interpretation of tables. Furthermore, some methods integrate external KGs to
enrich their prediction frameworks with supplementary contextual clues, as demonstrated
by systems like ColNet [5], Meimei [12], and C2 [13]. With the rise of large language models
(LLMs), some studies have emerged to apply LLMs for table understanding, but there has
been relatively less work on using LLMs for table annotation tasks. Typical practices [14,15]
include designing prompts to enable GPT-3.5/4 [16] to perform table annotation and con-
ducting comparisons in zero-shot and few-shot scenarios. The above advancements in table
semantic annotation have made substantial progress in the ability to effectively interpret
and utilize tabular data, providing some advantages in extracting and understanding
complex semantic information.

2.2. Pre-Trained Tabular Models

Driven by notable successes in pre-training within natural language processing, there
has been a growing interest in developing pre-training techniques specifically for tabular data
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in recent years. These efforts aim to foster a general understanding of tabular data by learning
from extensive collections of tables using appropriate pre-training objectives, and subsequently
deploying pre-trained model to various downstream tasks. Although tabular pre-training
methods largely imitate the idea of text pre-training, they have not yet achieved satisfactory
generalization and applicability. The dominant approach in tabular pre-training employs a
transformer-based architecture, with progress mainly divided into two areas: architectural
enhancements and training refinements. Architectural innovations primarily focus on
incorporation of table’s structure into model, including techniques for encoding structural
information at model’s input layer [8,17] or embedding such information within model’s
internal mechanisms [7,18]. Improvements of training strategies predominantly explore
novel pre-training objectives, such as masking, corrupting, and pairwise ranking [19–21].

2.3. Multi-Task Learning

Multi-task learning is a flexible and valuable learning paradigm that maximizes the
use of shared information across tasks while simultaneously handling multiple related
tasks. Compared to single-task learning, multi-task learning offers several advantages,
such as improved data utilization, enhanced inference efficiency, and better generalization.
It is widely applied in various fields, including natural language processing, computer
vision, recommendation systems, and robotics. The remarkable success of deep MTL
can be attributed to its ability to extract rich representations and share valid information.
According to the taxonomy by Ruder [22], multi-task sharing can be divided into two
categories: hard sharing like uniform-layer architecture, and soft sharing like coupled- and
shared-layer architectures. Hard sharing requires tasks to have the same parameters in
the shallow layer, while soft sharing encourages each task to maintain its own shallow
parameters in which the features of related tasks are interactively propagated, including
aggregation, fusion, attention [23,24], etc. Beyond direct information sharing on encoder or
decoder, there are other forms of sharing, such as adapter [25,26] and hypernetwork [27,28].
The utilization of task relatedness is important for multi-task learning, which is reflected
in the construction of model architecture. The parallel architecture [29,30] is the most
commonly used multi-task model structure, and there are no dependencies between tasks
other than sharing in middle layers. The hierarchical architecture [31,32] considers the
hierarchical relationship between tasks, where the features or outputs of one task are used
as inputs to other tasks. As neural networks continue to grow in scale, tasks can benefit
even more from multi-task learning.

3. Notations and Problem Definition

To increase clarity and simplify referencing, we summarize the majority of significant
symbols in Table 1. The tables discussed herein primarily pertain to relational tables
characterized by variable row and column counts. Each table {ci,r|i ∈ (1, m), r ∈ (1, n)}
contains m rows and n columns with the content ci,r in the (i, r)-th cell. The value ci,r could
be a number, a word or a phrase. Notably, the tasks addressed in this study are all defined
along the dimension of table columns, as described below:

• Problem 1: Column named entity recognition (NER). Given a table T (without table
headers or contextual information) and a set of simple named entity types Cner, the goal
is to predict the entity type of target column i, which can best describe most of the
entities in column. This process is denoted as p(Cner|T, i).

• Problem 2: Column type annotation (CTA). Given a table T (without table headers or
contextual information) and a set of column semantic types Ccta, the goal is to predict
the semantic type of target column i based on only the table content. This process is
represented as p(Ccta|T, i).

• Problem 3: Inter-column relationship annotation (CRA). Given a table T (without table
headers or contextual information) and a set of inter-column relationship types Ccra,
the goal is to predict the relation semantic type of target column pair (i, j) based solely
on the table content. This process can be represented as p(Ccra|T, i, j).
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Table 1. Notations with corresponding descriptions.

Notations Description

T Standard relational table without headers
Ci The i-th column in table T
ci,r the value of cell at the i-th column, r-th row of table
Ccta The set of all column semantic types
Ccra The set of all inter-column relationship types
Cner The set of all column named entity types
ei Contextual representation of i-th column in encoding layer

hi,hij Output vector of i-th column or (i, j)-th column-pair in task layer
pi,pij Prediction probability of i-th column or (i, j)-th column-pair in task layer

Our proposed framework includes three typical table-related tasks: column named
entity recognition, column type annotation, inter-column relationship annotation. The
target for the first two tasks is semantics of a single column, while the target for the latter is
semantics of a column pair.

4. Methodology

Figure 2 illustrates the architecture of our model, which consists of a shared encoder
based on a transformer structure and three upper-level classifiers for related tasks. In
the following subsections, an in-depth explanation of the methodology will be provided.
Section 4.1 describes the way how to serialize table and represent columns. Sections 4.2–4.4,
respectively, introduce the implementation of three subtasks in our multi-task learning model,
including column named entity recognition (NER), column type annotation (CTA), inter-
column relationship annotation (CRA). Section 4.5 presents the multi-task training strategy.

[CLS]

Shared Transformer Encoder

FNN

Film

FNN

Country

FNN

Person

FNN FNN FNN

Country Director

FNN

NONE

FNN

GPE

FNN

PERSON

NER

? ? ?
Fight Club USA Fincher

Lord Of The Rings New Zealand Jackson
American Beauty USA Mendes

CTA

CRA

Column1's tokens [CLS] [CLS]Column2's tokens Column3's tokens

Figure 2. The architecture of our multi-task learning framework. Our model features a shared
bottom encoder coupled with multiple associated classifiers. Once the table, serialized into text, is
encoded, the representations of all columns are forwarded to the upper classifiers. Information is then
processed sequentially according to the task hierarchy of column named entity recognition (NER),
column type annotation (CTA), and inter-column relationship annotation (CRA).
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4.1. Table Serialization and Column Representations

We adapt Transformer as our encoder, which is a deep learning model based on
self-attention mechanism [33] and excels at efficiently capturing contextual semantics. To
conform to Transformer’s input requirements, we need to linearize the table, transforming
it from a two-dimensional structure into a one-dimensional sequence. We make the whole
table as one complete input to the encoder, rather than just a single column or a few
columns. This allows the encoder to perceive global contextual information of entire
table when generating representation of each column. For an m × n table T with cells
{ci,r|i ∈ (1, m), r ∈ (1, n)}, where i and r represent column and row indices, respectively,
we perform a vertical scan in column order, sequentially concatenating the contents of each
column’s cells. To distinguish different columns, we place a special [CLS] token at the start
of each column and append a [SEP] token at its end. In this way, we obtain the linearized
column sequences and table sequence, represented by C∗i and T∗, respectively:

C∗i = [CLS]ci,1 . . . ci,n[SEP], (1)

T∗ = [CLS]c1,1 . . . c1,n[CLS] . . . [CLS]cm,1 . . . cm,n[SEP]. (2)

Although the [CLS] and [SEP] tokens themselves do not possess specific semantic
meanings, their usage has become a de facto standard in PLMs. In the table annotation
task, under the guidance of multi-task learning supervision signals, the knowledge and
extracted features of various subtasks are distilled and aggregated into the [CLS] token.
Consequently, the hidden vector of the [CLS] token can thus be regarded as representing
the key features and semantic information of corresponding column sequence:

ei = encoder(T∗, i), (3)

where ei ∈ Rd is the contextual representation vector for i-th column in T and d is the
dimension of hidden vector in Transformer.

4.2. Column Named Entity Recognition

We design an additional classification task, referred to as column named entity recog-
nition (NER), which aims to predict the named entity types corresponding to table columns,
thereby incorporating foundational named entity information. Despite the relatively lim-
ited number of entity types and the simplicity of this task, it serves as a foundation for more
complex column semantic annotation tasks, offering features and guidance that strengthen
model’s performance in these advanced tasks. This task is strategically positioned at the
base layer of our framework. The hidden vectors derived from [CLS] tokens by Transformer
are directly input into the classifier within NER layer:

hner
i = tanh(eiWner

1 )Wner
2 , (4)

pner
i = softmax(hner

i ), (5)

where Wner
1 ∈ Rd×d and Wner

2 ∈ Rd×nner are learnable parameters of the feed-forward
network, hner

i is the output vector of dense layer for column NER, pner
i ∈ Rnner is the

probabilities of column NER type for i-th column, and nner is type number of column NER.
The cross-entropy loss Lner is calculated for classification in NER during training.

4.3. Column Type Annotation

Column type annotation (CTA) aims to predict the semantic types of columns in a
table. CTA is another task focused on table columns, but with a more diverse and complex
set of classification categories. The CTA layer is positioned above both the encoder and NER
layer. It simultaneously receives output vectors from encoder and intermediate vectors
from NER layer, which are concatenated to serve as input for predicting column types. This
method incorporates NER features into the CTA process, thereby infusing additional NER
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knowledge to increase accuracy of column type annotation. It enriches the information
available for CTA task, which can be delineated as follows:

hcta
i = tanh((ei ⊕ hner

i )Wcta
1 )Wcta

2 , (6)

pcta
i = softmax(hcta

i ), (7)

where ⊕ is the concatenate operation between vectors, Wcta
1 ∈ R(d+nner)×d and Wcta

2 ∈
Rd×ncta are learnable parameters of the feed-forward network in CTA layer, hcta

i is the
output vector of dense layer for column type prediction, pcta

i ∈ Rncta is the probabilities of
column type for i-th column, and ncta is the number of column types. The objective loss
Lcta for column type annotation is cross-entropy loss.

4.4. Inter-Column Relationship Annotation

Inter-column relationship annotation (CRA) focuses on predicting relationships be-
tween two columns within a table. Due to the complexity of relationship categories, this
classification task is particularly challenging. Therefore, in our design, CRA is positioned
at the highest layer. Incorporating semantic information from column types into CRA
classifier aids in a deeper understanding of each column’s meaning, thereby improving
the accuracy of inter-column relationship annotation. The CRA layer includes a classifier
situated above CTA layer. It simultaneously receives two columns’ output vectors from
Transformer, along with intermediate vectors from CTA layer, as input. Since the inter-
mediate vectors from CTA layer already encompass NER knowledge, there is no need to
reintroduce vectors from NER layer at this stage. This process can be delineated as follows:

hcra
ij = tanh((ei ⊕ hcta

i ⊕ ej ⊕ hcta
j )Wcra

1 )Wcra
2 , (8)

pcra
ij = softmax(hcra

ij ), (9)

where Wcra
1 ∈ R2(d+ncta)×d and Wcra

2 ∈ Rd×ncra are learnable parameters of the feed-forward
network in CRA layer, hcra

ij is the output vector of dense layer for inter-column relationship
prediction, pcra

ij ∈ Rncra is the probabilities of column type between i-th and j-th columns,
and ncra is the number of column relations. The objective loss Lcra for inter-column
relationship annotation is cross-entropy loss.

4.5. Joint Multi-Task Learning

Despite some research suggesting that employing a concatenated form of multi-task
learning might degrade model performance when task correlations are weak, our model
benefits from strong inter-task correlations and a suitable task difficulty hierarchy. Hence,
adopting this method is justifiable, and subsequent experimental results validate its ef-
fectiveness. Considering the discrepancies in sample distribution among three tasks,
simultaneous training risks data leakage issues, necessitating either replication or deletion
of data. Consequently, we choose the cyclic training strategy where each epoch alternates
one task’s full training before proceeding to next task. This optimizes data utilization and
accommodates imbalanced task data volumes, and avoids selection of weighted hyper-
parameters for task loss functions. The complete training strategy for joint multi-task
learning is outlined in Algorithm 1.
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Algorithm 1: Training strategy of our multi-task learning framework.
Input: K training subtasks, each with its dataset Dk, loss function Lk and

optimizer Ok; training epochs Ne
Output: ModelM with transformer LM and subtask heads {hk; k ∈ [1, K]}

1 Initialize LM using parameters of pre-trained model;
2 Initialize subtask heads {hk; k ∈ [1, K]} randomly;
3 for k = 1→ K do
4 Linearize tables or columns within Dk into sequences;
5 end
6 for epoch = 1→ Ne do
7 for k = 1→ K do

// calculate loss of task k
8 L← Lk(LM⊕ hk,Dk);

// update parameters by back propagation
9 M← BP(M, δL/δ(LM⊕ hk),Ok);

10 end
11 end
12 returnM;

5. Experiments
5.1. Datasets

We conduct experiments on two datasets, SemTab2019 [34] and HardTables2022 [35],
which include annotations for both column types and inter-column relationships. Both
datasets contain vertical relational web tables from Wikipedia with semantic annotations
at various levels of detail. The average number of rows in tables from HardTables2022
is much smaller than that in SemTab2019, making annotation more challenging. Table 2
presents a summary of basic statistics of two datasets. Due to the absence of a manually
annotated dataset for column NER task, we use the NER annotation tool spaCy [36] to
identify entity types of all cells in each column, assigning the most frequent entity type as
the column entity type. In accordance with prior research practices, all table headers are
excluded. With no overlap among tables, 10% of the samples are randomly chosen as test
set, while the remaining data are divided into five folds for cross-validation.

To evaluate model performance, we employ two types of F1 score metrics: micro-
average F1 score and macro-average F1 score. The micro-average F1 score considers
all instances across classes to compute an overall average, emphasizing performance on
common classes. Conversely, the macro-average F1 score treats all classes equally by
averaging F1 scores of each class, providing a balanced view of performance across all
classes, regardless of their frequencies.

Table 2. Basic statistics of datasets.

Dataset CTA CRA
# Type # Sample # Table # Type # Sample # Table

SemTab2019 275 7614 3045 550 10,438 3025
HardTables2022 492 8072 6420 402 9772 6301

5.2. Experimental Settings

The implementation of our model is based on Pytorch and transformer library [37,38].
The parameter initialization for encoder Equation (3) is derived from Roberta-base [39],
which is a BERT-like transformer consisting of 12 layers. The hidden vector’s dimension d
is set to 768. We train models for 40 epochs on each fold of dataset. The AdamW optimizer
is employed with learning rates of 1 × 10−5, 3 × 10−5 and 4 × 10−5 for NER, CTA and
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CRA, respectively. All experiments are conducted on a single RTX-Titan GPU with a batch
size of 16.

5.3. Results and Analysis

Overall performance. Our model is compared with competitive baselines, including
TaBERT [7], TABBIE [8], DODUO [40]. The overall comparison with baseline models is
outlined in Tables 3 and 4, which is based on average performance of 5-fold tests. The
experimental results indicate that our model achieves outstanding performance, with two
key metrics of 82.4%/63.6% and 72.6%/62.8% on Semtab2019 dataset, and 86.3%/73.2%
and 61.5%/51.9% on HardTables2022 dataset, significantly outperforming the baseline
models. This highlights the model’s robust feature extraction capabilities and its high
adaptability to task requirements. Comparing the improvements in two F1 scores, our
model shows valuable enhancement in macro F1, indicating that our multi-task learning
framework can strengthen the learning ability for small sample categories. Furthermore,
our model’s performance compared to DODUO suggests that its architecture is more apt
for table annotation tasks, enabling more suitable alignment of inter-task correlations and
realizing real task information interaction. Unlike many tabular understanding models,
such as TaBERT and TABBIE, which require pre-training on extensive data, our model
excels by employing a refined model design and a multi-task learning strategy, achieving
exceptional results with training solely on target datasets. The collaborations between three
tasks contribute to a substantial improvement of overall performance.

Table 3. Experimental results of different models on SemTab2019 dataset.

Model CTA CRA
Micro F1 Macro F1 Micro F1 Macro F1

TaBERT [7] 0.661 ± 0.012 0.412 ± 0.017 0.561 ± 0.016 0.440 ± 0.019
TABBIE [8] 0.774 ± 0.010 0.607 ± 0.011 0.673 ± 0.014 0.572 ± 0.010
DODUO [40] 0.795 ± 0.011 0.583 ± 0.013 0.690 ± 0.010 0.573 ± 0.014

Ours 0.824 ± 0.009 0.636 ± 0.012 0.726 ± 0.011 0.628 ± 0.013
w/ target only 0.781 ± 0.010 0.532 ± 0.015 0.697 ± 0.008 0.568 ± 0.011
w/o NER 0.808 ± 0.011 0.599 ± 0.009 0.716 ± 0.010 0.604 ± 0.013
w/o CTA - - 0.710 ± 0.008 0.584 ± 0.013
w/o CRA 0.798 ± 0.012 0.566 ± 0.014 - -

Table 4. Experimental results of different models on HardTables2022 dataset.

Model CTA CRA
Micro F1 Macro F1 Micro F1 Macro F1

TaBERT [7] 0.684 ± 0.011 0.466 ± 0.014 0.429 ± 0.012 0.325 ± 0.016
TABBIE [8] 0.822 ± 0.010 0.683 ± 0.010 0.551 ± 0.014 0.488 ± 0.011
DODUO [40] 0.846 ± 0.011 0.689 ± 0.012 0.569 ± 0.011 0.476 ± 0.013

Ours 0.863 ± 0.010 0.732 ± 0.009 0.615 ± 0.009 0.519 ± 0.011
w/target only 0.845 ± 0.008 0.711 ± 0.010 0.549 ± 0.012 0.462 ± 0.012
w/o NER 0.860 ± 0.006 0.727 ± 0.011 0.613 ± 0.013 0.516 ± 0.010
w/o CTA - - 0.556 ± 0.011 0.473 ± 0.015
w/o CRA 0.850 ± 0.008 0.720 ± 0.010 - -

We illustrate the training losses on SemTab2019 during training process in Figure 3.
Notably, the training losses for the primary tasks of CTA and CRA exhibit closely aligned
descending trends, whereas the training loss for NER task displays a slightly slower de-
crease. The phenomenon can be attributed to our prescribed learning rate. This observation
underscores the importance of flexibly adjusting training strategies during training process
to accommodate varying task complexities and align with model’s requirements. Our
training strategy, characterized by its simplicity and efficacy, ensures balanced process
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across diverse tasks. It allows for appropriate adjustments based on each task’s charac-
teristics, thereby optimizing the training process, promoting overall model performance,
and proficiently meeting the demands of complex real-world applications.

 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25  30  35  40

Lo
ss

Epoch

NER
CTA
CRA

Figure 3. The training losses of three subtasks.

Ablation analysis. To analyze the distinct roles of different subtasks within our model,
we conduct ablation experiments and present results in Tables 3 and 4. The “target only”
indicates training our model solely on a single target task, while the remaining three
ablation experiments involve training with the exclusion of corresponding subtasks. On
the Semtab2019 dataset, training solely on a single target task results in a performance
decrease of 4.3%/10.4% and 2.9%/6.0% for CTA and CRA tasks, respectively, compared to
full training. The introduction of NER task promotes both CTA and CRA tasks, proving
the efficacy of incorporating entity information. Collaboration between CTA and CRA
tasks is evident in their mutual performance enhancement, particularly in increasing macro
average F1 scores. On HardTables2022 dataset, where most tables contain numerical data
with fewer entities, the influence of NER is considerably reduced. Despite this, CTA
continues to significantly benefit CRA. Additionally, notable augmentation in macro F1
compared to micro F1 highlights model’s proficiency in boosting classification accuracy
for categories with fewer instances. These experimental results underscore the robust
inter-task correlations successfully captured by our model design, which greatly reinforces
overall performance.

The number of input rows. To investigate the impact of maximum number of input
rows for tables, we conduct experiments on SemTab2019, which contains many large tables.
As detailed in Table 5, “n row” denotes inputting only the first n rows of table, while
“max length” refers to truncating table sequence according to model’s maximum input
length. Experimental results indicate that our model maintains satisfactory performance,
even when utilizing a reduced number of input rows, highlighting its capability to effec-
tively comprehend and utilize input data. This adaptability underscores its suitability for
scenarios involving small-scale tables.

Table 5. Performance of training at different input lengths.

Max Rows CTA CRA
Micro avg F1 Macro avg F1 Micro avg F1 Macro avg F1

2 rows 0.484 ± 0.006 0.338 ± 0.008 0.416 ± 0.008 0.343 ± 0.009
4 rows 0.755 ± 0.009 0.518 ± 0.011 0.670 ± 0.012 0.572 ± 0.015
8 rows 0.774 ± 0.011 0.584 ± 0.013 0.694 ± 0.008 0.592 ± 0.012
16 rows 0.809 ± 0.009 0.610 ± 0.010 0.704 ± 0.011 0.605 ± 0.012
max length 0.824 ± 0.009 0.636 ± 0.012 0.726 ± 0.011 0.628 ± 0.013

The size of training data. Figure 4 illustrates our model’s training outcomes across
varying data volumes of SemTab2019, aimed at evaluating its learning efficacy with reduced
training data. The training data for each class is uniformly and randomly partitioned into
subsets of different sizes for training, while test set remains unchanged. Significantly,
a notable decline in performance is observed when training data volume drops below 60%,
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primarily due to the skewed distribution of samples among categories within the dataset.
However, training with 80% of the dataset resulted in only a marginal decrease in micro F1
scores for CTA and CRA tasks by 2.1% and 3.8%, respectively. These findings underscore
model’s robustness in achieving relatively acceptable performance under conditions with
limited yet balanced samples.

 0.2

 0.4

 0.6

 0.8

 1

 20  40  60  80  100

CTA (%)

Micro F1
Macro F1

 0.2

 0.4

 0.6

 0.8

 1

 20  40  60  80  100

CRA (%)

Micro F1
Macro F1

Figure 4. Performance of training under different proportions of dataset.

Compared with weighted loss training. During the training process of multi-task
learning, we employ a cyclic strategy, sequentially training each task in each epoch. For
comparison, we attempt another strategy, which is to train using weighted losses for
multiple subtasks. In this scenario, training samples need to be simultaneously labeled
for both CTA and CRA. However, not every sample in datasets meets this condition;
some tables are only labeled for column types, while some are only labeled for inter-
column relationships, such as HardTables2022 with approximately 12% of data being non-
overlapping. For weighted loss training, we experiment with various weight combinations,
among which the combination (0.1, 0.4, 0.5) has the best results, with a learning rate set
at 2 × 10−5. The performance on HardTables2022 are 84.6%/68.4% and 57.2%/45.2%,
lower than those achieved using our cyclic training strategy. This indicates that adopting
an alternating training method for subtasks offers certain advantages in cases of task
sample imbalance.

Case study. To more intuitively show the effect of our model, we present a case study
in Figure 5, comparing the results of two samples from HardTables2022 dataset. In the first
case, it can be observed that TaBERT incorrectly predicts multiple columns and column
relationships, where the types of purely numeric columns are difficult to distinguish. By
utilizing information of NER and inter-column relationships, our model can accurately
predict the relationship types of numerical columns. In the second failure case, all models
are wrong in their predictions of column type (e). Specifically, TaBERT predicts “barangay”,
DODUO predicts “capital city”, and our model predicts “brick and mortar”. Since “brick
and mortar” and “subsidiary” are semantically similar, our model’s prediction is closer to
the correct prediction. These cases demonstrate that when predicting a single column type
or inter-column relationship is challenging, the interaction between column types and inter-
column relationships becomes crucial. The effective annotations underscore the quality
and utility of our model, validating its superiority in handling difficult annotation tasks.
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(a) ? ? ?

Smolensk 242 166.35 329853

San Marino 749 7.09 4040

Saint John's 0 10 22219

Yerevan 1000 227 1075800

(c)
(b)

(d)

(e) ?

Tommy Hilfigr. 5050

Hoeckst 5946

Bandi. 808.38

(f)

Ground truth:  (a) capital city;  (b) elevation above sea level;  (c) area; 
 (d) population;  (e) subsidiary;  (f) employees;

TaBERT:  (a) hill;  (b) population;  (c) population;  (d) population;  (e) barangay;
 (f) population;

DODUO:  (a) million city; (b) population; (c) area; (d) population; (e) capital city;
 (f) employees;

Ours:  (a) capital city;  (b) elevation above sea level;  (c) area;  (d) population;
 (e) brick and mortar;  (f) employees;

Figure 5. The case study on HardTables2022 dataset. It includes the prediction results of different
models for column types and inter-column relationships.

6. Conclusions

This paper proposes a joint multi-task learning framework for table semantic annota-
tion, designed to fully leverage the interrelations among three column-based tasks: column
named entity recognition (NER), column type annotation (CTA), and inter-column relation-
ship annotation (CRA). Current table annotation methods typically optimize for a single
task, neglecting the potential interdependencies among tasks. Our approach addresses
these limitations through information sharing and joint training. Specifically, our frame-
work employs a shared encoder to generate general semantic representations of columns,
which are subsequently processed by multiple specialized classifiers for three subtasks.
This design allows each subtask to benefit not only from its own data but also from auxiliary
information provided by related tasks, thus promoting overall performance. We conduct
extensive experiments on public datasets to examine the mutual influences among subtasks,
performance across varying data scales and lengths, and the efficacy of our model in terms
of training efficiency and data utilization. Experimental results reveal the foundational
contribution of NER task, significant mutual reinforcement between CTA and CRA tasks,
and the model’s high training efficiency. Our research offers novel insights into table
semantic annotation and robustly supports application of multi-task learning in practical
scenarios. Future research will focus on further optimizing training process to enhance
model’s efficiency and intelligence, exploring model’s applicability to additional tasks and
knowledge domains, and expanding its generalization capabilities and application fields.
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