
Citation: Górska, K.; Sevilla, F.J.;

Chacón-Acosta, G.; Sandev, T.

Fractional Telegrapher’s Equation

under Resetting: Non-Equilibrium

Stationary States and First-Passage

Times. Entropy 2024, 26, 665.

https://doi.org/10.3390/e26080665

Academic Editor: Manuel O. Cáceres

Received: 29 June 2024

Revised: 29 July 2024

Accepted: 30 July 2024

Published: 5 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Fractional Telegrapher’s Equation under Resetting:
Non-Equilibrium Stationary States and First-Passage Times
Katarzyna Górska 1, Francisco J. Sevilla 2, Guillermo Chacón-Acosta 3 and Trifce Sandev 4,5,6,*

1 Institute of Nuclear Physics, Polish Academy of Science, ul. Radzikowskiego 152, PL-31342 Kraków, Poland;
katarzyna.gorska@ifj.edu.pl

2 Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364,
Ciudad de México 01000, Mexico; fjsevilla@fisica.unam.mx

3 Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana-Cuajimalpa,
Vasco de Quiroga 4871, Santa Fe, Cuajimalpa, Ciudad de México 05348, Mexico; gchacon@cua.uam.mx

4 Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and
Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia

5 Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University,
Arhimedova 3, 1000 Skopje, Macedonia

6 Department of Physics, Korea University, Seoul 02841, Republic of Korea
* Correspondence: trifce.sandev@manu.edu.mk

Abstract: We consider two different time fractional telegrapher’s equations under stochastic resetting.
Using the integral decomposition method, we found the probability density functions and the mean
squared displacements. In the long-time limit, the system approaches non-equilibrium stationary
states, while the mean squared displacement saturates due to the resetting mechanism. We also obtain
the fractional telegraph process as a subordinated telegraph process by introducing operational time
such that the physical time is considered as a Lévy stable process whose characteristic function is the
Lévy stable distribution. We also analyzed the survival probability for the first-passage time problem
and found the optimal resetting rate for which the corresponding mean first-passage time is minimal.

Keywords: telegrapher’s equation; stochastic resetting; first-passage time

1. Introduction

Due to economic and military reasons in the XIX-th century, the rapid communication
between the countries belonging to the British Empire was an important matter. To send
a message from one part of the Empire to another was a true challenge, for its solution
contributed to many famous physicists of that time, namely J. Maxwell, Lord Kelvin, and O.
Heaviside. Nevertheless, only Heaviside solved this problem. He proposed the so-called
telegrapher’s (telegraph) equation (TE) to describe the current propagation inside the
telegrapher’s cable [1]. His equation is a hyperbolic equation which, in (1+ 1)-dimensional
space, has the following form

∂2
t p0(x, t) + τ−1∂t p0(x, t) = v2∂2

x p0(x, t), x ∈ R and t ∈ R+, (1)

where τ is a time parameter measured in seconds, and v is the propagation velocity
measured in seconds/meter. The boundary conditions are set to zero at infinity, while the
initial conditions are

p0(x, t = 0) = δ(x − x0), ∂t p0(x, t)
∣∣
t=0 = 0. (2)

These boundary and initial conditions, allowed C. R. Cattaneo [2,3] and P. Vernotte [4] to
employ Equation (1) to describe the heat transport. Thus, the physical interpretation of τ
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and v is changing. Here, τ modifies the Fourier law which connects the heat current j(x, t)
and the temperature T(x, t) such that we have

j(x, t) + τ−1∂t j(x, t) ∼ −∂xT(x, t).

The parameter v is associated with heat conductivity. Recently, Equation (1) has been
used to characterize the diffusion process with finite propagation velocity v [5], where
v =

√
K/τ, K is the diffusion coefficient, and the Fourier law is replaced by Fick’s law. In

this case, the solution of the telegrapher’s equation is a probability density distribution
(PDF) and, for arbitrary initial conditions, is presented in Ref. [6] (Equation (102) on p. 303
and/or [7] Equation (7.4.28)). This solution for the initial conditions given by Equation (2)
reduces to the form

p0(x, t) =
1
2

e−t/(2τ) δ
(
vt − |x − x0|

)
+

1
4vτ

e−t/(2τ) Θ
(
vt − |x − x0|

)
×
[

I0

(√
v2t2 − |x − x0|2

2vτ

)
+

vt√
v2t2 − |x − x0|2

I1

(√
v2t2 − |x − x0|2

2vτ

)]
,

(3)

derived in Ref. [8]. We use the standard notation for which Θ(·) denotes the Heaviside step
function, and Iν(z) is the modified Bessel function of the first kind of order ν = 0, 1. The
corresponding mean squared displacement (MSD) reads

⟨x2(t)⟩0 =
∫
R

x2 p0(x, t)dx = 2Kτ

(
t
τ
+ e−t/τ −1

)
, (4)

which leads to the ballistic time dependence ⟨x2(t)⟩0 ≈ v2t2 in the short-time regime and
to the linear time dependence ⟨x2(t)⟩0 ≈ 2Kt in the long-time one.

Equation (1) characterizes the telegraph process whose corresponding Langevin equa-
tion reads

ẋ(t) = v ζ(t),

where v denotes the constant particle speed, and ζ(t) is a stationary dichotomic Markov
process that jumps between two states; ±1, with a mean rate ν [9–12] (τ = 1

2ν , is a time
scale that corresponds to the inverse mean sojourn time for each state). As shown in [13,14]
subordinating this process by the Lévy process, we can find the fractional telegrapher’s
equation of type I (abbreviated as FTE-I), namely

τµ
(CD2µ

t p1
)
(x, t) +

(CDµ
t p1
)
(x, t) = K ∂2

x p1(x, t), (5)

where µ ∈ (0, 1] and
(CDµ

t h
)
(t) is the fractional derivative in the Caputo sense (see

Appendix A). Equation (5) can be interpreted as an anomalous diffusion equation, which
can be derived by using the continuity equation with an appropriate modified constitutive
relation [15].

Despite the compelling generalization given by Equation (5), whose higher fractional
derivative is always twice the lower one, it is possible to postulate different kinds of
fractional telegrapher’s equations. For instance, we focus on one of these possibilities called
type II (abbreviated as FTE-II), which has the form (this form corresponds to Equation (17)
in Ref. [15])

τ
(CDµ+1

t p2
)
(x, t) +

(CDµ
t p2
)
(x, t) = K ∂2

x p2(x, t), (6)

where µ ∈ (0, 1]. In this case, the higher fractional derivative is always larger than 1.
Equations (5) and (6) are completed with the same initial and boundary conditions (2) as
for the telegrapher’s Equation (1). We can also find different fractional generalisations of
the TE [5,10,15–18], including non-Markovian discrete time versions of the telegraph pro-
cess [19], TE in random media [20–22], telegraph processes with random velocities [23], etc.
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In this paper, we consider the stochastic resetting of the PDFs p1(x, t) and p2(x, t) that
solve Equations (5) and (6), respectively. The stochastic dynamics of the particle, which are
initially located at x = x0 at t = 0, under the effects of stochastic resetting, are described by
the renewal equation [24]

pr(x, t) = ϱ(t)pj(x, t) +
∫ t

0
ρ(t′)pr(x, t − t′)dt′, (7)

where j = 0, 1, 2, indicates the probability density corresponding to the different telegra-
pher’s equations considered here; ϱ(t) =

∫ ∞
t ρ(t′)dt′ is the probability that no renewal

has taken place up to time t. We consider here the stochastic Poissonian resetting with
probability ρ(t) = r e−rt and from this, we have ϱ(t) = e−rt, where r is the resetting rate.
The renewal Equation (7) for Poissonian resetting has the form [24–26]:

pr,j(x, t) = e−rt pj(x, t) +
∫ t

0
r e−rt′ pj(x, t′)dt′, (8)

which, in the Laplace space, reads

p̂r,j(x, s) =
s + r

s
p̂j(x, s + r), j = 0, 1, 2. (9)

Furthermore, we assume that the particle is instantaneously reset to the initial position.
These assumptions offer the possibility of analytical calculations, as well a description of
the experimental results for the mean-first passage time under stochastic resetting, by using
holographic optical tweezers [27] or laser traps [28].

The paper is organized as follows. In Section 2, we consider the stochastic resetting of
FTE-I. For that purpose, we find its solution in two ways based on integral decomposition
techniques. This decomposition is rooted in recognizing the Brownian motion or the
telegraph process. Next, we will reset the process described by FTE-I and calculate the
first-passage time problem and survival probability. In Section 3, we repeat all procedures
with the stochastic resetting for FTE-II. The paper is summarized in Section 4. The paper
contains four Appendices.

2. FTE-I under Resetting

The PDF p1(x, t) can be found in two ways, which come from the Efros theorem
(Appendix C) applied to p1(x, t). In the Laplace–Fourier (LF) space, it is written as

˜̂p1(κ, s) =
s−1(τµs2µ + sµ)

τµs2µ + sµ + Kκ2 ei κx0 =
[M̂1(s)]−1

s[M̂1(s)]−1 + Kκ2
ei κx0 , µ ∈ (0, 1). (10)

Here,

M̂1(s) =
τ−µs1−µ

sµ + τ−µ , (11)

and s÷ t and κ ÷ x are the Laplace and Fourier coordinates, respectively. The Efros theorem
allows us to make the integral decomposition of Equation (10), for which we represent
p1(x, t) as the integral

∫ ∞
0 N(x, ξ) f1(ξ, t)dξ with N(x, ξ) the Gaussian

N(x, ξ) =
1

2
√

πKξ
exp

[
− (x − x0)

2

4Kξ

]
(12)

and
f1(ξ, t) = L−1

{
[M̂1(s)]−1 e−ξs/M̂1(s); t

}
. (13)

The function f1(ξ, t) for µ ∈ (0, 1/2] is non-negative, such that it can be named the PDF of
the leading process. Another possibility is to present p1(x, t) as the solution of the telegra-
pher’s equation p0(x, ξ) given by Equation (3) and h(ξ, t) = L−1[(τs)µ−1 exp(−ξτµ−1sµ); t]
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being for µ ∈ (0, 1] the PDF of the leading process (for details, see Section 2.2). Hence, the
solution obtained in this way is called the subordination approach. Both techniques in the
presence of stochastic resetting will be described below, and we show that they lead to the
same results.

2.1. Resetting of FTE-I—The First Possibility

Let us begin by examining the outcomes that can be derived from the second equal-
ity in Equation (10). In the short-time regime, s ≫ 1/τ, we have that Equation (10) is
approximated by

˜̂p f WE
1 (κ, s) ∼ τµs2µ−1

τµs2µ + Kκ2 ei κx0 , µ ∈ (0, 1), (14)

which, after inverting the Laplace and Fourier transforms, we obtain the fractional wave
equation (fWE)

τµ
(CD2µ

t p f WE
1

)
(x, t) = K ∂2

x p f WE
1 (x, t). (15)

Transport in this regime is described by the fWE. In the opposite regime, i.e., in the long-time
regime, s ≪ 1/τ, Equation (10) is asymptotically approximated by

˜̂p f DE
1 (κ, s) ∼ sµ−1

sµ + Kκ2 ei κx0 , µ ∈ (0, 1), (16)

which corresponds to the standard fractional diffusion equation (fDE) after inverting the
Laplace and Fourier transforms, i.e.,(CDµ

t p f DE
1

)
(x, t) = K ∂2

x p f DE
1 (x, t). (17)

In the general case, upon performing the Fourier transform inversion of Equation (10),
we can express it in Laplace space as:

sp̂1(x, s)− δ(x − x0) = K M̂1(s) ∂2
x p̂1(x, s), (18)

which, after taking the inverse Laplace transform, can be written in t-space as the general-
ized diffusion equation

∂t p1(x, t) = K
∫ t

0
M1(t − t′)∂2

x p1(x, t′)dt′,

M1(t) = τ−µt2µ−2Eµ,2µ−1
(
− (t/τ)µ

)
.

(19)

The series representation of the two-parameter Mittag–Leffler function Eµ,ν(z) is given by
Equation (A1) for δ = 1. After multiplying the last equation by x2 and integrating over
space we are led to first-order differential equations for the MSD, which can be integrated

straightforwardly to give ⟨x2(t)⟩1 = 2K
∫ t

0

∫ t′
0 M1(s)ds dt′. We emphasize that the proce-

dure of expressing the hyperbolic-like Equation (5) as the parabolic-like Equation (19) is
only formal and it is possible only for the diffusion-like initial conditions (2). Formally, we
can present the solution of Equation (19) as

p1(x, t) =
∫ ∞

0
N(x, u) f1(u, t)du, (20)

where N(x, u) and f1(u, t) are given by Equations (12) and (13), respectively. The same
results can be obtained using Equation (A3) resulting from the Efros theorem in which
Ĝ(s) = [M̂1(s)]−1, q̂(s) = s/M̂1(s), and ĝ(x, s) = N̂(x, s). In the LF space, it figures as

p̂1(x, s) = [M̂1(s)]−1 N̂
(
x, s/M̂1(s)

)
. (21)
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Note that f1(u, t) is a non-negative function for µ ∈ (0, 1/2]. That comes from the Bernstein
theorem [29] and the fact that f̂1(u, s), for this range of µ, is a completely monotonic
function (CMF), i.e., the non-negative function whose derivatives exist and alternate,
see Appendix B. In consequence, we can say that p1(x, t), given by Equation (20) for
µ ∈ (0, 1/2] is a PDF expressed by the subordination approach, in which the leading
process, described by f1(u, t), subordinates the parent process characterized by the normal
distribution N(x, u) [13,14]. The function f̂1(u, s) for µ ∈ (1/2, 1] is not a CMF. Then,
according to the Bernstein theorem, f1(u, t) is negative or contains negative parts. However,
p̂1(x, t) calculated from Equation (21) for µ ∈ (0, 1] is a CMF, yielding that its inverse is
non-negative and can be called a PDF.

The corresponding MSD ⟨x2(t)⟩1 can be expressed in terms of the MSD of the normal
distribution ⟨x2(t)⟩N = 2Kt, we have

⟨x̂2(s)⟩1 = [M̂1(s)]−1 〈x̂2(s/M̂1(s))
〉

N =
2K
τµ

s−µ−1

sµ + τ−µ ,

from where, by inverse Laplace transform, one finds

⟨x2(t)⟩1 = 2Kτµ(t/τ)2µEµ,2µ+1
(
− (t/τ)µ

)
, (22)

which is a known result [5]. From (22), we have that ⟨x2(t)⟩1 ≈ (2K/τµ)t2µ/Γ(2µ + 1) in
the short-time regime, and ⟨x2(t)⟩1 ∼ 2Ktµ/Γ(µ + 1) in the long-time regime; see Figure 1,
curves marked with circle symbols for µ = 1/4, 1/2, and 3/4.

If we reset p1(x, t) to the initial position according to the stochastic Poissonian resetting
ρ(λ) = r e−rλ, where r is the resetting rate, then the corresponding pr,1(x, t|x0) ≡ pr,1(x, t)
follows the renewal equation (8) for j = 1. In Laplace space, it reads Equation (9) for j = 1,
which, after employing Equation (21), gives

p̂r,1(x, s) =
s + r

s
1

M̂1(s + r)
N̂
(

x,
s + r

M̂1(s + r)

)
. (23)

From here, we conclude that in the long-time limit, the system approaches the non-
equilibrium stationary state (NESS) pst

r,1(x) = limt→∞ pr,1(x, t) = lims→0 sp̂r,1(x, s) =
rp̂1(x, r), which is explicitly given by

pst
r,1(x) =

r
M̂1(r)

N̂
(

x,
r

M̂1(r)

)
=

1
2

√
rµ(τµrµ + 1)

K
exp

(
−
√

rµ(τµrµ + 1)
K

|x − x0|
)

.
(24)

The NESS is given by the Laplace distribution with a stationary variance σst
1 = K/[rµ(τµrµ +

1)] around the average value x0. For µ = 1, the NESS is analogous to Equation (27) of
Ref. [8]. For τ = 0, we recover the result for the NESS for an anomalous diffusion process
under resetting [24,30–33], i.e., pst

r,1(x) = rµ/2/(2
√

K) exp
(
−
√

rµ/K |x − x0|
)
. We want to

point out the exponential decay of the NESS tails, which is a characteristic induced by the
stochastic Poissonian resetting process.

For the MSD in the case of resetting, we have

⟨x̂2(s)⟩r,1 =
s + r

s
⟨x̂2(s + r)⟩1

=
s + r

s
1

M̂1(s + r)

〈
x̂2
(

s + r
M̂1(s + r)

)〉
N

= 2Kτ−µs−1 (s + r)−µ

(s + r)µ + τ−µ ,

from which we obtain
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⟨x2(t)⟩r,1 = 2Kτµ−1
∫ t

0
e−rt′(t′/τ)2µ−1Eµ,2µ

(
− (t′/τ)µ

)
dt′. (25)

In the short-time limit it behaves as
〈

x2(t)
〉

r,1 ∼ t2µ, and in the long-time limit it approaches
the constant value,

⟨x2(t)⟩r,1 =
2Kr−µ

(rτ)µ + 1
. (26)

The graphical representation of the MSD (25) for different values of µ and r is given in
Figure 1, where we observe the asymptotic behavior of the MSD for short- and long-time
limits.

Figure 1. MSD (25) under the effects of stochastic resetting for different values of the resetting rate,
r = {0, 0.1, 1.0, 10.0}. The case r = 0 corresponds to the MSD (22).

2.2. Resetting of FTE-I—The Second Possibility

As mentioned in the Introduction, the FTE-I for µ ∈ (0, 1] can be obtained from
the telegraph process subordinated by Lévy noise. Here, we demonstrate this approach,
starting from Langevin’s equations:

ẋ(u) = vζ(u) and ṫ(u) = ξ(u),

where ζ(u) represents the same dichotomic noise as in the standard TE, and ξ(u) is a Lévy
stable noise with Lévy index in Laplace space given by Ψ̂(s) = τµ−1sµ, µ ∈ (0, 1). Therefore,
the process t(u) =

∫ u
0 ξ(u′) du′ is a stable Lévy motion with the characteristic function

given by the stretched exponential function Φ̂µ(u, s) = exp(−uτµ−1sµ). Its inverse Laplace
transform is denoted as Φµ(u, t) and known as a one-sided Lévy stable distribution whose
series form was found by H. Pollard in [34]. Its representation through the Fox H function
was later found by R. Hilfer [35]. In [36], it was presented in the Meijer G form and the finite
series of generalized hypergeometric functions. The corresponding PDF p1(x, t) of this
subordinated telegraph process can be found from the subordination integral [13,14,37–39]
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p1(x, t) =
∫ ∞

0
p0(x, u)h(u, t) du, (27)

where h(u, t) = −∂u⟨Θ(t− t(u))⟩ is the subordination function which, in Laplace space, reads
as

ĥ(u, s) = −1
s

∂u

〈∫ ∞

0
δ(t − t(u)) e−st dt

〉
= −s−1∂u⟨e−st(u)⟩

= −s−1∂uΦ̂µ(u, s) = (τs)µ−1 e−uτµ−1sµ
.

(28)

Inverting (28), we get the explicit time dependence of the subordination function

h(u, t) = L−1[ĥ(u, s); t] =
t

µu
Φµ(u, t).

This subordination is also obtained from the first equality of Equation (10) by employing
the Efros theorem in which Ĝ(s) = (τs)µ−1, q̂(s) = τµ−1sµ, and ĝ(x, s) = p̂0(x, s) [13,14].
Then, from Equation (A3), we have

p̂1(x, s) = (τs)µ−1 p̂0(x, τµ−1sµ), (29)

whose inverse Laplace transform gives Equation (27). From Equation (29), it follows that
the MSD reads

⟨x̂2(s)⟩1 = (τs)µ−1⟨x̂2(τµ−1sµ)⟩0 =
2K
τµ

s−µ−1

sµ + τ−µ ,

where ⟨x2(t)⟩ is the MSD (4) for the standard TE. Therefore, we obtain the same MSD as in
Equation (22), as expected. Thus, making the Poissonian resetting as in the previous sub-
section, we obtain Equation (25); in the long-time limit, this gives Equation (26). Moreover,
NESS, given by Equation (23) for this kind of subordination, is also equal to Equation (24).

For µ = 1, we recover the known results for the standard telegrapher’s equation with
stochastic resetting [8].

2.3. First-Passage Time Problem

From Equations (18) and (9), we obtain

sp̂r,1(x, s)− δ(x − x0) =
s

s + r
M̂1(s + r)∂2

x p̂r,1(x, s),

where, by inverse Laplace transform, the generalized diffusion equation

∂t pr,1(x, t) = K
∫ t

0

[
M1(t − t′)− rM̄1(t − t′)

]
∂2

x pr,1(x, t′)dt′,

is obtained, with memory function M1(t)− rM1(t), where

M1(t) = e−rt
∫ t

0
M1(t′)dt′.

Let us write the corresponding backward equation for the survival probability Q1(x0, t),
which will give the probability of the particle starting at x0 > 0 to reach the target at the origin.
Thus, we have (CD2µ

t Q1
)
(x0, t) + τ−µ

(CDµ
t Q1

)
(x0, t) = v2∂2

x0
Q1(x0, t),

with initial conditions
Q1(x0, 0) = 1, ∂tQ1(x0, t)

∣∣∣
t=0

= 0,
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and boundary conditions Q1(0, t) = 0 and Q1(∞, t) = 0. By Laplace transform, we find that

Q̂1(x0, s) =
1
s

{
1 − exp

(
−
√

τµ

K
[sµ + τ−µ]sµx0

)}
.

From here, we can calculate the first-passage time density P1(t) = − d
dt Q1(x0, t), i.e.,

P̂1(s) = 1 − sQ̂1(x0, s), see [40–42], which, in the Laplace space, reads

P̂1(s) = exp

(
−
√

τµ

K
[sµ + τ−µ]sµx0

)
.

If we consider the process as a random search, then we can calculate the efficiency of the
search, defined as the number of visited targets divided by the average number of steps
needed. If there is a single target, it can be calculated as the inverse of the MFPT [43]

E1 =

〈
1
t

〉
=
∫ ∞

0

P1(t)
t

dt =
∫ ∞

0
P̂1(s) ds

=
1

21/µµ
Γ
(

1 +
1

2µ

)(
2
√

K
x0

)1/µ

exp
(
− x0

2
√

Kτµ

)
, (30)

whose derivation is presented in Appendix D.
If we further consider exponential resetting to the telegraph process, then for the

survival probability, one finds [41,42]

Q̂1,r(x0, s) =
Q̂1(x0, s + r)

1 − rQ̂1(x0, s + r)
,

from where we derive the MFPT

T1,r(x0) = −
∫ ∞

0
t [∂tQ1,r(x0, t)] dt = Q1,r(x0, s = 0)

=
1
r

[
exp

(√
rµ(τµrµ + 1)

K
x0

)
− 1

]
.

(31)

We see that the MFPT in the limits r → 0 and r → ∞ diverges, so there is an optimal
resetting rate r∗ for which MFPT is minimal, i.e.,

∂rT1,r(x0)
∣∣∣
r=r∗

= 0,

from where we have

µ(1 + 2rµ
∗τµ)

2(rµ
∗τµ + 1)

√
rµ
∗ (τµrµ

∗ + 1)
K

x0 = 1 − exp

−

√
rµ
∗ (τµrµ

∗ + 1)
K

x0

, (32)

i.e.,

1 − e−ξ1 = r∗
dξ1

dr∗
, ξ1 =

√
rµ
∗ (τµrµ

∗ + 1)
K

x0.

For τ = 0 it reduces to [44]

µ

2

√
rµ
∗

K
x0 = 1 − exp

−

√
rµ
∗

K
x0

.

For µ = 1, we recover the MFPT for the telegraph process under resetting [8], see also [45],
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Tr(x0) =
1
r

[
exp

(√
r(τr + 1)

K
x0

)
− 1

]
.

while for τ = 0, the result for the subdiffusive search [44,46]

Tr(x0) =
1
r

[
exp

(√
rµ

K
x0

)
− 1

]
,

and for τ = 0 and µ = 1, the Brownian search with [47]

Tr(x0) =
1
r

[
exp

(√
r
K

x0

)
− 1
]

.

The dependence of the MFPT on the resetting rate r is shown in Figure 2, while the
optimal resetting rate versus parameter µ is shown in Figure 3. From Equation (32), for
a given exponent µ, we can numerically find the optimal value r for which the MFPT is
minimum, see Figure 3. From Figure 2, we see that by increasing µ, the resetting rate
r∗, for which the MFPT is minimum, decreases. Therefore, we need a higher resetting
rate in order to reset the particle, which is stacked due to the long-tailed waiting time,
given by the fractional exponent µ (the lower fractional exponent µ means a longer waiting
time, and therefore, we need a higher resetting rate for the particle to reach the target in a
shorter time).

0.01 0.10 1 10

5

10

50

100

500

1000

r

M
F
P
T

Figure 2. MFPT (31) for x0 = 2, τ = 1, K = 1, µ = 1/2 (blue solid line), µ = 3/4 (red dashed line),
µ = 1 (black dotted line).

Figure 3. Optimal resetting rate r∗ versus µ, obtained by numerically solving Equation (32).
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3. FTE-II under Resetting

By the same methods used in the previous section, we have that the Laplace transform
of Equation (6) looks analogous to Equation (12), but with the difference that instead of
M̂1(s), we have to use M̂2(s) defined as

M̂2(s) =
1
τ

s1−µ

s + τ−1 and M2(t) = L−1[M̂2(s); t] =
tµ−1

τ
E1,µ

(
− t

τ

)
.

Proceeding similarly as in the previous case of FTE-I to obtain Equation (18), we have that

sp̂2(x, s)− δ(x − x0) = KM̂2(s)∂2
x p̂2(x, s). (33)

In the short-time regime, we have that the memory function M̂2(s) ∼ 1/(sµτ); therefore,
Laplace inversion of Equation (33) is possible since µ ∈ (0, 1]. Thus, we have the fWE

τ
(CDµ+1

t p f WE
2

)
(x, t) = K ∂2

x p f WE
2 (x, t). (34)

In the long-time regime M̂2(s) ∼ s1−µ we recover the fDE(CDµ
t p f DE

2
)
(x, t) = K ∂2

x p f DE
2 (x, t). (35)

We point out that M̂2(s) is not a completely Bernstein function (CBF) since its algebraic
inverse is not a Stieltjes function (SF). Formally, we can take the inverse Laplace transform
of Equation (33) with initial condition (2), but, due to the results given in Ref. [48], it will
not be a well-posed Cauchy problem. Hence, we limit our consideration only to the Laplace
space in which the solution of Equation (33) can be written as

p̂2(x, s) = [M̂2(s)]−1N̂
(
x, s/M̂2(s)

)
.

The MSD corresponding to p2(x, t) becomes

⟨x̂2(s)⟩2 =
1

M̂2(s)

〈
x̂2(s/M̂2(s)

)〉
N =

2K
τ

s−µ−1

s + τ−1 ,

from which, by inverse Laplace transform, one finds [5] (Equation (24)), namely

⟨x2(t)⟩2 = 2Kτµ
(
t/τ
)1+µE1,2+µ

(
− t/τ

)
. (36)

In the case of stochastic resetting, we express the renewal equation given by Equation (8)
for j = 2 in Laplace space as

p̂r,2(x, s|x0) =
s + r

s
p̂2(x, s + r) =

s + r
s

1
M̂2(s + r)

N̂
(

x,
s + r

M̂2(s + r)

)
,

which, in the long-time limit, approaches the NESS equal to

pst
r,2(x) =

r
M̂2(r)

N̂
(

x,
r

M̂2(r)

)
=

1
2

√
rµ(rτ + 1)

K
exp

(
−
√

rµ(rτ + 1)
K

|x − x0|
)

. (37)

Therefore, the NESS is given by the Laplace distribution, as well, with a stationary variance
σst

2 = K/[rµ(rτ + 1)] around the average value x0. For µ = 1, NESS reduces to the one for
the standard telegrapher’s process under resetting [8]. For τ = 0, it turns to the NESS for
an anomalous diffusion process under resetting [24,30–33].

The corresponding MSD in the case of resetting becomes
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⟨x̂2(s)⟩r,2 =
2K
τ

s−1 (s + r)−µ

(s + r) + τ−1 ,

that is

⟨x2(t)⟩r,2 = 2Kτµ−1
∫ t

0
e−rt′

(
t′

τ

)µ

E1,1+µ

(
− t′

τ

)
dt′. (38)

From here, for the short-time limit, we have the behavior
〈

x2(t)
〉

r,2 ∼ t1+µ, while for the
long-time limit we observe saturation

⟨x2(t)⟩r,2 =
2Kr−µ

rτ + 1
.

This crossover dynamics of the MSD (38) for different values of µ and r is shown in Figure 4.

Figure 4. MSD (38) under the effects of stochastic resetting for different values of µ and the resetting
rate, r = {0, 0.1, 1.0, 10.0}. The case r = 0 corresponds to the MSD (36).

First-Passage Time Problem

We can first solve the backward equation for the survival probability without resetting
and then directly find the survival probability with resetting. It reads

τ
(CD1+µ

t Q2
)
(x0, t) +

(CDµ
t Q2

)
(x0, t) = K ∂2

xQ2(x0, t),

with the same initial and boundary conditions as before, we find the survival probability

Q̂2(x0, s) =
1
s

[
1 − exp

(
−
√

rµ(τr + 1)
K

x0

)]
,

from where for the first-passage time density we have
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P̂2(s) = 1 − sQ̂2(x0, s) = exp

(
−
√

sµ(τs + 1)
K

x0

)
.

The efficiency then becomes

E2 =
∫ ∞

0
exp

(
−
√

sµ(τs + 1)
K

x0

)
ds

=
1

µτ
√

π

(
4K
x2

0

)2

H1,2
2,1

(4Kτµ

x2
0

) 1
µ
∣∣∣∣∣
[
− 3

2 , 1
µ

]
,
[
2, 1 + 1

µ

][
1, 1
] ]

,

(39)

where Hm,n
p,q is the Fox H function in which the argument is given by [(4Kτµ)/x2

0]
1/µ, and the

upper and lower list of parameters reads [−3/2, 1/µ], [2, 1 + 1/µ], and [1, 1], respectively.
The derivation of the lower formula in Equation (39) is presented in Appendix D.

In the presence of resetting, we can directly find the survival probability from the
corresponding one without resetting, from where for the MFPT we obtain

T2,r(x0) =
1
r

[
exp

(√
rµ(τr + 1)

K
x0 − 1

)]
. (40)

For µ = 1, we obtain the known result for the MFPT in the case of a standard telegraph
process. We can find the optimal resetting rate r for which MFPT is minimal, i.e.,

∂rT2,r(x0)
∣∣∣
r=r∗

= 0,

from where we have

µ + r∗τ + µr∗τ

2(r∗τ + 1)

√
rµ
∗ (τr∗ + 1)

K
x0 = 1 − exp

−

√
rµ
∗ (τr∗ + 1)

K
x0

, (41)

i.e.,

1 − e−ξ2 = r
dξ2

dr
, ξ2 =

√
rµ
∗ (τr∗ + 1)

K
x0.

The dependence of the MFPT on the resetting rate is shown in Figure 5, while the
changing of the optimal resetting rate by changing parameter µ is demonstrated in Figure 6.
We see that by increasing parameter µ, the optimal resetting rate decreases, the behavior
which was also observed for the FTE-I.
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500

1000
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Figure 5. MFPT (40) for x0 = 2, τ = 1, K = 1, µ = 1/2 (blue solid line), µ = 3/4 (red dashed line),
µ = 1 (black dotted line).
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Figure 6. Optimal resetting rate r∗ versus µ, obtained by numerically solving Equation (41).

4. Summary

In this paper, we considered two distinct kinds of fractional telegrapher equations. In
the absence of resetting, we found that both generalizations of the telegrapher equations
describe fractional-ballistic transport in the short-time regime, and transit to fractional
diffusion transport in the long-time one. FTE-I can be obtained in two ways based on the
integral decomposition method, both ways lead to the same results. The methods consist
of presenting the solution for the FTE-I from either the normal distribution or from the
PDF of the telegraph process. The solution of FTE-II is presented only by use of the normal
distribution in the integral decomposition.

Further, we analyzed these two fractional telegraphic processes in the presence of
Poissonian resetting, which means that after a random time drawn from an exponential
distribution, the particle is reset to the initial position. We found that in the long-time limit,
due to the resetting in both cases, the particle reaches non-equilibrium stationary states
while the MSDs saturate. In both cases, if the resetting rate is large enough, the nonequi-
librium stationary distribution is determined by the short-time regime of the solution of
the corresponding FTE, while if the resetting rate is small, the stationary distribution is
determined by the long-time regime of the corresponding solution of the FTE.

We also considered the first-passage time problem, and for both cases, we calculated
the survival probability, efficiency, and MFPT. It is shown that there is an optimal resetting
rate for which the MFPT is minimal. This optimal resetting rate depends on the anomalous
diffusion parameter µ. Additionally, the efficiency in the first case decreases faster with µ
than in the second case.

Analysis of the generalized telegraph processes under non-instantaneous resetting [49–51],
partial resetting [52,53], and resetting in an interval [54–56] are left for future investigation. The
first-passage time problem could also be of interest in the case of resetting to multiple [57] and
random positions [58]. Finding the connection between the Shannon and Fisher functionals [59]
could also be of interest to future research.
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Appendix A. Fractional Calculus and Mittag–Leffler Functions

The fractional derivative in the Caputo sense reads

(CDν
t f
)
(t) =

∫ t

0

f (n)(ξ)
(t − ξ)ν+1−n

dξ

Γ(n − ν)
, ν ∈ (n − 1, n), n ∈ N.

The three-parameter Mittag–Leffler function is defined by [60]

Eδ
ρ,β(z) =

∞

∑
n=0

(δ)n

Γ(ρn + β)

zn

n!
, (A1)

Its Laplace transform reads

L
[
tβ−1Eδ

ρ,β(−λtρ)
]
=

sρδ−β

(sρ + λ)δ
,

where |λ/sρ| < 1. Note that for δ = 1, it becomes the two parameter Mittag–Leffler
function, E1

ρ,β(z) = Eρ,β(z), and for β = δ = 1, it becomes the one parameter Mittag–Leffler

function, E1
ρ,1(z) = Eρ,1(z) = Eρ(z).

The Fox H function is defined through the Mellin transform as follows

Hm,n
p,q

[
z
∣∣∣ [ap, Ap]

[bq, Bq]

]
:=
∫

γL

∏m
i=1 Γ(bi + Bis)∏n

i=1 Γ(1 − ai − Ais)

∏
p
i=n+1 Γ(ai + Ais)∏

q
i=m+1 Γ(1 − bi − Bis)

x−s ds
2πi

, (A2)

where the parameters are subject to conditions

z ̸= 0, 0 ≤ m ≤ q, 0 ≤ n ≤ p;

ai ∈ C, Ai > 0, i = 1, . . . , p; bi ∈ C, Bi > 0, i = 1, . . . , q;

[ap, Ap] = (a1, A1), . . . , (ap, Ap); [bq, Bq] = (b1, B1), . . . , (bq, Bq);

(ap) = a1, a2, . . . , ap; (bq) = b1, b2, . . . , bq.

Appendix B. Completely Monotone and Bernstein Functions

Among the non-negative functions, we can distinguish the complete monotone and
Bernstein functions. Based on [29], their definitions and subclasses are given below.

A function ĉ : (0, ∞) 7→ R is a completely monotone function (CMF) if its derivatives exist
and (−1)n ĉ(n)(s) ≥ 0, for all n ∈ N0.
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The important feature of CMF is that the Bernstein theorem uniquely connects it with a
non-negative function c(t) through the Laplace integral

ĉ(s) =
∫ ∞

0
e−st c(t)dt.

A (non-negative) Stieltjes function (SF) is a function ĝ : (0, ∞) 7→ [0, ∞) which can be
written as

ĝ(s) =
A
s
+ B +

∫ ∞

0

σ(dt)
s + t

,

where A, B ≥ 0 and σ is a measure on (0, ∞) such that
∫ ∞

0 σ(dt)/(1 + t) < ∞. Note that
the class of SFs belongs to the class of CMFs, and thus, it is a decreasing function. Usually,
it is assumed that A = 0 and B = 0, which simplifies the calculations and ensures its
integrability at zero and vanishing at infinity.

A function b̂ : (0, ∞) 7→ R is a Bernstein function (BF) if its all derivatives exist, b̂(s) is
non-negative, b̂′(s) is a CMF. If a BF b̂ : (0, ∞) 7→ (0, ∞), and, additionally, b̂(s)/s is an SF,
then it is called a completely Bernstein function (CBF).

The characteristics of these functions and their properties can be referenced in [29].
The key features highlighted in this paper include (i) the product or sum of CMFs results in
another CMF; (ii) the composition of CMF and BF(CBF) yields a CMF; (iii) for the CBF, there
exists a corresponding partner b̂⋆ such that b̂(s)b̂⋆(s) = s; and (iv) the algebraic inverse of
SF (CBF) is CBF (SF).

Appendix C. Efros Theorem

The Efros theorem [61–65] generalizes the convolution theorem for the Laplace trans-
form. It states the following:

Theorem A1. If Ĝ(s) and q̂(s) are analytic functions, and

L[g(x, ξ); s] = ĝ(x, s)

as well as
L[ f (ξ, t); s] =

∫ ∞

0
f (ξ, t)e−st dt = Ĝ(s) e−ξ q̂(s),

exist, then

Ĝ(s)ĝ(x, q̂(s)) =
∫ ∞

0

[∫ ∞

0
g(x, ξ) f (ξ, t)dξ

]
e−st dt.

From Efros theorem appears that

L−1[Ĝ(s)ĝ(x, q̂(s)); t] =
∫ ∞

0
g(x, ξ) f (ξ, t)dξ. (A3)

Appendix D. Derivation of the Efficiencies E1 and E2

The derivation of E1 and E2 base on using the Laplace transform of the Lévy–Smirnov
distribution Φ1/2(σ) = exp[−1/(4σ)]/(2

√
πσ3/2), this is

e−az1/2
=
∫ ∞

0
dt e−zt a−2Φ1/2(ta−2)

=
∫ ∞

0
dt e−zt a

2
√

πt3/2 e−a2/(4t) .

Inserting it into Equation (30) with z = τµs2µ + sµ and into Equation (39) with z = τsµ+1 +
sµ, and next changing the order of integrals we get

Ej =
∫ ∞

0
dt

x0

2
√

πKt3/2
e−x2

0/(4Kt) Intj, j = 1, 2. (A4)
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The auxiliary integral Intj for the efficiencies Ej respectively read

Int1 =
∫ ∞

0
ds e−tτµs2µ−tsµ

and Int2 =
∫ ∞

0
ds e−tτsµ+1−tsµ

.

At first, we calculate Int1 by setting s2µ = y, which can be expressed as

Int1 =
1

2µ

∫ ∞

0
y

1
2µ −1 e−tτµy−ty1/2

=
1
µ

Γ
(

1 +
1

2µ

)
et/(8τµ) D−1/µ

(√
t

2τµ

)
,

(A5)

where we used [66] (Equation (2.2.1.16)). The parabolic cylinder function is standard
denoted as D−1/µ(·). Then, we substitute Equation (A5) into Equation (A4) and change
t1/2 onto ξ. That leads to

E1 =
x0

µ
√

πK21/µ
Γ
(

1 +
1

2µ

) ∫ ∞

0
dξ ξ

− 1
µ −2 e−

x2
0

4K ξ−2+ ξ2

8τµ D−1/µ

(
ξ√
2τµ

)
,

which, after using [67] (Equation (2.11.4.4)), gives the lower formula in Equation (30).
Proceeding analogically, we derive the explicit form of E2. Now, setting s1/(1+µ) = y,

we can present Int2 as

Int2 =
1

1 + µ

∫ ∞

0
dy y−

µ
1+µ e−tτy−tyµ/(1+µ)

.

This integral can be calculated for fractional µ = l/k, such that l < k by employing [66]
(Equation (2.2.1.22)) and then transforming the results into the more transparent language
of the Fox H function according to formula [68] (Equation (8.3.2.22)). That gives

Int2 =
1
µ
(tτ)−

1
1+µ H1,1

1,1

 τ

t1/µ

∣∣∣∣∣∣ [1, 1 + 1
µ ]

[ 1
1+µ , 1]

,

which substitutes into Equation (A4) for j = 2 and after changing t−1 onto ξ yields

E2 =
x0

2µ
√

Kπ
τ
− 1

1+µ

∫ ∞

0
ξ

3
2+

1
1+µ e−

x2
0

4K ξ H1,1
1,1

τξ1/µ

∣∣∣∣∣∣ [1, 1 + 1
µ ]

[ 1
1+µ , 1]

dξ

=
1

µτ
√

π

(
4K
x2

0

)2(
4Kτµ

τx2
0

) 1
1+µ

H1,2
2,1

(4Kτµ

x2
0

)1/µ
∣∣∣∣∣∣ [−

3
2 − 1

1+µ , 1
µ ], [1, 1 + 1

µ ]

[ 1
1+µ , 1]

,

where we used [68] (Equation (2.25.2.3)). Next, applying [68] (Equation (8.3.1.8)) allows us
to get the lower formula in Equation (39).

A comparison of the expressions for the efficiencies in each case as a function of µ is
shown in Figure A1. In the FTE-I case, the efficiency decreases with µ, ranging from high
values for small µ to low values for µ close to one. In contrast, in the FTE-II case, although
efficiency decreases with µ, it is maintained close to 1 for the whole range of values.
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Figure A1. Comparison of the efficiencies for FTE-I and FTE-II from Equations (30) and (39), for
K = 1, x0 = 2, τ = 1.

References
1. Heaviside, O. On induction between parallel wires. J. Soc. Telegr. Eng. 1880, 9, 427–458. [CrossRef]
2. Cattaneo, C.R. Sulla conduzione del calore. Atti. Sem. Mat. Fis. Univ. Modena 1948, 3, 83.
3. Cattaneo, C.R. Sur une forme de l’equation de la chaleur eliminant le paradoxe d’une propagation instantanee’. C. R. Acad. Sci.

Paris 1958, 247, 431.
4. Vernotte, P. Les paradoxes de la théories continue de l’equation de la chaleur. C. R. Acad. Sci. Paris 1958, 246, 3154–3155.
5. Górska, K.; Horzela, A.; Lenzi, E.K.; Pagnini, G.; Sandev, T. Generalized Cattaneo (telegrapher’s) equations in modeling

anomalous diffusion phenomena. Phys. Rev. E 2020, 102, 022128. [CrossRef] [PubMed]
6. Stratton, J.A. Electromagnetic Theory; McGraw-Hill Book Co.: New York, NY, USA, 1941.
7. Morse, P.M.; Feshbach, H. Methods of Theoretical Physics; McGraw-Hill Book Co.: New York, NY, USA, 1953.
8. Masoliver, J. Telegraphic processes with stochastic resetting. Phys. Rev. E 2019, 99, 012121. [CrossRef] [PubMed]
9. Masoliver, J.; Weiss, G.H. Finite-velocity diffusion. Eur. J. Phys. 1996, 17, 190. [CrossRef]
10. Masoliver, J.; Lindenberg, K. Continuous time persistent random walk: A review and some generalizations. Eur. J. Phys. B 2017,

90, 107. [CrossRef]
11. Kac, M. A stochastic model related to the telegrapher’s equation. Rocky Mt. J. Math. 1974, 4, 497. [CrossRef]
12. Weiss, G.H. Some applications of persistent random walks and the telegrapher’s equation. Phys. A 2002, 311, 381. [CrossRef]
13. Górska, K.; Horzela, A. Subordination and memory dependent kinetics in diffusion and relaxation phenomena. Fract. Calc. Appl.

Anal. 2023, 26, 480. [CrossRef]
14. Górska, K. Integral decomposition for the solutions of the generalized Cattaneo equation. Phys. Rev. E 2021, 104, 024113.

[CrossRef] [PubMed]
15. Compte, A.; Metzler, R. The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A Math.

Gen. 1997, 30, 7277–7289. [CrossRef]
16. Kosztołowicz, T. Cattaneo-type subdiffusion-reaction equation. Phys. Rev. E 2014, 90, 042151. [CrossRef] [PubMed]
17. D’Ovidio, M.; Polito, F. Fractional Diffusion—Telegraph Equations and Their Associated Stochastic Solutions. Theory Probab.

Appl. 2018, 62, 552–574. [CrossRef]
18. Awad, E.; Metzler, R. Crossover dynamics from superdiffusion to subdiffusion: Models and solutions. Fract. Calc. Appl. Anal.

2020, 23, 55–102. [CrossRef]
19. Michelitsch, T.M.; Polito, F.; Riascos, A.P. Squirrels can remember little: A random walk with jump reversals induced by a

discrete-time renewal process. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107031. [CrossRef]
20. Cáceres, M.O. Finite-velocity diffusion in random media. J. Stat. Phys. 2020, 179, 729–747. [CrossRef]
21. Cáceres, M.O. Localization of plane waves in the stochastic telegrapher’s equation. Phys. Rev. E 2022, 105, 014110. [CrossRef]
22. Cáceres, M.O.; Nizama, M. Stochastic telegrapher’s approach for solving the random Boltzmann-Lorentz gas. Phys. Rev. E 2022,

105, 044131. [CrossRef]
23. Stadje, W.; Zacks, S. Telegraph processes with random velocities. J. Appl. Probab. 2004, 41, 665–678. [CrossRef]
24. Masó-Puigdellosas, A.; Campos, D.; Méndez, V. Transport properties and first-arrival statistics of random motion with stochastic

reset times. Phys. Rev. E 2019, 99, 012141. [CrossRef] [PubMed]
25. Evans, M.R.; Majumdar, S.N. Diffusion with resetting in arbitrary spatial dimension. J. Phys. A Math. Theor. 2014, 47, 285001.

[CrossRef]
26. Bodrova, A.S.; Chechkin, A.V.; Sokolov, I.M. Scaled Brownian motion with renewal resetting. Phys. Rev. E 2019, 100, 012120.

[CrossRef] [PubMed]
27. Tal-Friedman, O.; Pal, A.; Sekhon, A.; Reuveni, S.; Roichman, Y. Experimental realization of diffusion with stochastic resetting.

J. Phys. Chem. Lett. 2020, 11, 7350–7355. [CrossRef] [PubMed]

http://doi.org/10.1049/jste-1.1880.0047
http://dx.doi.org/10.1103/PhysRevE.102.022128
http://www.ncbi.nlm.nih.gov/pubmed/32942420
http://dx.doi.org/10.1103/PhysRevE.99.012121
http://www.ncbi.nlm.nih.gov/pubmed/30780342
http://dx.doi.org/10.1088/0143-0807/17/4/008
http://dx.doi.org/10.1140/epjb/e2017-80123-7
http://dx.doi.org/10.1216/RMJ-1974-4-3-497
http://dx.doi.org/10.1016/S0378-4371(02)00805-1
http://dx.doi.org/10.1007/s13540-023-00141-8
http://dx.doi.org/10.1103/PhysRevE.104.024113
http://www.ncbi.nlm.nih.gov/pubmed/34525646
http://dx.doi.org/10.1088/0305-4470/30/21/006
http://dx.doi.org/10.1103/PhysRevE.90.042151
http://www.ncbi.nlm.nih.gov/pubmed/25375482
http://dx.doi.org/10.1137/S0040585X97T988812
http://dx.doi.org/10.1515/fca-2020-0003
http://dx.doi.org/10.1016/j.cnsns.2022.107031
http://dx.doi.org/10.1007/s10955-020-02553-9
http://dx.doi.org/10.1103/PhysRevE.105.014110
http://dx.doi.org/10.1103/PhysRevE.105.044131
http://dx.doi.org/10.1239/jap/1091543417
http://dx.doi.org/10.1103/PhysRevE.99.012141
http://www.ncbi.nlm.nih.gov/pubmed/30780220
http://dx.doi.org/10.1088/1751-8113/47/28/285001
http://dx.doi.org/10.1103/PhysRevE.100.012120
http://www.ncbi.nlm.nih.gov/pubmed/31499761
http://dx.doi.org/10.1021/acs.jpclett.0c02122
http://www.ncbi.nlm.nih.gov/pubmed/32787296


Entropy 2024, 26, 665 18 of 19

28. Besga, B.; Bovon, A.; Petrosyan, A.; Majumdar, S.N.; Ciliberto, S. Optimal mean first-passage time for a Brownian searcher
subjected to resetting: Experimental and theoretical results. Phys. Rev. Res. 2020, 2, 032029. [CrossRef]
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