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Abstract: In this paper, we define fractal synchronization (FS) based on the idea of stochastic
synchronization and propose a mathematical apparatus for estimating FS. One major advantage of
our proposed approach is that fractal synchronization makes it possible to estimate the aggregate
strength of the connection on multiple time scales between two projections of the attractor, which
are time series with a fractal structure. We believe that one of the promising uses of FS is the
assessment of the interdependence of encephalograms. To demonstrate this approach in evaluating
the cross-dependence between channels in a network of electroencephalograms, we evaluated the FS
of encephalograms during an epileptic seizure. Fractal synchronization demonstrates the presence of
desynchronization during an epileptic seizure.
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1. Introduction

One of the important issues of neurophysiology is the identification and charac-
terization of various dynamic states during epileptic seizures, which will be critical for
understanding the mechanism of initiation, spread, and termination of ictal activities. One
of the recently developed tools for solving this problem is the study of synchronization
between neuronal populations [1–3]. Synchronization between neuronal populations is an
important mechanism for establishing functional connections between various regions of
the brain [4]. The process of neuronal synchronization occurs through the transmission of
excitatory and inhibitory impulses [4–6]. One of the manifestations of the phenomenon of
synchronization between neuronal populations in the brain is the process of recognition of
an incoming pattern, which occurs due to the mutual influence of neurons [6]. Timofeev
et al. [2] differentiated between two types of neuronal synchronization: long-range and
local synchronization. Long-range synchronization is detected using electrodes located
at some distance apart. The local (short-range) synchronization can be discovered using
electrodes placed at short (less than 1 mm) distances from each other. Timofeev et al. [2]
revealed that during an epileptic seizure, there is a decrease in the long-range synchroniza-
tion and an increase in the local synchronization. According to [2], this is a consequence
of a reduction in neural firing ability and a decrease in transmitter release. However, it
should be taken into account that neural signals are constantly combining and recombining
in order to create suitable synchronization patterns on different time scales. It is believed
that such processes allow the brain to be more flexible in making decisions on different
time scales [7,8]. Hutchison et al. [7] concluded that the brain must dynamically unite,
synchronize, and react to internal and external stimuli across various time scales. Our
goal in this paper is to develop a new method for estimating the aggregate strength of
connectivity (aggregate interdependence) between populations of neurons at multiple time
scales. One of the tools to solve this problem is fractal analysis, which enables one to
analyze the signal structure at different time scales, extracting from it a common structural
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substrate characterizing the self-similarity of the signal at different time scales. Applying
the basics of fractal analysis will allow us to develop a new method for assessing the
aggregate interdependence between self-similar characteristics of signals on multiple time
scales, which we will define below as fractal synchronization.

Schiff et al. [1] demonstrated that there are differences between the initiation and
termination dynamics of ictal activities, which allowed them to distinguish the initial
and termination periods of an epileptic seizure. Further research revealed different types
of neuronal synchronization inherent in the initial and termination periods of epilepsy.
In [9,10], the initial period of a seizure was demonstrated to be characterized by neuronal
desynchronization. Conversely, the termination period is characterized by neuronal syn-
chronization (or a return from a desynchronized to a synchronized state). Indeed, ref. [3]
showed that desynchronization decreases from the initiation period, which then reaches its
minimum at the termination of the seizure period [1,11]. Schindler et al. [11] reported that
desynchronization is characterized by an increase in amplitude (power) of high-frequency
components (gamma band: 30–50 Hz) [12] of EEG signals. This result is consistent with
conclusions in [13,14], which show that there is an increase in high-frequency compo-
nents in the initial period of a seizure. At the same time, Schindler et al. [11] pointed out
that an increase in power in low-frequency components (delta band, theta band, alpha
band: 0.5–12 Hz) [12] is inherent in synchronization to enable a contemporaneously occur-
ring refractory state in the termination period. Thus, for correct estimation of neuronal
synchronization during an epileptic seizure, the method used should be sensitive to the
amplitude–frequency characteristics of the EEG signal, which will allow for distinguishing
the initial and termination period of an epileptic seizure. Our proposed method is based on
fractal analysis;one of the tools used is the Hurst exponent. It is shown below that the Hurst
exponent is a good indicator of the power of the high-frequency or low-frequency compo-
nent of the signal. Thus, the proposed method of fractal synchronization allows taking into
account not only the fractal structure of the EEG signal but also its amplitude–frequency
characteristic, which is an important factor characterizing the initial and termination period
of an epileptic seizure.

In [5], the concept of synchronization is proposed as “more or less synonymous with
interdependence”. There are various methods for assessing synchronization (or quantifying
the degree of synchronization between coupled systems). The most known approaches
to assessing the degree of synchronization are linear cross-correlation [15], mutual infor-
mation [16,17], phase synchronization [15,18], and generalized synchronization [19,20].
In [12], a general framework is shown for assessing the synchronization between oscillatory
components in a multivariate system. Here in this paper, our proposed method is based on
the idea of fractal synchronization, evaluating the interdependence between two signals,
which are projections of some attractor, on multiple time scales.

The idea of generalized synchronization has become very popular for the analysis
of the interdependence of EEG signals [21] since it allows one to reveal a non-linear
relationship (coupling) between signals using elements of chaos theory [22]. One important
property of generalized synchronization is that the signals analyzed do not have to be
similar to each other [20]. The idea of generalized synchronization was proposed by Rulkov
et al. [19]. Generalized synchronization is characterized by the existence of a continuous
functional relation:

→
r (t) =

→
ϑ (

→
d (t)), (1)

where
→
ϑ is a continuous function;

→
r (t) is the chaotic trajectory reconstructed in the embed-

ding space
→
RE from scalar variables taken from the response system;

→
d (t) is the chaotic

trajectory reconstructed in the embedding space
→
DE from scalar variables taken from the

drive system. There is no unique form of
→
ϑ that characterizes dependence. However, one

potential form can be derived from the mutual information between a pair of signals (or
between many signals) from the system (see [19]), which may reveal a non-linear rela-
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tionship between the signals. One advantage of generalized synchronization is that this
approach can be applied in practice to analyze chaotic synchronization in real physical
systems. However, this idea is a particular case of the more general idea of stochastic syn-
chronization formulated by Afraimovich et al. [23] for various forms of coupling. Consider
the idea of stochastic synchronization, which allows us to introduce the definition of fractal
synchronization, which is a special case of stochastic synchronization.

The mathematical definition of stochastic synchronization is proposed in [23]. Let

d
→
x 1

dt
=

→
F 1(

→
x 1),

d
→
x 2

dt
=

→
F 2(

→
x 2),

→
x 1 ∈ Rm,

→
x 2 ∈ Rn (2)

be systems defining the first and second self-excited oscillators. They explored the system

d
→
x 1(t)
dt

=
→
F 1(

→
x 1) + c

→
f 1(

→
x 1,

→
x 2),

d
→
x 2(t)
dt

=
→
F 2(

→
x 2) + c

→
f 2(

→
x 1,

→
x 2) (3)

If system (3) loses its dependence on initial conditions when time tends to infinity,
namely, the set of initial states corresponds to the same final points, and then the set of such
points is called an attractor of the system. Thus, an attractor implies a preferred trajectory of
a temporally evolving system. Stochastic synchronization occurs for values of the coupling
parameter in the interval c1 < c < c2 if, for these values of c, system (3) generates an
attractor Ac such that the projection of the attractor Ac on the individual subspace A1 can
be translated to another projection of the attractor Ac on the individual subspace A2 with
the help of a mutually unambiguous, mutually continuous function g:

A2 = g(A1) (4)

That is, there is a homeomorphous function g by means of which points on the indi-
vidual subspace A1 are mutually unambiguously matched to the points on the individual
subspace A2. Thus, the mapping preserves ranks of distances: if |x1 − x2| < |x3 − x4|, then
|g(x1)− g(x2)| < |g(x3)− g(x4)|.

Further research on stochastic synchronization led to the conclusion that noise can
influence the dynamics of the system, causing or enhancing synchronization [24,25]. C.
Pang et al. [26] suggest that stochastic synchronization plays an important role in network
integration, which is the basis for brain functioning. In particular, they revealed that
stochastic synchronization is related to the hierarchy of neural timescales inherent to
the brain. However, this general framework of stochastic synchronization is difficult to
implement into a practical algorithm for analyzing synchronization between neuronal
populations (or other biological systems). Therefore, to implement a practical algorithm,
we limit ourselves to considering a special case of stochastic synchronization, namely fractal
synchronization. Next, let us consider the idea of topological synchronization [27,28], the
properties of which allow for introducing the concept of fractal synchronization. In [27],
the concept of topological synchronization is introduced for which condition (4) holds. The
topological synchronization theorem in [27] states that projections of the attractor on the
individual subspaces have the same Hausdorff dimensions (DH) at least:

DH(A1) = DH(A2) (5)

The Hausdorff dimension DH can be defined as:

DH ∝ − log NH
log Ω

(6)

where NH is the number of objects of characteristic size Ω needed to cover the attractor. If
the Hausdorff dimension DH of the attractor is not an integer, then such an attractor has a
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fractal structure. The Hausdorff dimension DH , or more specifically, fractal dimension, is
connected with the Hurst exponent H by relation [29]:

DH = 2 − H, (7)

where the Hurst exponent H can be any real number in the range 0 < H < 1.
For further reasoning, consider the Lorentz attractor (Figure 1). The introduction of

the time axis (t) allows us to demonstrate the projections of this attractor on its individual
subspaces: the x-subspace, y-subspace, and z-subspace. Accordingly, these projections
represent the time series x(t), y(t), z(t). Figure 1 shows the projections of the Lorenz attractor
x(t), y(t), z(t) and a point on the attractor with coordinates (t0,x0,y0,z0).
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Figure 1. The projections of the Lorenz attractor x(t) (red), y(t) (green), z(t) (blue) on the x-subspace,
y-subspace, and z-subspace and a point on the attractor with coordinates (t0,x0,y0,z0).

Thus, the projections of the attractor on the individual subspaces are time series [30].
We can assume the existence of projections that have behavior similar to the behavior of
the fractional Brownian function [29]:

BH(t) =
1

Γ(H + 1/2)

t∫
−∞

(
t − t′

)H−1/2

dB(t′), (8)

where Γ(x) is the Gamma-function, and H is the Hurst exponent. The condition (5) is
satisfied: Then

H(A1) = H(A2), (9)

which tells us that projections of the attractor on the individual subspaces have the same
Hurst exponent if topological synchronization takes place. If we denote x∗1(t) to be a
projection on the individual subspace A1 and x∗2(t) to be a projection on the individual
subspace A2, then Equation (9) can be written as:

H(x∗1(t)) = H(x∗2(t)) (10)

Equation (10) shows that the topological synchronization condition (5) leads to the
interdependence of the fractal properties of the time series. As we demonstrate below,
Equation (10) indicates the interdependence between self-similar characteristics of sig-
nals on multiple time scales. This fact indicates the fractal synchronization of time se-
ries. Using Equations (3)–(10), we now introduce the conditions of fractal synchroniza-
tion.Fractal synchronization is observed if system (3) generates an attractor Ac such that the
following apply:
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(1) Projections of the attractor on the individual subspaces have behavior similar to the
behavior of the fractal Brownian function;

(2) Projections of the attractor on the individual subspaces are dependent on each other,
and the strength of their connection is governed by the coupling parameter;

(3) There is an interdependence between self-similar characteristics of signals on multiple
time scales.

In Section 2, we give a definition of fractal synchronization, which is based on
these conditions.

It is known that an attractor can be detected in any coupled system; this is due to
the fact that the value of one variable in some manner limits the eventual values of other
variables [31]. Since the brain can be regarded as a nested network of coupled dynamical
systems [32], these systems are characterized by attractors. Given the fact that attractor
states are generated by the inner framework of a neural network, a system with a large
number of neurons may contain different types of attractors, depending on which subsets
of cells are more active in the analyzed time period [31]. Models of neural networks
characterized by different attractors are widely represented in neuroscience [33,34]. Thus,
the presented approach for estimating synchronization, which is based on the analysis of
the coupling of attractor projections, can be widely used in the study of stochastic dynamics
in the brain.

Since brain functioning demonstrates synchronization of spatiotemporal structures
on multiple scales [35], this definition of fractal synchronization can be used to assess the
aggregate degree of synchronization between brain regions at multiple time scales. A very
specific application in this general framework is filtering, which was presented by Ombao
and Pinto [12]. In that work, the “projected” components are exactly the linear band-
pass filtered signals, and the interdependence between these projections can be captured
linearly through coherency or coherence and also non-linearly through the phase-amplitude
coupling. Here, we propose a new method that can be applied in practice to estimate fractal
synchronization in real biological systems, in particular, to estimate fractal synchronization
between populations of brain neurons.

The self-similar structure of the brain [36,37] indicates the predominance of fractals
at all levels of the nervous system [38]. Bieberich [39] suggested that the self-similarity of
dendritic branching is necessary for economical information compression and recursive
algorithms. There are many works where the authors demonstrate the fractal structure of
EEG and fMRI signals [40,41]. Analyzing various studies on the fractal structure of the
nervous system in detail, Werner [38] came to the conclusion that the fractal structure is the
most economical principle of interaction in the complex dynamics of the nervous system. It
allows the nervous system to most optimally interact between different parts of the system
at different scales for a coordinated response to external influences.

The condition of a self-similar signal structure is defined below by means of Equation (11).
One of the indicators of self-similarity is the Hurst exponent. It is worth noting that if the value
of the Hurst exponent lies in the interval (0.50, 1.00), then such time series will have persistent
behavior and characterize long memory processes. If the value of the Hurst exponent lies
in the interval (0.00, 0.50), then this is inherent in the mean reverting time series, which
are characterized by antipersistent behavior. The Hurst exponent of 0.50 corresponds to
Brownian motion [29]. Figure 2 shows the time series generated by the random midpoint
displacement algorithm [42] for different Hurst exponents. This example presents a time
series with antipersistent behavior H = 0.1, with persistent behavior H = 0.7 and Brownian
motion H = 0.5.
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Figure 2. The time series generated by the random midpoint displacement algorithm for the Hurst
exponents H = 0.1, H = 0.5, H = 0.7.

It is known that time series, characterized by different Hurst exponents, have different
frequency characteristics [29]. Consider how the power spectrum of the time series changes
depending on the Hurst exponent. Figure 3 shows the dependence of the power spectrum
on the Hurst exponent for synthetic time series. The corresponding time series were gen-
erated using the random midpoint displacement algorithm for different Hurst exponents
with a step of 0.1.
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The corresponding time series were generated using the random midpoint displacement algorithm
for different Hurst exponents with a step of 0.1.

Figure 3 demonstrates that in the time series characterized by high values of the Hurst
exponent (i.e., close to one), low-frequency power predominates. As the Hurst exponent
decreases, the contribution of medium-frequency and low-frequency power increases.
Thus, the time series with antipersistent behavior is characterized by the predominance of
high-frequency components in comparison with the time series with persistent behavior,
which is characterized by the predominance of low-frequency components. Thus, the
fractal characteristics of a time series are related to its frequency characteristics.

Recently, fractal analysis has been successfully used to analyze EEG signals detecting
epileptic seizures. Geng et al. [43] demonstrated the existence of a statistically significant
difference (p < 0.05) between the Hurst exponents of epileptic EEG signals and interictal
EEG signals. Using fractal analysis, Li et al. [44] offered two methods for differentiating
epileptiform discharges. Analyzing functional magnetic resonance imaging, which can be
modeled as a sum of scale-free EEG “microstates”, Churchill et al. [45] demonstrated that
decreases in the Hurst exponent (H) were related to three different sources of cognitive
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effort/task engagement: (1) task difficulty, (2) task novelty, and (3) aging effects. Similarly,
decreases in the Hurst exponent were observed in anxiety and fatigue. These results
demonstrate the utility of fractal analysis for studying EEG signals, which motivates us to
investigate the potential of fractal synchronization for studying EEG signals, particularly
during an epileptic seizure. Fractal synchronization will make it possible to estimate the
aggregate interdependence between neuronal populations on multiple time scales, which
may provide additional information on the development of epileptic seizure dynamics and
identifying EEG data. In the following, we describe the most commonly used methods for
assessing the interdependence between neuronal populations.

One widely used method to qualify the interdependence between neuronal popu-
lations is coherence assessment. However, it is believed that coherency is capable of
determining only linear relationships between time series [20]. Thus, this method may
not be effective for evaluating non-linear relationships between the underlying dynamical
systems. At the same time, fractal synchronization allows us to estimate a non-linear
relationship, which is demonstrated in the example of two interacting chaotic systems
(Equation (18)). The application of the well-known phase synchronization method makes it
possible to evaluate the interdependence between neuronal populations in terms of time-
dependent n:m phase locking, which makes it possible to determine a more general type of
interaction between dynamic systems than the coherence. Nevertheless, it is reasonable
to use this method when the analyzed signals are approximately oscillatory [20]. Stam
et al. [20] proposed a synchronization likelihood measure based on the idea of generalized
synchronization to evaluate the interdependence between time series. Stam et al. [20]
demonstrated that the synchronization likelihood is able to define the increase in coupling
during an epileptic seizure. However, this method does not determine desynchronization,
which is characteristic of the beginning of an epileptic seizure [2,3,9–11]. In [11,46], meth-
ods based on equal-time correlation and correlation matrix analysis were used to evaluate
synchronization between neuronal populations during an epileptic seizure. This approach
demonstrates the presence of desynchronization at the beginning of an epileptic seizure
and an increase in synchronization at the end of an epileptic seizure. This is consistent with
the other results [1–3,9–11].However, Schindler et al. [11] noted that one shortcoming of
this method is that it is not frequency selective and may not detect non-linear correlations

Thus, given the shortcomings of the synchronization estimation methods described
above, the purpose of this paper is to develop a method for estimating fractal synchroniza-
tion that would have the following properties:

(1) This method should be effective for evaluating non-linear relationships between the
underlying dynamical systems. As we demonstrate below, if system (3) consists
of two interacting chaotic systems (non-linear dynamical systems), they will also
exhibit fractal synchronization. Thus, fractal synchronization can define a non-linear
relationship since the underlying dynamics of such a system are not linear. An
important property of fractal synchronization, which allows us to estimate a non-linear
relationship, is that the corresponding time series need not be similar to each other.

(2) The proposed method should correctly assess the dynamics of synchronization during
an epileptic seizure. Since the brain dynamically unites, synchronizes, and reacts to
external and internal stimuli across multiple time scales [7], evaluating the aggre-
gate interdependence between populations of neurons at multiple time scales can
provide a more accurate assessment of the dynamics of synchronization during an
epileptic seizure.

(3) The results of fractal synchronization estimations should be understandable for physi-
ological interpretation. One of the advantages ofthe interpretation of the proposed
method is that this method is based on fractal analysis. There are quite a lot of works
related to the physiological interpretation of fractal analysis results.

The disadvantage of this method is that fractal synchronization estimates the interde-
pendence between signals, with behavior similar to the behavior of the fractional Brownian
function (8). Accordingly, if the chaotic attractor does not have a fractal dimension, this
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method is not applicable. However, we believe that this approach can be extended to the
more general case. For this purpose, in the future, we plan to develop this idea for the
estimation of synchronization on the basis of wavelet analysis.

2. Evaluation of Fractal Synchronization

It is known that signals generated by cognitive activity have a fractal structure, i.e.,
brain cognitive signals display self-similar behavior on various time scales [47]. One
hypothesis is that the fractal structure is a consequence of coupling among interdepen-
dent processes [48,49]. Chen et al. [49] demonstrated coupling among brain rhythms:
δ (0.5–4.0 Hz), θ (4.0–8.0 Hz), α (8.0–12.0 Hz), β (12.0–30.0 Hz), γ (30.0–50.0 Hz). Thus, this
coupling covers a wide range of timescales (0.5–50.0 Hz). In order to assess the aggregate
interdependence between EEG signals, it is necessary to take into account the coupling on
different timescales. One way to study this type of aggregate interdependence is through
fractal synchronization.

Consider a stochastic time series {X(t)}, whose behavior is described by the fractal
Brownian function (6). According to the definition given in [50], a time series has a fractal
structure if the self-similarity condition is satisfied, namely

X(∆t × t) ∼ ∆tH × X(t) (11)

for each ∆t > 0 and t ≥ 0, where H is the Hurst exponent [29,51–54] and ~ means that the
statistical properties of both sides of the equation are identical (two stochastic processes
have the same distribution). The scaling properties of this time series can be defined by the
Hurst exponent using the generalized variance

〈
σ2(∆t)

〉
[29,51],〈

σ2(∆t)
〉

∝
〈
[X(t + ∆t)− X(t)]2

〉
∝ ∆t2H (12)

Thus, the generalized variance
〈
σ2(∆t)

〉
of the fractal time series is a parameter that

demonstrates self-similarity on different time scales ∆t, which allows using the generalized
variance

〈
σ2(∆t)

〉
to estimate the Hurst exponent [29,51,52]. Further, this self-similarity

property, which the generalized variance
〈
σ2(∆t)

〉
manifests at different time scales ∆t, is

used to estimate fractal synchronization.
Let the stochastic time series X∗

1 (t) and X∗
2 (t) satisfying condition (10) and be projec-

tions of the attractor of system (3) on the individual subspaces A1 and A2, respectively.
Suppose that the fractal synchronization condition (10) for the projections on the individual
subspaces X∗

1 (t) and X∗
2 (t) is satisfied. Then, taking into account Equation (12), we have

the following result: 〈
σ2

1 (∆t)
〉

∝
〈

σ2
2 (∆t)

〉
, (13)

where
〈
σ2

1 (∆t)
〉

and
〈
σ2

2 (∆t)
〉

are generalized variances of the projections on the individual
subspaces X∗

1 (t) and X∗
2 (t). Equation (13) indicates the interdependence between self-

similar characteristics of signals
〈
σ2

1 (∆t)
〉

and
〈
σ2

2 (∆t)
〉

on multiple time scales. This
implies the existence of a functional relation θ between generalized variances on multiple
time scales: 〈

σ2
1 (∆t)

〉
= θ

(〈
σ2

2 (∆t)
〉)

(14)

Thus, fractal synchronization (FS) is defined as the aggregate strength of a functional
relation θ between generalized variances

〈
σ2(∆t)

〉
for two fractal time series, which are

projections of an attractor at multiple time scales. In contrast to this, fractal desynchroniza-
tion is defined as the absence of a functional relationship θ between variances

〈
σ2(∆t)

〉
. It

should be expected that fractal desynchronization will be characterized by values close
to zero. However, it is necessary to take into account the bias, which gives more inflated
desynchronization results. In Section 3, we demonstrate the practical evaluation of the
desynchronization threshold using the estimation of the significance.
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The functional relation (14) can be estimated using mutual information between
the values

〈
σ2

1 (∆t)
〉

and
〈
σ2

2 (∆t)
〉

on the interval ∆t ∈ (∆tmin; ∆tmax), where the values
∆tmin and ∆tmax are determined from the condition described below. Applying mutual
information will allow for the revealing of a non-linear relationship between the values〈

σ2
1 (∆t)

〉
and

〈
σ2

2 (∆t)
〉

at different time scales in which the parameter ∆t varies.
The first step to estimating FS is to determine the generalized variances in the trajectories

X∗
1(t) and X∗

2(t), which are the projections of the attractor Ac on the individual subspaces.
There are various methods for estimating the generalized variance

〈
σ2(∆t)

〉
. The most

common are stabilogram diffusion analysis (SDA), detrending moving average (DMA), and
detrended fluctuation analysis (DFA) [51,52]. In our work, we used the SDA method, which
is described in detail in [52] and, in our opinion, is the simplest and most convenient in the
implementation of the above approach since it allows calculating the values of the generalized
variance at a minimum value of ∆tmin = 2, in contrast to the DFA method, where it is necessary
to have higher ∆tmin values to construct an approximating straight line [52,55]. Note that the
DMA method has its own potential and will be considered in future work. A comparative
analysis of SDA and DMA methods was performed in [52].

Here, the general variance
〈
σ2(∆t)

〉
is estimated as follows:

〈
σ2(∆t)

〉
=

1
(n − 1)(N/n)

×
n−1

∑
j=1

N/n

∑
i=1

(X((j × ∆t) + i)− X((j − 1)× ∆t + i))2 (15)

where N is the number of time points, n = 2, 3, 4, . . . , nmax. The parameter ∆t is the in-
terval between two time points and is defined as a condition ∆t = N/n. The value nmax
depends on the maximum size of the fractal domain.In order to minimize the saturation
effects due to finite size, nmax must satisfy condition nmax << N [51]. The square displace-
ment (X((j × ∆t) + i)− X((j − 1)× ∆t + i))2 is calculated for all pairs of points located
on the same intervals ∆t. The second step is to evaluate mutual information between the
values

〈
σ2

1 (∆t)
〉

and
〈
σ2

2 (∆t)
〉

on the interval ∆t ∈(∆tmin; ∆tmax), where the values ∆tmin
and ∆tmax are determined from the above conditions. Computing mutual information
uncovers potential non-linear relationships between the values

〈
σ2

1 (∆t)
〉

and
〈
σ2

2 (∆t)
〉

at
different time scales in which the parameter ∆t varies. This allows us to estimate the fractal
synchronization according to Equation (14).

For calculating mutual information, a histogram-based approach developed in [56]
is used. The method for estimating mutual information [56] between the values

〈
σ2

1 (∆t)
〉

and
〈
σ2

2 (∆t)
〉

is described as follows. Consider a system A with MA possible states, i.e.,
A takes on one of the following unique values a1, . . . , aMA , each with probability p(ai),
i = 1, . . . , MA. Analogically, consider a system B with MB possible states, i.e., B takes on
one of the following unique values b1, . . . , bMB , each with probability p(bj), i = 1, . . . , MB.
Thus, the mutual information between systems A and B is defined as follows:

MI(A, B) =
MA

∑
i=1

MB

∑
j=1

p(ai, bj) log

(
p(ai, bj)

p(ai)p(bj)

)
(16)

where p(ai, bj) designates the joint probability that A is in the state ai and B is in
state bj. If the measurements of systems A and B are statistically independent, then
p(ai, bj) = p(ai)p(bj) and thus MI(A,B) = 0. In contrast, when A and B are statistically
dependent, then MI(A,B) > 0. To estimate the joint probability p(ai, bj) and the marginal
probabilities p(ai) and p(bj), in (16), we use the histogram method described in [56].

Additionally, in our article, the power spectrum of EEG signals was estimated.In this
paper, the power spectrum of an EEG signal Xt sampled at discrete time points t = 1, . . . , N
is estimated using the periodogram, which we define below:

S(ωj) =
1

2πN

∣∣∣∣∣ N

∑
t=1

Xte−itωj

∣∣∣∣∣
2

, (17)
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with fundamental Fourier frequencies ωj = 2π j/N and j = 1, . . . , [(N − 1)/2], where
[.] denotes the integer part [57]. The largest frequency to be resolved is the Nyquist
frequency fNy =

ωNy
2π = 1

2∆ , where ∆ is the sampling interval. The periodogram in
Equation (17) is asymptotically unbiased for the true spectrum, but it is inconsistent
because its variance does not decay to 0 when the length N of the time series goes to infinity.
Thus, a mean-squared consistent estimator for the spectrum is constructed by smoothing
the periodograms. One such smoother is the Hanning taper, which reduces the Gibbs effect
resulting from the sharp edges of the regular taper (raw).

3. Conceptual Examples
3.1. Synchronization Properties of Fractal Synchronization

To demonstrate the synchronization properties of the proposed FS, we studied the
coupled Lorenz model systems [17] with an increasing coupling parameter. In this setup, we
call the system X (with state variable xi) the “driving” system, and we denote the response
system to be Y (with state variable yi). The coupled systems of Lorentz models [17] are
described by the following difference equations:

d
→
x 1
dt = σ(x2 − x1)

d
→
x 2
dt = x1(R0 − x3)− x2

d
→
x 3
dt = x1x2 − bx3

d
→
y 1
dt = σ(y2 − y1)

d
→
y 2
dt = y1(R1 − y3)− y2

d
→
y 3
dt = y1y2 − by3 + C(x3 − y3)

(18)

where σ = 10, R0 = 28, R1 = 28.001, b = 8
3 . For the coupled Lorenz systems (18), we

analyzed the FS between the third components x3i and y3i according to [17]. To demonstrate
the effect of fractal synchronization, the dynamical system Equation (18) was obtained for
values of coupling strength C increasing from C = 0 to C = 2.4. We generated time series xi
and yi for dynamical systems containing 50,000 points. Further, the generated time series
was divided into 50 intervals, each containing 1000 points, at which fractal synchronization
was estimated.

Figure 4 shows the dependence of the degree of fractal synchronization FS on coupling
strength C for the system (18).
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Figure 4 demonstrates that fractal synchronization increases with increasing coupling
strength. The fractal synchronizations FS in interval C∈[0.0, 1.2] are statistically significantly
different (p < 0.05, Dunn’s Test of Multiple Comparisons) and have lower values than
the fractal synchronizations FS in interval C∈[1.4, 2.4]. This is due to the fact that with
increasing parameter C, the system (Equation (18)) generates an attractor whose projections
become more dependent on each other. This leads to reinforcing the functional relation θ
(Equation (14)) between the generalized variances considered projections of the attractor
x3i and y3i (Equation (18)).

Thus, an increase in fractal synchronization indicates that the analyzed system gener-
ates an attractor whose projections become more dependent on each other. This leads to
reinforcing the functional relation θ between the generalized variances

〈
σ2(∆t)

〉
. As gen-

eralized variance
〈
σ2(∆t)

〉
is calculated on different time scales ∆t, the increase in fractal

synchronization indicates an increase in the functional relation between the two signals on
different time scales ∆t. It follows that fractal synchronization characterizes the aggregate
strength of the relation between generalized variances

〈
σ2(∆t)

〉
for two fractal time series,

which are projections of an attractor at multiple time scales. Thus, fractal synchronization
can reflect trends associated with the fractal dynamics of the system underlying the process
under study.

Nevertheless, as can be seen from Figure 4, the fractal synchronization is not close
to zero at small values of coupling strength. This suggests the existence of a bias in the
estimation of fractal synchronization

3.2. Bias

One of the important procedures for assessing the properties of measurements of
interdependence is to estimate the bias. It is assumed that for small values of coupling
strength, the fractal synchronization of the two time series is close to the synchronization
of the two independent time series. Random shuffling of the time series, which was used
in our work to obtain surrogate series [58], removes the original fractal structure of the
time series.

Since the proposed calculation method has a bias at small values of the coupling
strength, evaluating the significance S is used to estimate the bias. To evaluate significance
S, the (standardized) FS Z-score was used (see Equation (19)) [58].

S =
FS −

〈
FSshu f f le

〉
σshu f f le

, (19)

where
〈

FSshu f f le

〉
is the mean of the shuffled values, and σshu f f le is the standard deviation.

Here, the standardized fractal synchronization, under the null, has a standard normal
distribution (mean 0 and variance 1). Thus, the observed Z-score value of 3 approximately
corresponds to the significance level p-value = 0.01. Thus, if the significance S ≤ 3, then the
fractal synchronization FS of the analyzed signals is interpreted asnot having exceeded the
fractal synchronization FS of the independent shuffled signals (which mimics the properties
of the null). Thus, in that case, we conclude that there is no fractal synchronization (or no
sufficient evidence for FS). This phenomenon is interpreted as fractal desynchronization.

Figure 5 demonstrates the change in significance from the strength of coupling C for
the fractal synchronization FS shown in Figure 4. Fractal synchronization FS was calculated
for the time series x3i and y3i of the Equation (18).

Figure 5 demonstrates that for small coupling strengths (C ≤ 1.2), the fractal syn-
chronization of the analyzed signals is no greater than the fractal synchronization of the
independent shuffled signals. Thus, if the significance S ≤ 3, then this indicates the absence
of fractal synchronization. In this case, we have fractal desynchronization.



Entropy 2024, 26, 666 12 of 24

Entropy 2024, 26, x FOR PEER REVIEW 12 of 25 
 

 

signals on different time scales tΔ . It follows that fractal synchronization characterizes 
the aggregate strength of the relation between generalized variances )(2 tΔσ for two 

fractal time series, which are projections of an attractor at multiple time scales. Thus, 
fractal synchronization can reflect trends associated with the fractal dynamics of the 
system underlying the process under study. 

Nevertheless, as can be seen from Figure 4, the fractal synchronization is not close to 
zero at small values of coupling strength. This suggests the existence of a bias in the es-
timation of fractal synchronization 

3.2. Bias 
One of the important procedures for assessing the properties of measurements of 

interdependence is to estimate the bias. It is assumed that for small values of coupling 
strength, the fractal synchronization of the two time series is close to the synchronization 
of the two independent time series. Random shuffling of the time series, which was used 
in our work to obtain surrogate series [58], removes the original fractal structure of the 
time series. 

Since the proposed calculation method has a bias at small values of the coupling 
strength, evaluating the significance S is used to estimate the bias. To evaluate signifi-
cance S, the (standardized) FS Z-score was used (see Equation (19)) [58]. 

shuffle

shuffleFSFS
S

σ
−

= , (19) 

where shuffleFS is the mean of the shuffled values, and shuffleσ  is the standard devia-

tion. Here, the standardized fractal synchronization, under the null, has a standard 
normal distribution (mean 0 and variance 1). Thus, the observed Z-score value of 3 ap-
proximately corresponds to the significance level p-value =0.01. Thus, if the significanceS
≤ 3, then the fractal synchronization FS of the analyzed signals is interpreted asnot hav-
ing exceeded the fractal synchronization FS of the independent shuffled signals (which 
mimics the properties of the null). Thus, in that case, we conclude that there is no fractal 
synchronization (or no sufficient evidence for FS). This phenomenon is interpreted as 
fractal desynchronization. 

Figure 5 demonstrates the change in significance from the strength of coupling C for 
the fractal synchronization FS shown in Figure 4. Fractal synchronization FS was calcu-
lated for the time series ix3 and iy3 of the Equation (18). 

 
Figure 5. The significance S of fractal synchronization FS versus the coupling strength C for the
fractal synchronization FS, presented in Figure 4.

4. Analysis of Fractal Synchronization of EEG Signals
Clinical Datasets

In this study, we examined in detail the estimation of fractal synchronization using
the EEG data collected at the Epilepsy Center (PI: Dr. Beth Malow) at the University of
Michigan from the subject who experienced a spontaneous epileptic seizure. The EEG
was sampled at 100 Hz and lasted for about 500 s. There were 50,000 time points in each
channel. The electrodes were located according to the 10–20 system. Figure 6 demonstrates
the disposition of the scalp electrodes. The T3 channel highlighted in red is the focus of the
epileptic seizure. Channel Cz was used as a reference electrode. Artifact Subspace Recon-
struction (ASR) technique [59] was used to pre-process the EEG signals in the channels Fp1,
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, and Pz.
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electrode. The subjects in question, according to the description of the databases, have the 
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scalp: frontal polar (Fp), frontal (F), central (C), temporal (T), parietal (P), and occipital (O). Channel
T3, which is highlighted in red, is the focus of the epileptic seizure.

The approximate time of the onset of the epileptic seizure is ~340 s. A detailed protocol
for recording EEG signals and the results of their study are presented in the articles by
Ombao et al. [60–63]. Additionally, some records (subject 13, subject 34, subject 36, subject
78) from the publicly available Neonatal Epileptic EEG dataset from Stevenson et al. [64]
were used. The dataset contains preictal and ictal periods measured during sleep. All
subjects had recordings with a sample frequency of 256 Hz. Authors [64] used a reference
electrode “at midline”, but the authors did not specify the exact location of this electrode.
The subjects in question, according to the description of the databases, have the following
diagnoses: subject 13—cardiac anomalies; subject 34—severe asphyxia, infarction; subject
36—status post cardiac operation; subject 78—acute ischemia, infarction.
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5. Results

It is known that at the onset of an epileptic seizure, there is a decrease in long-range
synchronization [2]. This allows the brain to reduce the exchange of information between
the epilepsy focus and the rest of the neural population [6,32,65,66]. Thus, this localization
of information prevents the brain from spreading incorrect information emanating from
the focus of epilepsy in order to prevent more significant disturbances in the process of
information integration and coordination of brain activity. At the same time, at the onset of
an epileptic seizure, there is local synchronization in the focus of an epileptic seizure [2,67],
which allows an intense exchange of information between neurons at a short distance
(less than 1 mm). Such a process probably allows the formation of new connective chains
of neurons [67] in the local space (less than 1 mm), which can eliminate the resulting
disorder. It is possible that this process of formation of new neuronal connections involves
a population of neurons, which Quyen et al. [65] referred to as the “idle” population of
neurons. The greater the distance from the epilepsy focus at the onset of an epileptic
seizure, the weaker the synchronization between the population of neurons belonging to
the epilepsy focus and the populations of neurons from other brain regions. At the end of
an epileptic seizure, namely, after the elimination of neuronal dysfunction in the epilepsy
focus, the local synchronization decreases, and the long-range synchronization, on the
contrary, increases [2]. As a result, the exchange of information between different parts
of the brain, necessary for the process of integrating information and coordinating brain
activity, is restored.

In this paper, we investigated how long-range synchronization changes during an
epileptic seizure. The long-range synchronization was assessed using fractal synchro-
nization between the epilepsy focus and other neuronal populations. We believe that if
the behavior of fractal synchronization corresponds to the above-described behavior of
long-range synchronization during an epileptic seizure, then the fractal synchronization
method is correct and can be used to assess long-range synchronization during an epileptic
seizure for research and medical purposes.

The application of fractal synchronization to EEG signals makes it possible to de-
termine how strongly the generalized variances

〈
σ2(∆t)

〉
of EEG signals are related at

different time scales. The stronger the relationship between the generalized variances〈
σ2(∆t)

〉
, the stronger the interdependence between EEG signals. Accordingly, the greater

the flow of information between neuronal populations, which are characterized by these
EEG signals. Thus, fractal synchronization makes it possible to evaluate the change in the
flow of information between neuronal populations. In particular, fractal desynchronization
indicates a lack of information exchange.

Considering the above, in this work, we investigated FS synchronizations between the
EEG signal of channel T3, which is the focus of epilepsy, and other EEG signals of the left
and right hemispheres of the brain. Thus, synchronizations between the T3 channel and
left hemisphere brain channels were evaluated: T3-Fp1, T3-F3, T3-C3, T3-F7, T3-T5, T3-P3,
T3-O1. Similarly, synchronizations between the T3 channel and the right brain hemisphere
channels were evaluated: T3-Fp2, T3-F4, T3-F8, T3-T4, T3-C4, T3-T6, T3-P4, T3-O2. In
this study, the width of the window used to calculate the corresponding values (fractal
synchronization, Hurst exponent) is 1000 points.

To identify general patterns (tendency), we consider the dynamic change in the average
FS between the EEG signal of the T3 channel and the EEG signals of the right and left
brain hemispheres. Figure 7a demonstrates the dynamic change in the average FS between
the EEG signal of the T3 channel and the EEG signals of the right and left hemisphere
brain channels. The vertical red line indicates the approximate time of the onset of the
epileptic seizure. Figure 7b shows the change in Hurst exponent (H) for the EEG signals of
the corresponding channels. On the boxplots shown here, outliers are identified;note the
different markers for “out” values (small circle) and “far out” (marked with a star).
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Figure 7. (a) The dynamic change in the average FS between the EEG signal of the T3 channel and
the EEG signals of the right and left hemisphere brain channels during the epileptic seizure. (b) The
dynamic change in the average H of the EEG signals of the right and left hemisphere brain channels
during the epileptic seizure.

Figure 7a,b demonstrate that there is a general trend in synchronization and fractal
behavior for the studied pairs. Unfortunately, visually, we cannot determine the onset of an
epileptic seizure. However, knowing that the approximate time of the onset of the epileptic
seizure is ~340 s, we can distinguish the pre-seizure period (~10–340 s). Further, visually,
we can highlight the initiation period (~350–410 s), which is characterized by low fractal
synchronization values, and the termination period (~420–500 s), which is characterized by
higher values of fractal synchronization than the initiation period. Small values of fractal
synchronization at the initiation period may indicate fractal desynchronization.

In order to determine the interval at which fractal desynchronization occurs, consider
in Figure 8 the dynamic change in the average significance S (Equation (19)) between the
EEG signal of the T3 channel and the EEG signals of the right and left hemisphere brain
channels. The red line indicates the boundaries of fractal desynchronization at S = 3 (the
significance level p = 0.01 approximately corresponds to the Z-scores = 3).
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Figure 8 demonstrates that in the initial period in an interval of 370–410 s, we can
quite clearly observe the effect of fractal desynchronization, as the average significance
S ≤ 3 in this interval. Thus, during the initiation period (~350–410 s), there is a period of
fractal desynchronization (~370–410 s). As we can see, the period of fractal desynchroniza-
tion is followed by a termination period (~420–500 s). Thus, the start and end points of
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fractal desynchronization were determined at the significance level p = 0.01, to which the
Z-scores = 3 corresponds.

One of the main limitations of the proposed tool, in its current form, is that of the
interpretation of brain functional connectivity. This limitation is inherent in the nature of the
EEG (sensor) signals, which are not spatially localized due to the volume conduction. Thus,
in the current form, when a pair of EEG signals exhibit a statistically significant fractional
synchronization, we cannot interpret this as the synchronization of the subpopulation of
neurons on the cortex. Our interpretation is limited to that at the sensor level (rather than
the source level). Rather, we only state that fractal desynchronization is a reduced amount
of information transfer between the two EEG sensors. Moreover, there are potential tools for
reducing the spurious effects due to volume conductance [68,69]. This will be the subject of
our future investigation, and this has to be rigorously conducted with several experiments.

Note, however, that despite the limitations of the interpretation, FS can still be consid-
ered as a viable “feature” in EEG signals for the purpose of classification and discrimination.
Moreover, for more general signals (without the practical problem of volume conduction),
the proposed FS can be used as a potential measure of dependence in a network of time
series in the same way as other measures of dependence such as cross-correlation, partial
cross-correlation, coherence, partial coherence, and partial directed coherence.

To identify features for the selected periods, we perform a statistical comparison of the
fractal synchronization FS for the pre-seizure period FSP, fractal desynchronization FSD,
and termination period FST . Since the empirical distribution of the estimated values differs
from a normal distribution (p-value < 0.05, Kolmogorov–Smirnov test), we proceeded to
use the median (Me) in order to evaluate the central values of FS and applied the first
quartile Q1 and third quartile Q3 to evaluate the variation or spread of the distribution of
the considered values. Table 1 shows the results achieved for the fractal synchronization FS
for the pre-seizure period FSP, fractal desynchronization FSD, and termination period FST .

Table 1. Median of the fractal synchronization FS for pre-seizure period FSP, fractal desynchro-
nization FSD, and termination period FST (N—the total number of fractal synchronization values,
estimated at the corresponding period; Me—median, Q1—first quartile, Q3—third quartile).

Period N FS,
Me (Q1–Q3)

pre-seizure FSP 510 0.61 (0.53–0.73)
desynchronization FSD 75 0.35 (0.26–0.47)

termination FST 135 0.73 (0.64–0.80)

The Kruskal–Wallis rank sum test revealed a statistically significant difference
(p < 0.01) between FSP, FSD, and FST . Accordingly, fractal desynchronization FSD has
lower values (p-value < 0.01, Dunn’s Test of Multiple Comparisons) compared to the fractal
synchronization of the pre-seizure period FSP. The termination period FST is characterized
by higher values (p-value < 0.01, Dunn’s Test of Multiple Comparisons) than the fractal
synchronization of the pre-seizure period FSP. Thus, the fractal desynchronization period
is characterized by the weakest dependence on different time scales between the general-
ized variance

〈
σ2(∆t)

〉
of the EEG signal of the T3 channel and the generalized variances〈

σ2(∆t)
〉

of the EEG signals of the right and left hemisphere brain channels.
In contrast, the termination period is characterized by the strongest dependence on

different time scales between the generalized variance
〈
σ2(∆t)

〉
of the EEG signal of the

T3 channel and the generalized variances
〈
σ2(∆t)

〉
of the EEG signals of the right and left

hemisphere brain channels. However, further studies of fractal synchronization that were
performed during an epileptic seizure with other EEG recordings did not reveal an increase
in fractal synchronization during the termination period FST compared to the pre-seizure
period FSP. It is possible that this effect is a special case. It is worth noting that when
analyzing other records, the results of which are given below, we did not know the focus of
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epilepsy. It is possible that this discrepancy is related to this. However, we do not ignore
this result; perhaps this is one of the mechanisms for stopping an epileptic seizure.

Solomon et al. [70] establish that decreases in synchrony accompany increases in high-
frequency power and that this fundamental relationship between power and synchrony
manifests itself throughout the human brain. Thus, we can expect that the decrease in
fractal synchronization should be accompanied by an increase in high-frequency power. We
consider the frequency characteristics for the T3, T4, C3, C4 channels during the epileptic
seizure in more detail. Figure 9 shows the power spectrum for the T3, T4, C3, C4 channels
during the epileptic seizure. The power spectrum was estimated according to Equation (18).
The width of the window for calculating the power spectrum of EEG signals is 1000 points.
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By analyzing Figure 9a–d, we can see that in the pre-seizure period, in all the EEG
channels, power is concentrated at the lower frequencies (delta band, theta band, alpha
band: 0.5–12 Hz). The fractal desynchronization interval (370–410 s) is characterized by
an increase in the power of medium (beta band: 13–30 Hz) and high frequencies (gamma
band: 30–50 Hz). The corresponding frequency range (15–40 Hz), which is observed during
desynchronization at the onset of an epileptic seizure, was described in [3]. The highest
powers are highlighted at 20–30 Hz in all the EEG channels. It should be mentioned that
de Curtis et al. [71] support the idea that synchronization through inhibition is crucial for
the generation of fast activity at 20–30 Hz observed at the start of a focal seizure. Thus, we
see that fractal desynchronization is accompanied by an increase in high-frequency power,
which coincides with the results in [70]. The termination period (420–500 s) demonstrates
a predominance of low-frequency power (delta band, theta band, alpha band: 0.5–12 Hz)
in all the EEG channels. The predominance of low-frequency power with increasing
synchronization at the end of an epileptic seizure has been described in [71]. Low-frequency
connections support information integration or coordinated brain activity [70].

For further analysis of the fractal dynamics, consider the change in the Hurst exponent
at the selected periods. Table 2 shows the results obtained for the Hurst exponent (H)
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for the pre-seizure period HP, for the fractal desynchronization period HD, and for the
termination period HT .

Table 2. The median of the Hurst exponent (H) for the pre-seizure period HP, for the fractal desynchro-
nization period HD, and for the termination period HT (N—the total number of the Hurst exponent
values, estimated at the corresponding period; Me—median; Q1—first quartile; Q3—third quartile).

Period N H,
Me (Q1–Q3)

pre-seizure HP 544 0.21 (0.18–0.25)
desynchronization HD 80 0.07 (0.04–0.08)
termination period HT 144 0.27 (0.21–0.35)

The Kruskal–Wallis test revealed a statistically significant difference (p < 0.01) between
HP, HD, and HT . Accordingly, the Hurst exponent of the fractal desynchronization period
HD has lower values (p-value < 0.01, Dunn’s Test of Multiple Comparisons) compared to the
Hurst exponent of the pre-seizure period HP. The Hurst exponent of the termination period
HT is characterized by higher values (p-value < 0.01, Dunn’s Test of Multiple Comparisons)
than the Hurst exponent of the pre-seizure period HP. As shown in [45], a decrease in
the Hurst exponent indicates an increase in brain effort, which puts the brain in a state of
more limited dynamic range. Thus, the lower values of the Hurst exponent of the fractal
desynchronization period HD compared to the Hurst exponent of the pre-seizure period HP
indicates a more limited dynamic range of the brain on the fractal desynchronization period.

Additionally, some records from the Neonatal Epileptic EEG dataset from Stevenson
et al. [64] were used to evaluate fractal synchronization. Since the focus of epilepsy is not
indicated in the description of the database, the calculation of fractal synchronization was
performed between various channels of the right and left hemispheres of the brain: Fp1-Fp2,
Fp2-F3, F3-F4, F4-C3, C3-C4, C4-P3, P3-P4, P4-O1, O1-O2, O2-F7, F7-F8, F8-T3, T3-T4, T4-T5,
T5-T6. ASR technique [59] was used to pre-process the EEG signals in the channels.

Figure 10a shows a graph of the recorded EEG signals in the channels listed above
for the first 3600 s for subject 34. According to the information provided in the database
description [64], the epileptic seizure for subject 34 is observed in the interval (0–451)
seconds. Figure 10b shows the dynamic change in the average FS between the EEG signals
of the channels listed above during the first 3600 s. Figure 10c shows the dynamic change
in the average significance S between the EEG signals of the considered channels during
the first 3600 s.
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Figure 10. Subject 34: seizure interval: (0–451) seconds. (a) The records of EEG signals in the
considered channels during the interval (0, 3600) seconds; (b) dynamic change in the average FS
between the EEG signals of the considered channels; (c) dynamic change in the average significance S
between the EEG signals of the considered channels.

As we can see, Figure 10c demonstrates the presence of fractal desynchronization in the
interval (0–451) seconds, as the average significance S ≤ 3. The average value of FS = 0.33
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(0.26–0.40) during the epileptic seizure is statistically significantly different (p < 0.05) and
has a smaller value compared to the average value of FS = 0.68 (0.61–0.76) for post-epileptic
seizure interval during (1295–3600) seconds. Thus, the termination of the epileptic seizure
is accompanied by increased fractal synchronization.

Figure 11a demonstrates the EEG signal recordings for subject 36 for the first 3600 s.
According to the information provided in the database description, epileptic seizures for
subject 36 are observed at intervals of (0–109) seconds and (187–528) seconds. Respectively,
Figure 11b shows the change in fractal synchronization during an epileptic seizure, and
Figure 11c shows the change in significance for fractal synchronization.
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Figure 11. Subject 36: seizure interval 1: (0–109) seconds; seizure interval 2: (187–528) seconds.
(a) The records of EEG signals in the considered channels during the interval (0, 3600) seconds; (b) the
dynamic change in the average FS between the EEG signals of the considered channels; (c) dynamic
change in the average significance S between the EEG signals of the considered channels.

Figure 11c demonstrates the presence of fractal desynchronization during the epileptic
seizure (S ≤ 3 in this interval). Figure 11b shows that during the (0–528) seconds, the
average value of FS = 0.20 (0.13–0.26) is statistically significantly different (p < 0.05) and
has lower values compared to the average value of FS = 0.66 (0.56–0.81) after the epileptic
seizure during (1295–3600) seconds. As in the previous example, the termination of the
epileptic seizure is characterized by an increase in fractal synchronization.

Figure 12a shows recordings of EEG signals for subject 13 for the first 3600 s, during
which two epileptic seizures were detected. The first epileptic seizure occurred in the
interval (0–291) seconds, and the second epileptic seizure occurred 508 s later in the interval
(799–1294) seconds. Figure 12b demonstrates the dynamic change in fractal synchronization
FS during the first and second epileptic seizures. Figure 12c demonstrates the dynamic
change in significance S for fractal synchronization during epileptic seizures.

Figure 12c demonstrates fractal desynchronization (S ≤ 3) at time intervals that cor-
respond to the time intervals of epileptic seizures. Figure 12b demonstrates a decrease in
fractal synchronization at two time intervals that correspond to the time intervals at which
epileptic seizures occurred. Thus, during (0–291) seconds, the average value of FS = 0.20
(0.14–0.25) is statistically significantly different (p < 0.05) and has lower values compared to
the average value of FS = 0.52 (0.40–0.69) after epileptic seizure during (292–798) seconds.
And during (799–1294) seconds, the average value of FS = 0.25 (0.20–0.34) is statistically
significantly different (p < 0.05) and has lower values compared to the average value of
FS = 0.57 (0.41–0.78) after epileptic seizure during (1295–3600) seconds.

Figure 12c demonstrates fractal desynchronization (S ≤ 3) at time intervals that corre-
spond to the time intervals of epileptic seizures. Figure 12b shows that in both cases, the
termination of epileptic seizure is accompanied by an increase in fractal synchronization.
Figure 13a shows the EEG signal recordings for subject 78 for the first 3600 s. According
to the description of these signals, epileptic seizures are observed at short time intervals
during the first 3600 s. Figure 13b demonstrates the dynamic changes in fractal synchro-
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nization during epileptic seizures. Figure 13c shows the dynamic change in significance for
fractal synchronization.
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Figure 12. Subject 13: seizure interval 1: (0–291) seconds; seizure interval 2: (799–1294) seconds.
(a) The records of EEG signals in the considered channels during the interval (0, 3600) seconds;
(b) the dynamic change in the average FS between the EEG signals of the considered channels; (c) the
dynamic change in the average significance S between the EEG signals of the considered channels.

Entropy 2024, 26, x FOR PEER REVIEW 20 of 25 
 

 

chronization FS during the first and second epileptic seizures. Figure 12c demonstrates 
the dynamic change in significance S for fractal synchronization during epileptic sei-
zures. 

 

(a) (b) (c) 

Figure 12. Subject 13: seizure interval 1: (0–291) seconds; seizure interval 2: (799–1294) seconds.(a) 
The records of EEG signals in the considered channels during the interval (0, 3600) seconds; (b) the 
dynamic change in the average FS between the EEG signals of the considered channels; (c) the 
dynamic change in the average significance S between the EEG signals of the considered channels. 

Figure 12c demonstrates fractal desynchronization (S ≤ 3) at time intervals that cor-
respond to the time intervals of epileptic seizures. Figure 12b demonstrates a decrease in 
fractal synchronization at two time intervals that correspond to the time intervals at 
which epileptic seizures occurred. Thus, during (0–291) seconds,the average value of FS = 
0.20 (0.14–0.25) is statistically significantly different (p <0.05) and has lower values com-
pared to the average value of FS =0.52 (0.40–0.69) after epileptic seizure during (292–798) 
seconds. And during (799–1294) seconds, the average value of FS = 0.25 (0.20–0.34) is sta-
tistically significantly different (p <0.05) and has lower values compared to the average 
value of FS =0.57 (0.41–0.78) after epileptic seizure during (1295–3600) seconds. 

Figure 12c demonstrates fractal desynchronization (S ≤ 3) at time intervals that cor-
respond to the time intervals of epileptic seizures. Figure 12b shows that in both cases, 
the termination of epileptic seizure is accompanied by an increase in fractal synchroni-
zation. Figure 13a shows the EEG signal recordings for subject 78 for the first 3600 s. 
According to the description of these signals, epileptic seizures are observed at short time 
intervals during the first 3600 s. Figure 13b demonstrates the dynamic changes in fractal 
synchronization during epileptic seizures. Figure 13c shows the dynamic change in sig-
nificance for fractal synchronization. 

 
  

(a) (b) (c) 

Figure 13. Subject 78: seizure interval: (300–420) seconds;seizure interval: (840–900) seconds; sei-
zure interval: (2220–2280) seconds; seizure interval: (2520–2580) seconds.(a) The records of EEG 
signals in the considered channels during the interval (0, 3600) seconds; (b) the dynamic change in 

Figure 13. Subject 78: seizure interval: (300–420) seconds;seizure interval: (840–900) seconds; seizure
interval: (2220–2280) seconds; seizure interval: (2520–2580) seconds. (a) The records of EEG signals in
the considered channels during the interval (0, 3600) seconds; (b) the dynamic change in the average
FS between the EEG signals of the considered channels; (c) the dynamic change in the average
significance S between the EEG signals of the considered channels.

Figure 13c shows that fractal desynchronization (S ≤ 3) is observed at intervals that are
characterized by the presence of an epileptic seizure. Figure 13b demonstrates a decrease in
fractal synchronization values at intervals corresponding to epileptic seizures. Thus, during
(300–420) seconds, the average value of FS = 0.27 (0.21–0.32); during (840–900) seconds, the
average value of FS = 0.32 (0.26–0.35); during (2220–2280) seconds, the average value of
FS = 0.19 (0.14–0.26); during (2520–2580) seconds, the average value of FS = 0.16 (0.14–0.20)
are statistically significantly different (p < 0.05) and have lower values compared to the
average value of FS = 0.44 (0.30–0.66) during the absence of an epileptic seizure. However,
subject 78’s recordings have seizure intervals that are not characterized by desynchroniza-
tion. This indicates the heterogeneity of the nature of epileptic seizures.

Thus, the results shown in Figures 10–13 demonstrate a decrease in fractal synchro-
nization and the presence of fractal desynchronization during epileptic seizure, which is
consistent with the above results.

6. Discussion

We proposed a new method for analyzing and evaluating non-linear coupling between
two time series. For the theoretical basis of this method, the concept of fractal synchro-
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nization, based on the concept of stochastic synchronization, was introduced. Our goal
for this paper is to present the viability of the proposed tool for assessing dependence
through fractal synchronization. As is known, the minimum demand for any synchroniza-
tion criterion varies in a systematical manner when the coupling strength between two
dynamical systems enlarges [20]. To assess fractal synchronization, we used the coupled
Lorenz model systems (18) with the coupling parameter C. These dynamical systems are
connected in such a way that with an increase in the value of C, the coupling strength
between the systems increases. As a result of increasing the coupling strength, the system
generates an attractor whose projections become more dependent on each other. This
strengthens the functional relation θ between the generalized variances

〈
σ2(∆t)

〉
of the

attractor projections on time scales ∆t. Fractal synchronization allows for estimating the
aggregate strength of the connection on multiple time scales between generalized variances〈

σ2(∆t)
〉

of two projections of the attractor, which are time series with a fractal structure.
Since the proposed calculation method has a bias at small values of the coupling

strength, evaluating the significance of S is used to estimate the bias. To evaluate the
significance, the Z-score was used. We assume that fractal synchronization FS has the
Gaussian distribution. Then, the parameter Z-score = 3 approximately corresponds to the
significance level p = 0.01. Thus, if the significanceis S ≤ 3, then the fractal synchronization
FS of the analyzed signals does not exceed the fractal synchronization FS of the independent
shuffled signals. Thus, in this case, there is no fractal synchronization. We denote this effect
as fractal desynchronization.

The main task of this current paper is to propose a data analytic tool for assessing
fractal synchronization in EEGs. It was demonstrated that this method can be used to
assess the interdependence of EEG signals during an epileptic seizure since the obtained
result is consistent with the results of other authors. In this paper, we discussed the novel
findings that have not been reported in previous analyses of this Michigan seizure dataset.
Additionally, some records from the publicly available Neonatal Epileptic EEG dataset
from Stevenson et al. [64] were used to evaluate fractal synchronization.

As a result of EEG studies recorded during an epileptic seizure, this paper demon-
strated that fractal synchronization FS effectively determines changes in the interdepen-
dence between EEG signals. The current work does not highlight the onset of an epileptic
seizure. However, fractal synchronization demonstrates the presence of desynchronization
during an epileptic seizure. This result is consistent with the results obtained by other
authors. So in the work [72], the authors claim that “studies on network synchroniza-
tion and on the networks’ synchronizability indicate that the changing network topology
during seizures is accompanied by initially decreased network synchronization and de-
creased stability of the globally synchronized state, both of which increase already prior to
seizure end. These synchronization phenomena may thus be considered as an emergent
(network-topology-mediated) self-regulatory mechanism for seizure termination”.

However, using the estimate of significance (Equation (19)) [58], the fractal synchro-
nization method allows one to highlight the beginning and end of fractal desynchronization.
Fractal desynchronization indicates a decrease in the information exchange associated with
fractal dynamics between the EEG sensor of the epilepsy focus and other EEG sensors.
At the same time, analysis of the fractal dynamics, using the Hurst exponent, revealed a
statistically significant decrease (p-value < 0.01, Dunn’s Test of Multiple Comparisons) in
the Hurst exponent in the interval of fractal desynchronization compared to the pre-seizure
period. Thus, fractal desynchronization is characterized by an increase in brain effort,
which puts the brain in a state of more limited dynamic range [45]. Apparently, this reflects
a reduced exchange of information related to fractal dynamics between the EEG sensors in
different parts of the brain during desynchronization.

Spectrum power analysis demonstrated that fractal desynchronization is accompanied
by an increase in high-frequency and middle-frequency power, which corresponds to the
fundamental relation between power and synchrony and manifests itself throughout the
human brain [68]. It should be noted the important role played by an increase in the
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high-frequency power in epileptogenesis and in the initiation of seizures [13,14,68,69]. Ap-
parently, increasing the high-frequency power leads to the deterioration of the relationship
between the generalized variations in the analyzed EEG signals on different time scales.
These factors significantly degrade the dynamics of self-organizing processes at the onset
of an epileptic seizure [11].

The termination of epileptic seizure is accompanied by an increase in fractal syn-
chronization. This result indicates an increased exchange of information related to fractal
dynamics in the EEG sensor of the epilepsy focus and other EEG sensors.

As noted in [3], synchronization in epilepsy is a complex phenomenon, and to fully
understand this process, there is a need to develop new methods of non-linear analysis.

The proposed method of fractal synchronization is one of the steps in this direction,
which makes it possible to study changes in the fractal properties of the brain during
an epileptic seizure. We believe that the study of fractal synchronization will provide
additional information about the organization of epileptic networks, which would make it
possible to contribute to the development of new methods of treatment of epileptic seizures.
This approach allows us to reveal a decrease in fractal synchronization at the beginning
and an increase in fractal synchronization at the end of an epileptic seizure. This allows
this method to be used to detect an epileptic seizure. Perhaps studying the conditions for
decreasing or increasing fractal synchronization will make it possible to understand how
the mechanisms for stopping an epileptic seizure work.
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