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Abstract: The complete characterization of the almost-entropic region yields rate regions for network
coding problems. However, this characterization is difficult and open. In this paper, we propose a
novel algorithm to determine whether an arbitrary vector in the entropy space is entropic or not,
by parameterizing and generating probability mass functions by neural networks. Given a target
vector, the algorithm minimizes the normalized distance between the target vector and the generated
entropic vector by training the neural network. The algorithm reveals the entropic nature of the
target vector, and obtains the underlying distribution, accordingly. The proposed algorithm was
further implemented with convolutional neural networks, which naturally fit the structure of joint
probability mass functions, and accelerate the algorithm with GPUs. Empirical results demonstrate
improved normalized distances and convergence performances compared with prior works. We
also conducted optimizations of the Ingleton score and Ingleton violation index, where a new lower
bound of the Ingleton violation index was obtained. An inner bound of the almost-entropic region
with four random variables was constructed with the proposed method, presenting the current best
inner bound measured by the volume ratio. The potential of a computer-aided approach to construct
achievable schemes for network coding problems using the proposed method is discussed.

Keywords: entropic vectors; entropic region; neural networks; convolutional neural networks;
Ingleton score; Ingleton violation index; inner bounds; network coding

1. Introduction

Given n discrete random variables, for a fixed joint distribution, all their 2n − 1
(joint) entropies define an entropic vector in the entropy space R2n−1. By varying over all
possible joint distributions, the set of all entropic vectors defines the entropic region. The
entropic region plays a fundamental role in information theory and network coding. The
closure, known as the almost-entropic region, yields rate regions for multi-source coded
networks [1,2]. However, the complete characterization of the entropic region encounters
challenges even when n = 3 [3–7], where only the closure, i.e., the almost-entropic region,
is fully characterized [3]. When n = 4, the characterization of the almost-entropic region
also becomes extremely difficult and remains open [8].

In the pursuit of the characterization of the entropic region, one crucial problem is to
determine whether an arbitrary vector in the entropy space is entropic or not. If all entropic vectors
in the entropy space are verified, the entropic region is fully characterized. Additionally,
given a point in the rate region of a coded network, the existence of achievable codes relies
on the underlying entropic vector [9].

This problem has been tackled from different perspectives in the literature. Information
inequalities, which fully characterize all almost-entropic vectors, are shown to be infinitely
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many [10] and extremely hard to characterize [8,10–17]. The construction of entropic vectors,
however, is more feasible and studied through probability distributions, e.g., [6,7,16,18–28],
groups, e.g., [29–35], and matroids, e.g., [36–40]. Regarding the construction of entropic
vectors from probability distributions, remarkable research has attempted to numerically
obtain probability mass functions (PMFs) for entropic vectors [16,19–27], particularly when
the alphabet sizes of the involved random variables are bounded. In this way, the entropic
nature of a given vector in the entropy space is immediately verified following the definition
if the underlying joint PMF is obtained.

Among these approaches, some are interested in quasi-uniform PMFs [19,27] or PMFs
supported on small atoms [22–25], while more general PMFs are considered in [16,20,21,26].
For example, an algorithm is given in [20] to verify binary entropic vectors by recur-
sively constructing PMFs. In [16], the PMFs are numerically obtained with Newton’s
method. In [21], the study of the almost-entropic region when n = 4 is reduced to a
three-dimensional tetrahedron and visualized by various maximization procedures with
different methods and strategies [21] (Section VII). Recently, a random search algorithm
has been introduced [26] to find the nearest entropic vector to a given target vector. This
algorithm iteratively tries a few random perturbations on PMFs, striving to decrease the
normalized distance between an entropic vector and the target vector.

However, the limitations of the above methods cannot be overlooked. The method
in [20] is only feasible for binary entropic vectors. In [16], and [21], formal algorithms
and performances of described methods are not systematically discussed in detail. Al-
though [26] presents more analytical and empirical results, the limitation of the randomized
algorithm persists, and the convergence performances are not empirically guaranteed. Fur-
thermore, a critical issue in above methods is that only PMFs with relatively small alphabet
sizes can be handled. This limitation is vital, since the verification of an underlying entropic
vector in the rate region of a coded network requires large alphabets when subpacketiza-
tions are necessary for achievable codes.

With these methods, which construct entropic vectors from PMFs, some interesting op-
timization problems over the entropic region when n = 4 can be experimented. It is known
that the Ingleton inequality [41] completely characterizes the part of the almost-entropic
region achieved by linearly representable entropic vectors [13]; thus, it reduces the study
to the entropic vectors violating it. To measure the degree of violation from the Ingleton
inequality for an entropic vector, the Ingleton score [16,42] and Ingleton violation index [19]
are proposed from different angles. Although remarkable efforts have been made to mini-
mize the Ingleton score [16,21,26,35,42] and maximize the Ingleton violation index [19,26],
their optimal values remain open. In [16], the Ingleton score is numerically optimized
and conjectured to be −0.089373, known as the four-atom conjecture [16] (Conjecture 1).
In [21], a technique is proposed to transform an entropic vector into another entropic vector,
and the transformed vector is optimized to the Ingleton score −0.09243, which refutes
the four-atom conjecture by [16]. By experimenting with groups [35], the best-known
Ingleton score is currently −0.0925. The Ingleton violation index is optimized in [19] and,
subsequently, in [43], and its best known value is currently 0.0281316, according to [26].

As the complete characterization of the almost-entropic region for n = 4 is difficult,
inner bounds can be constructed by taking the convex hull of certain acquired entropic
vectors, as previously investigated in [16,22,26]. The quality of such an inner bound is
measured by the volume ratio, i.e., the percentage of inner-bound polytope volume to the
volume of the outer-bound polytope. In [16], several entropic vectors are optimized to
form an inner bound with a volume ratio of 53.4815%. Using distributions supported on
small atoms, [22] finds entropic vectors that yield an inner bound with the volume ratio
57.8%. In [26], with their proposed grid method, the current best-known volume ratio is
62.4774%, while the largest volume ratio, which requires the complete characterization of
the almost-entropic region when n = 4, is still open.

In this paper, we develop a novel architecture for optimizing PMFs for associated entropic
vectors via convolution neural networks (CNNs). Recently, applications of neural networks



Entropy 2024, 26, 711 3 of 24

(NNs) can be found in information theory [44–46] and control theory [47,48]. Our mo-
tivation arises from the fruitful research on applying NNs to problems in information
theory [44–46]. More specifically, in [45], a unique mapping that generates conditional
PMFs is defined and approximated using NNs. In [46], a model which generates a capacity-
achieving input PMF for a given channel in discrete input spaces is proposed. Consequently,
we are especially interested in approximating another mapping, which generates joint PMFs
for multiple random variables. Sharing similar ideas with [26], the problem of verifying
an entropic vector can be performed by minimizing the normalized distance through NN
training. Furthermore, we are motivated to modify NNs due to the special structures and
complexities of joint PMFs. Additionally, the developed method can be applied imme-
diately to the optimizations of the Ingleton score and Ingleton violation index, and the
construction of inner bounds for the almost-entropic region.

The major contributions of this paper are summarized as follows.

• A novel algorithm is proposed to optimize distributions for entropic vectors with
NN training. For each target vector, an NN is trained such that the output PMF
produces an entropic vector as close to target as possible. In practice, we implement
the algorithm with CNNs, which accelerate and enable the algorithm to generate
PMFs with large alphabets.

• The effectiveness of our proposed method is verified by empirical results. More
specifically, smaller normalized distances and improved convergence performances
are achieved by our proposed method, compared to [26]. In addition, with derived
theoretical guarantees, by exploiting the proposed algorithm, the state-of-the-art
Ingleton score is reconfirmed, and a new tighter lower bound of the Ingleton violation
index is obtained. Furthermore, by utilizing the proposed algorithm, we develop
another algorithm to construct a new inner bound of the almost-entropic region
(n = 4), yielding the current best inner bound measured by the volume ratio.

This paper is organized as follows. Section 2 introduces preliminaries, notations, and
the problem statement. The proposed method and algorithm with derived theoretical
guarantees are presented in Section 3, and the implementation with CNNs is demonstrated
in Section 4. In Section 5, empirical results exploiting the proposed method for several
problems when n = 4 are presented. Section 6 summarizes the paper in general, and dis-
cusses the potential of the proposed method to construct achievable schemes for network
coding problems.

2. Preliminaries and Problem Statement

In this section, we provide the preliminaries, notations, and the problem statement of
this paper.

2.1. Convex Cones and Convex Polytopes

Given a set C ⊂ Rd, C is a pointed cone if a ∈ C implies that ta ∈ C for all real t ≥ 0,
and Ra = {ta, t ∈ R+} ⊂ C is a ray of C. Pointed cones are unbounded except {0}, where 0
is the origin of Euclidean space. In the rest of the paper, all cones are assumed to be pointed
and unbounded. For all real t ≥ 0, Rb = {tb} of C is an extreme ray if b cannot be expressed
as the positive linear combination of any a1, a2 ∈ C. A cone C is convex if C is a convex set.

Given a convex set C ⊂ Rd, C is a convex polyhedron if it is the intersection of finitely
many halfspaces (i.e., linear inequalities). A convex cone C is a special polyhedron when
the halfspaces that define C contain 0 simultaneously, and, in this case, the convex cone C
is called polyhedral. A convex polyhedron is a convex polytope if it is bounded. In the rest of
the paper, all polytopes are assumed to be convex. For a convex cone (or convex polytope),
if we specify one extreme ray (or vertex) as the top and others as the bases, then the convex
cone (or convex polytope) is often called the pyramid.

For a convex polyhedron C, there are two equivalent types of representations, i.e., the
H-representation and the V-representation [49] (Chapter 1). The H-representation is the set of
all halfspaces defining C, and the V-representation is the set of all vertices (if C is a convex
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polytope) or extreme rays (if C is a polyhedral convex cone) defining C. The transformation
between the H-representation and the V-representation for a given convex cone or convex
polytope can be numerically performed with the implementation [50–52] of the double
description method [53]. More details about convex cones and convex polytopes can be
found in [49].

2.2. Entropic Vectors and Entropic Region

Let n ≥ 2, consider a discrete random vector X ≜ (X1, X2, . . . , Xn) with a finite index
set Nn = {1, 2, . . . , n}, and X takes values in the finite alphabet X ≜ X1 ×X2 × . . .×Xn
of size |X | = m = ∏n

i=1 mi. The realization of X is denoted as x. Let p(x) denote the
probability of x such that p(x) = Pr{X = x}. The joint probability mass function (PMF)
of X is denoted as p ≜ [p(x), x ∈ X ]T ∈ ∆m

X , where ∆m
X is the m-dimensional probability

simplex defined as

∆m
X ≜

{
p ∈ Rm

∣∣∣∑ p(x) = 1, p(x) ≥ 0, ∀x ∈ X
}

. (1)

A vector in Rm is a valid PMF if it belongs to the set ∆m
X .

We consider a subset of components of the random vector X; the above quantities
can be denoted accordingly. More specifically, we consider the set of random variables
Xα ≜ {Xi, i ∈ α}, α ⊆ Nn \ ∅, which takes values in the finite alphabet Xα = ∏i∈α Xi.
The realization of Xα is denoted as xα. Let pα(xα) denote the probability of xα such that
pα(xα) = Pr{Xα = xα}. The marginal PMF of Xα is denoted as pα ≜ [pα(xα), xα ∈ Xα]T.
Then, the Shannon entropy of Xα is

H(Xα) = − ∑
xα∈Xα

pα(xα) log2 pα(xα), ∀α ⊆ Nn \∅, (2)

where 0 log2 0 ≜ 0. We define hα ≜ H(Xα), which is the entropy function. The vector
consisting of entropy functions for all α ⊆ Nn \∅ is the entropic vector, as formally defined
in the following definition.

Definition 1 (Entropic vectors [54], Chapter 13). For the random vector X and index set Nn,
given a joint PMF p ∈ ∆m

X , the entropic vector is defined as

h ≜
(

hα, α ⊆ Nn \∅
)T

, (3)

and h is the associated entropic vector of p, denoted as hp.

We note that, by varying α, there are total 2n− 1 (joint) entropies for the random vector
X. Thus, each h can be viewed as a vector in the (2n − 1)-dimensional Euclidean space,
which is defined as the entropy space

Hn ≜ R2n−1, n ≥ 2. (4)

For example, given a random vector X = (X1, X2, X3, X4), let each random variable in
X be uniformly i.i.d.-distributed on alphabet {0, 1}; then, the associated entropic vector in
the entropy spaceH4 = R15 is

hp =
(
h1, h2, h3, h4, h12, h13, h14, h23, h24, h34, h123, h124, h134, h234, h1234

)T.

= (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4)T.
(5)
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Allowing infinite alphabets, the region inHn consisting of all entropic vectors is the
entropic region ([54], Chapter 13)

Γ∗n ≜
{

h ∈ Hn
∣∣ h is entropic vector

}
. (6)

The closure of Γ∗n is the almost-entropic region Γ∗n ([54], Chapter 15).
Given a set of random variables, basic inequalities form the set of inequalities implied

by the nonnegativity of all Shannon’s information measures. The nonredundant subset of
basic inequalities consists of elemental inequalities ([54], Chapter 14), which are defined as
the following two types of inequalities for the random vector X

H(Xi|XNn\{i}) ≥ 0, i ∈ Nn, (7)

I(Xi; Xj|XK) ≥ 0, i ̸= j, K ⊂ Nn \ {i, j}. (8)

The inequalities implied by elemental inequalities are Shannon-type inequalities. The region
inHn that consists of vectors satisfying all elemental inequalities is ([54], Chapter 14)

Γn ≜
{

h ∈ Hn
∣∣ h satisfies (7) and (8)

}
. (9)

Sometimes Γn is called the polymatroidal region because of the equivalence between the
elemental inequalities for vectors in the entropy space and the polymatroidal axioms for
polymatroidal rank functions [55].

Although both Γ∗n and Γn are regions withinHn, the former stands for the associated
entropic vectors defined by valid PMFs, while the latter is formed by vectors satisfying all
Shannon-type inequalities. Hence, it is reasonable to question the identity between Γ∗n and
Γn. It was first discovered by [3,8] that Γn is a loose outer bound of Γ∗n. More specifically,
it is known that Γ∗2 = Γ2, Γ∗3 ̸= Γ3 but Γ∗3 = Γ3, and Γ∗n ⊂ Γn when n ≥ 4 [3,8]. These
relations reveal that there are inequalities tighter than Shannon-type inequalities as the
outer bound of the entropic region, i.e., the inequalities hold for all entropic vectors but
cannot be implied by elemental inequalities, and these inequalities are often referred to as
the non-Shannon-type inequalities ([54], Chapter 15).

We briefly introduce some known structures of Γ∗n, Γ∗n and Γn. Both Γn and Γ∗n are
pointed convex cones in the nonnegative orthant of Hn [54] (Chapter 13). The region Γn
is polyhedral, while Γ∗n is not when n ≥ 4 [10], i.e., the convex cone Γ4 (Γ∗4) is represented
with finitely many (infinitely many) extreme rays or finitely many (infinitely many) linear
inequalities. For n ≥ 3, although the almost-entropic region Γ∗n is a convex cone, the region
Γ∗n is not convex and Γ∗n ⊂ Γ∗n. The complete characterization of Γ∗n for n ≥ 4 is difficult and
open. For more details of Γ∗n, Γ∗n, and Γn, please refer to [54] (Chapter 13–15).

Given the difficulty of characterizing Γ∗n with infinite alphabets, in order to optimize
finite PMFs numerically, it is practical to consider Γ∗n when the random variables have finite
alphabet sizes.

Definition 2 (Alphabet-bounded entropic region [54], Chapter 21). Given a random vector X
with an index setNn, taking values on the finite alphabet X of size m = ∏n

i=1 mi such that m < ∞,
the alphabet-bounded entropic region is defined as

Γ∗n,X ≜
{

hp ∈ Hn

∣∣∣ p ∈ ∆m
X

}
, (10)

where hp is the entropic vector associated with the PMF p, and ∆m
X is the probability simplex

defined on the finite alphabet X of size m.

The region Γ∗n,X is the collection of entropic vectors associated with PMFs defined on
the finite alphabet X , and is a compact and closed set.
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To characterize the closeness of two given vectors, the most straightforward measure-
ment is the angle between the rays determined by them. Here, we adopt the measure of
normalized distance, proposed in [26].

Definition 3 (Normalized distance). Given vectors a, b ∈ Γn \ {0}, the normalized distance
between a and b is defined as

dnorm(a, b) =
∥a− b′∥
∥b′∥ , (11)

where ∥ · ∥ is the l2 norm, and b′ ≜ arg infb̃∈Rb
∥a− b̃∥.

We note that the normalized distance is the tangent of the angle between the rays
determined by a and b. Thus, we also have

dnorm(a, b) =

∥∥∥a− a·b
∥b∥2 b

∥∥∥∥∥∥ a·b
∥b∥2 b

∥∥∥ . (12)

2.3. Neural Networks

In general, an NN is a computational model, with significant expressive capability
for desired functions [56]. Following convention, we now formally define fully connected
feedforward multilayer NNs as a family of functions.

Definition 4 (Neural networks [56]). With l ∈ N hidden layers of sizes d1, d2, . . . , dl ∈ N, fixed
input dimension d0 and output dimension dl+1, where d0, dl+1 ∈ N, let ◦ denote the composition of
functions, a fully connected feedforward multilayer NN is defined as the following family of functions

G(d0,dl+1)
l ≜

{
g : Rd0 → Rdl+1

∣∣∣g(x0) = fl+1 ◦ σ ◦ fl ◦ · · · ◦ σ ◦ f1(x0)

}
, (13)

where, for j ∈ {1, 2, . . . , l + 1}, f j : Rdj−1 → Rdj is a linear operation

f j(xj−1) ≜ Wjxj−1 + bj, (14)

with the weight matrices Wj ∈ Rdj×dj−1 , the data vectors xj−1 ∈ Rdj−1 , and the bias vectors
bj ∈ Rdj . The nonlinear activation function σ(·) is performed on vectors element-wise, such that,
for j ∈ {1, 2, . . . , l},

(xj)i = [σ( f j(xj−1))]i, i = 1, 2, . . . , dj. (15)

For an arbitrary number of hidden layers and sizes, fully connected feedforward multilayer NNs
with the same fixed input and output dimensions are defined as

G(d0,dl+1) ≜
⋃
l∈N
G(d0,dl+1)

l . (16)

The set of all possible weights and biases of an NN is the parameter space, which is
denoted as Φ ⊂ Rd (here, d is defined as the dimension of the parameter space). We
sometimes denote an NN function g ∈ G(d0,dl+1) with parameters ϕ ∈ Φ as gϕ. Exploiting
NNs, desired functions can be parameterized with ϕ, and approximated by optimizing ϕ with
gradient descent methods [57]. Multilayer feedforward NNs are known to be universal
approximators for any measurable function as long as the scale of the model is sufficiently
large [56].

Activation functions of NNs may vary in forms for different tasks. More specifically,
let the input be y ∈ Rdy with elements yj, j ∈ {1, 2, . . . , dy}; the most common activation
functions include the sigmoid activation function σs(y)j =

1
1+exp(−yj)

and the ReLU activa-
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tion function σR(y)j = max(yj, 0). There are many variations of ReLU, including the ELU

activation function σE(y)j =

{
yj , yj ≥ 0,
eyj − 1 , yj < 0.

A special activation function is the softmax

activation function or the softmax layer, which is defined as σsm(·) : Rdy → Rdy , where

σsm(y)j =
exp(yj)

∑
dy
j=1 exp(yj)

, j = 1, 2, . . . , dy. (17)

We note that the output vector of the softmax layer has special properties, i.e., σsm(y)j ≥ 0
and ∑d

j=1 σsm(y)j = 1, which make the output vector a valid PMF in (1).
For details on NNs, please refer to [58] (Chapter 20).

2.4. Problem Statement

In this paper, when a target vector ht ∈ Γn is given, we are interested in finding an
entropic vector hp in Γ∗n,X , such that dnorm(hp, ht) is relatively small. If ht is entropic, we
aim to give the underlying PMF to verify and realize ht. If ht is not entropic, we aim to
give an entropic vector close to ht and, hopefully, on the boundary of Γ∗n,X .

We recall that dnorm(hp, ht) is the tangent of the angle between the corresponding rays,
but the tangent is only strictly increasing when the angle is limited in [0, π

2 ]. Restricting the
target vector ht to be in Γn can satisfy this requirement, since Γn belongs to the nonnegative
orthant ofHn and Γ∗n,X ⊂ Γn.

3. Optimizing PMFs for Associated Entropic Vectors via Neural Networks

In this section, we propose the methodology that tackles the problem stated in
Section 2.4. More specifically, given a target vector in Γn, we propose to train a corre-
sponding NN to identify the entropic vector closest to the target, and, at the same time,
provide the corresponding underlying PMF.

In particular, the proposed NN is configured with a final softmax layer to output PMFs,
with the input fixed to a specific constant (similar settings can be found in [45,46]). We
claim that, for a given target vector, there always exists an NN such that the entropic vector
associated with the produced PMF is arbitrarily close to the target in terms of normalized
distance. This statement is formalized in the following theorem.

Theorem 1. For the random vector X with a fixed and finite alphabet X , given a target ht ∈ Γn
(entropic or not), we consider the entropic vector h∗ ∈ Γ∗n,X that yields the minimal normalized
distance D∗ to ht. Then, for η > 0, there exists a corresponding NN gϕ with parameters ϕ ∈ Φ
(where Φ ⊂ Rd is the parameter space) which outputs the PMF pϕ valid in ∆m

X from a specific
constant input a ∈ R, such that

dnorm(hpϕ
, ht) < D∗ + η, (18)

where hpϕ
is the associated entropic vector of pϕ.

The proof of Theorem 1 is straightforward based on the observation that the softmax
layer can produce any desired PMF, and both the entropic vector and the normalized
distance are continuous functions of the PMF. However, for the completeness of the paper,
we provide the proof of Theorem 1 in Appendix B.1. The proof can be described as follows.
For a given target vector ht ∈ Γn, let p∗ be one of the underlying PMFs that achieves
h∗, i.e., the entropic vector with minimal normalized distance to ht; then, we can find an
NN which outputs pϕ from a fixed constant, and pϕ approximates p∗ in l1 norm. By the
continuity of the Shannon entropy ([54], Section 2.3), for fixed finite alphabets, we can prove
that, as pϕ approximates p∗ in l1 norm, the associated entropic vector hpϕ

approximates h∗

in normalized distance as well.
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Algorithm

In the rest of the section, we give a practical algorithm, i.e., Algorithm 1, to minimize
the NN loss function, which is defined as the normalized distance interpreted in (12), i.e.,

L(ϕ, ht, hpϕ
) ≜

∥∥∥hpϕ − hpϕ ·ht
∥ht∥2 ht

∥∥∥∥∥∥ hpϕ ·ht
∥ht∥2 ht

∥∥∥ . (19)

Algorithm 1 trains parameters ϕ with a gradient descent method to find an NN that
achieves h∗ in Theorem 1, i.e., identify the entropic vector closest to the target and provide
the corresponding underlying PMF. The overall architecture of the proposed method is
depicted in Figure 1. More specifically, at each iteration, the NN takes a constant as the
input, and outputs a joint PMF pϕ. By configuring the last layer of NN as the softmax layer
in (17), i.e.,

pϕ
j = σsm(p̃ϕ)j =

exp( p̃ϕ
j )

∑m
j=1 exp( p̃ϕ

j )
, j = 1, 2, . . . , m, (20)

where p̃ϕ ∈ Rm is the layer input, the resulting PMF pϕ is valid in ∆m
X . Subsequently, the as-

sociated entropic vector hpϕ
is computed from pϕ with (2), (3), and (5). The normalized

distance between the associated entropic vector and target vector is then evaluated with
(19). To optimize NN parameters ϕ, the gradient descent method is performed in turn. The
training procedures are iterated for a sufficiently large number N.

Algorithm 1: Optimize PMFs for the associated entropic vector closest to the
target vector ht ∈ Γn,X via NN training

Require : ht, n, m1, m2, . . . , mn

Ensure : pϕ, hpϕ
, dnorm(hpϕ

, ht)
1 Initialization
2 NN parameters ϕ, learning rate γ, a constant a, number of iterations N;
3 for i = 1 to N do
4 Calculate the joint PMF pϕ = gϕ(a), such that pϕ is valid according to (1);
5 Obtain all the marginal PMFs pϕ

α ;
6 Compute all (joint) entropies with pϕ and pϕ

α according to (2);
7 Compute the entropic vector hpϕ

according to (3) and (5);
8 Evaluate L(ϕ, ht, hpϕ

) according to (19);
9 Update NN parameters with gradient descent: ϕ← ϕ− γ∇ϕL(ϕ, ht, hpϕ

);
10 end
11 dnorm(hpϕ

, ht)← L(ϕ, ht, hpϕ
);

12 return pϕ, hpϕ
, dnorm(hpϕ

, ht);

We further implement Algorithm 1 and the NN model in Figure 1 with CNNs, and de-
tails are presented in Section 4. With the proposed implementation techniques, the conver-
gence performances of Algorithm 1 for different targets are demonstrated in Section 5.1.
Other empirical results on various problems related to the entropic region are demonstrated
in Sections 5.2 and 5.3.

Before ending this section, in the following remark, we discuss the connections be-
tween our work with existing literature [44–46], which focus on the neural optimization of
distributions for problems in information theory as well.
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Figure 1. The overall architecture of the proposed method. The dashed arrow indicates the flow of
gradients in back-propagation.

Remark: Recently, the optimization of probability distributions utilizing generative
NNs in information theory has been studied and applied to plenty of problems in [44–46].
In [44,46], NNs are designed to generate the input distributions of given channels, and op-
timized to produce a distribution that achieves channel capacity, serving as a part of the
joint estimation–optimization architecture for channel capacity. More specifically, over con-
tinuous spaces [44], a model named neural distribution transformer (NDT) is proposed;
the optimized NDT transfers uniformly distributed samples into data that are distributed
according to the desired capacity-achieving distribution. Over discrete alphabets [46],
the PMF generator is proposed to optimize the PMF numerically, and capacity-achieving
channel input data can be sampled from the optimized PMF. We note that [46] focuses
on channels with feedback and memory, and the PMF generator is based on a time-series
deep reinforcement learning model. For channels without feedback and memory, the PMF
generator in [46] degenerates to a similar architecture as the one proposed in this paper.
However, different from sampling data from generated PMFs, the method proposed in
this paper directly computes entropic vectors from PMFs, and theoretical guarantees are
provided in the context of this task. In [45], NNs are also used to optimize conditional
distributions that achieve the rate-distortion function for any given source distribution,
in both continuous and discrete spaces. The PMF generator in [45] takes source samples as
input, and produces corresponding conditional PMFs. If the source is deterministic in [45],
the conditional PMF generator degenerates to the proposed model in this paper as well.

4. Implementation

In this section, we aim to present implementation details of Algorithm 1 and the
NN model in Figure 1 with more advanced deep learning techniques. In addition, we
demonstrate that the implementation results in significantly larger feasible alphabet sizes
for Algorithm 1 than existing methods, which will contribute to constructing achievable
schemes for network coding problems, as discussed in Section 6.

4.1. Implementing with Convolutional Neural Networks

We recall that, for a random vector X, if we assume |Xi| = ki = k, i ∈ Nn with joint
PMFs p ∈ ∆kn

X , then every PMF is a kn-dimensional vector. In addition, we notice that
Algorithm 1 and the model depicted in Figure 1 require the dimension of the output of
the NN to match the dimension of the desired PMF. Hence, the size of the last layer of
the NN grows polynomially with the alphabet size k of each random variable, and grows
exponentially with the number of random variables n. Moreover, the indexing problem to
calculate all marginal PMFs in Algorithm 1 is computational expensive as well with large
dimensional PMF vectors.

Therefore, we are motivated to implement Algorithm 1 and the model in Figure 1
with CNNs, which transfer the vector data in NNs to tensors. Furthermore, by virtue of
high-performance GPUs, the training of CNNs can be notably accelerated.
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More specifically, if we focus on the case when n = 4, a PMF p for X with |Xi| =
k, i ∈ Nn is a k4-dimensional vector such that p ∈ ∆k4

X . To implement with CNNs, we
naturally utilize the 3d-CNNs (available in PyTorch [59]), whose data in each layer is
a four-dimensional cube. By modifying the NN in Figure 1 with 3d-CNNs, the model
takes a constant tensor A as input, where A ∈ R1×1×1×1, and outputs a PMF tensor
Pϕ ∈ [0, 1]k×k×k×k.

We demonstrate an example of a configuration of the modified model in Table 1. Our
empirical results in Section 4.2 show that the model implemented with a CNN is feasible
even when k is large, acquiring additional gain from GPU acceleration.

Table 1. An example of a configuration when the NN in Figure 1 is implemented with a CNN.

Layer Output Dimension Kernel Size Padding Activation Function

Input 1× 1× 1× 1 - - -
Conv. 3d k× k× k× k k× k× k k− 1 ELU
Conv. 3d k× k× k× k 3× 3× 3 1 ELU
Conv. 3d k× k× k× k 3× 3× 3 1 ELU
Flatten k4 - - softmax
Output k× k× k× k - - -

4.2. Feasibility for Large Alphabets

In the proposed method, despite the fact that the complexity of the output layer in
the original NN grows as the alphabet sizes of the random variables increase, after the
implementation discussed in Section 4.1, the training of CNNs can be accelerated by high-
performance GPUs, resulting in significant gains in the training speed for Algorithm 1. In
Figure 2, we present empirical results of the training speed of the proposed method as the
alphabet sizes of random variables increase.
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Figure 2. Empirical results on the speed of Algorithm 1 implemented with CNNs. When the alphabet
size for every random variable grows from 2 to 32, the iteration speeds and acceleration gains are
shown, respectively.

To the best of the authors’ knowledge, when n = 4, the feasible alphabet size of
the proposed method (i.e., 32 for every random variable) is larger than prior works. For
instance, the largest alphabet size considered in [26] is 5. Alphabet sizes of 10 and 11 are
mentioned in [16,21], respectively.
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5. Empirical Results

In this section, empirical results of the method proposed in Section 3 are presented,
focusing on various problems related to Γ∗4 and Γ∗4 . Firstly, we compare our method with
the existing random search algorithm [26]. Secondly, we tackle the problems of optimizing
the Ingleton score and Ingleton violation index. Lastly, we exploit the proposed method
to obtain many entropic vectors that approximate the boundary of Γ∗4 , and use the convex
hull of these entropic vectors to form an inner bound of Γ∗4 .

Before presenting these results, we first provide a brief introduction of regions within
H4. When n = 4, the Ingleton inequality [41] plays an essential role in the characterization
of Γ∗4 , and one permutation instance of the Ingleton inequality is defined as follows.

Definition 5 (Ingleton inequality). For a vector h ∈ H4, one specific permutation instance of the
Ingleton inequality [41] is denoted as the inner product between the coefficients I34 and h

I34h ≜ h12 + h13 + h14 + h23 + h24

− h1 − h2 − h34 − h123 − h124 ≥ 0.
(21)

Permuting N4, there exist six instances of the Ingleton inequality in total, which are denoted as
Ih ≥ 0, I ∈ R6×15.

When n = 4, the linear rank region is the intersection ofH4 with Ih ≥ 0 (all six instances
of Ingleton inequality), i.e.,

Γlinear
4 ≜

{
h ∈ H4

∣∣ Ih ≥ 0
}

. (22)

We consider vectors that represent rank functions of linear subspaces (i.e., linearly rep-
resentable entropic vectors, or entropic vectors that yield rate regions achieved by linear
network codes); then, the linear rank region is the closure of the linear hull of such vec-
tors. The region Γlinear

4 is a polyhedral convex cone, and is a tight linear inner bound of
Γ∗4 [8,13,60]. However, Γlinear

n is only completely characterized for n ≤ 5 [15,17]. Neverthe-
less, when n = 4, the relation Γlinear

4 ⊂ Γ∗4 ⊂ Γ4 holds.
Hence, one is interested in characterizing the part of Γ∗4 excluding Γlinear

4 (i.e., the
almost-entropic vectors that cannot be linearly representable or yield rate regions, which
cannot be achieved by linear network codes). We recall that Ih ≥ 0 represents all six in-
stances of the Ingleton inequality. We define

Λ4 ≜
{

h ∈ Γ4
∣∣ Ih ≥ 0 does not hold

}
, (23)

and the entropic part of Λ4, i.e.,

Λ∗4 ≜
{

h ∈ Γ∗4
∣∣Ih ≥ 0 does not hold

}
. (24)

We denote the closure of Λ∗4 as Λ∗4 ; then, it is clear that Λ∗4 ⊂ Λ∗4 ⊂ Λ4. By [60] (Lemma 4),
any ray in Λ4 exactly violates one instance of the Ingleton inequality, i.e., Λ4 is the union of
six symmetric regions, each region corresponds to and violates one instance of the Ingleton
inequality, and the six regions are disjointed and share boundary points only. Thus, we
may consider Λ4 and Λ∗4 when only one instance of the Ingleton inequality does not hold.
More specifically, when I34h ≤ 0, i.e., the reversed version of (21) holds, we denote Λ4 and
Λ∗4 as Λ34

4 and Λ∗,34
4 , respectively. Analogously, we can consider different instances of the

Ingleton inequality to obtain other five outer regions symmetric to Λ34
4 and five regions

symmetric to Λ∗4 .

We denote the closure of Λ∗,34
4 as Λ∗,34

4 ; then, in a word, the characterization of Γ∗4 is

reduced to Λ∗,34
4 .
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The only extreme ray of Λ34
4 violating I34h ≥ 0 (as well as the Zhang–Yeung

inequality [8]) is denoted as Rv, where

v = (1, 1, 1, 1, 1.5, 1.5, 1.5, 1.5, 1.5, 2, 2, 2, 2, 2, 2)T. (25)

The region Λ34
4 is often called the pyramid and is represented by 15 extreme rays, with Rv

as the top and the other 14 extreme rays as bases (a complete list of these extreme rays is
available in [16] (Section XI)).

In the rest of this section, we focus on the bounded regions as Definition 2 illustrates
with m = k4, i.e., each random variable has an equal alphabet size k. The above discussions
still hold, as we denote the bounded versions as Λ34

4,X , Λ∗,34
4,X and Λ∗,34

4,X .
In the following remark, we present the implementation details of Algorithm 1 for

experiments in this section.

Remark 1. In this section, we utilized Algorithm 1 with hyperparameters n = 4, m1 = m2 =
m3 = m4 = 4. Overall, the NN model followed from the configuration presented in Table 1 with
k = 4 and either one or three hidden layers. The NN parameters set ϕ was randomly initialized
with the default method of PyTorch [59] (the initial parameters can be fixed by fixing the random
seed), the optimizer was selected with Adam optimizer [61] with a learning rate γ tuned in the
range of 10−2 to 10−5 (based on the number of hidden layers), and we selected the constant a = 1.
The number of iterations N were tuned to be 5× 104 (however, the algorithm can converge with
significantly smaller iterations in most tasks of this section).

5.1. Comparison with the Random Search Algorithm in [26]

When evaluating the performance of our method, the target was set as v in (25),
which is trivially not entropic due to the Zhang–Yeung inequality [8], i.e., D∗ > 0 in
Theorem 1. We aimed to compare the returned normalized distance by Algorithm 1 with
that obtained by the random search algorithm in [26], which is the only existing method for
verifying entropic vectors with general form of PMFs. Intuitively, if Algorithm 1 is capable
of obtaining entropic vectors closer to v, we are able to approximate finer boundaries
of Γ∗4,X .

Figure 3 depicts the empirical results of our method. In addition to v (Target 1), two
entropic vectors in [13] (Theorem 4, Target 2) and [16] (Conjecture 1, Target 3), which belong
to the region Λ∗,34

4,X , are set as targets, and the results are compared to [26] (the numerical
data of the results in [26] are available in [62]). The alphabet size of every random variable,
i.e., k, is set to 4. In Figure 3, the curves illustrate the convergence performances as the
iterations of Algorithm 1 grow, while the shaded regions represent the range of final results
obtained by several experiments in [26].

From Figure 3, it is evident that our method outperforms the random search algorithm
proposed by [26]. More specifically, for the non-entropic target (Target 1 in Figure 3),
the returned normalized distance using our method (0.01895) is smaller than the smallest
value obtained by [26] (0.02482). For entropic targets (Targets 2 and 3 in Figure 3), our
method returns negligible normalized distance as expected, thus successfully verifying
these entropic targets. In addition, the normalized distances obtained by [26] vary across
different experiments, and even increase with larger iterations. For example, with Target 1
in Figure 3, the method in [26] returns a normalized distance of 0.02482 with 1226 iterations;
however, with 10,091 iterations, a larger normalized distance 0.04283 is obtained [26]
(Figure 1).
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Figure 3. Minimization of normalized distances for different target vectors, compared with the
random search algorithm by Alam et al. in [26].

In contrast, the results obtained by our method are consistent within multiple experi-
ments, empirically presenting better convergence performances than [26].

5.2. Optimizing Ingleton Score and Ingleton Violation Index

When optimizing entropic vectors for n = 4, it is of great interest to optimize the
Ingleton score and Ingleton violation index. The Ingleton score was first proposed in [42]
(Conjecture 4.1) and later rigorously defined in [16] (Definition 3).

Definition 6 (Ingleton score [16] (Definition 3)). Given a random vector X = (X1, X2, X3, X4),
and an entropic vector h ∈ Γ∗4 , the Ingleton score induced by (21) is defined as

I34(h) ≜
I34h
h1234

. (26)

The Ingleton score is defined as I ≜ I34 due to permutation symmetry, and the optimization problem
of I is

inf
h

I(h),

s.t. h ∈ Γ∗4 .
(27)

Similarly, the Ingleton violation index [19] is defined as follows.

Definition 7 (Ingleton violation index [19]). Given a random vector X = (X1, X2, X3, X4),
and an entropic vector h ∈ Γ∗4 , the Ingleton violation index induced by (21) is defined as

ι34(h) ≜ −
I34h
∥h∥ . (28)

Due to permutation symmetry, the Ingleton violation index is defined as ι ≜ ι34, and the optimization
problem of ι is

sup
h

ι(h),

s.t. h ∈ Γ∗4 .
(29)
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One is interested in minimizing I or maximizing ι over Γ∗4 , because their optimal
values reveal the largest violations from (21) among entropic vectors in Λ∗,34

4 , and, thus,
are crucial characterizations of Γ∗4 and Γ∗4 .

There is a rich history of optimizing I [16,21,26,35,42] and ι [19,26]. More specifically,
for h ∈ Γ∗4 , [21] proposes a decomposition and two linear transformations on h. If we
denote the composition of these techniques on h as g ≜ T(h), then it is shown that g ∈ Γ∗4 ,
i.e., g is still almost entropic for any almost-entropic h. In addition, the Ingleton score
optimized with g in [21] is smaller than the one optimized with h, and refutes the four-
atom conjecture in [16] (please refer to [21] (Section VIII) for details). Since T(·) plays an
important role in optimizing the Ingleton score and Ingleton violation index in this paper,
for both completeness and clarity, we state the details of the techniques that compose T(·)
in Appendix A for interested readers.

Thus, we are motivated to exploit our method to obtain a better Ingleton score and
Ingleton violation index, when the objective L in Algorithm 1 is replaced by I(h), ι(h),
and I(g), ι(g). Although Theorem 1 does not directly imply that the proposed method can
be exploited to optimize the Ingleton score and Ingleton violation index, we claim that
there always exists an NN that optimizes the Ingleton score and Ingleton violation index to
the optimal values to any desired of accuracy as indicated by Theorems 2 and 3. The proofs
of Theorems 2 and 3 are provided in Appendices B.2 and B.3, respectively.

Theorem 2. For the random vector X = (X1, X2, X3, X4) with a fixed and finite alphabet X ,
we recall the Ingleton score for entropic vectors defined in Definition 6. We consider the entropic
vector h∗ ∈ Γ∗4,X , such that h∗ yields the optimal Ingleton score I∗. Then, there exists an NN with

parameters ϕ ∈ Φ, such that hpϕ
is the associated entropic vector of pϕ = gϕ(a) valid in ∆m

X ,
and hpϕ

yields the corresponding Ingleton score Iϕ, which is consistent with I∗ within any desired
degree of accuracy κ > 0, i.e.,

|Iϕ − I∗| < κ, (30)

where | · | is the absolute value for scalars.

Theorem 3. For the random vector X = (X1, X2, X3, X4) with a fixed and finite alphabet X , we
recall the Ingleton violation index for entropic vectors defined in Definition 7. We consider the
entropic vector h∗ ∈ Γ∗4,X , such that h∗ yields the optimal Ingleton violation index ι∗. Then, there

exists an NN with parameters ϕ ∈ Φ, such that hpϕ
is the associated entropic vector of pϕ = gϕ(a)

valid in ∆m
X , and hpϕ

yields the corresponding Ingleton violation index ιϕ, which is consistent with
ι∗ within any desired degree of accuracy µ > 0, i.e.,

|ιϕ − ι∗| < µ, (31)

where | · | is the absolute value for scalars.

The optimized numerical results are compared with the state-of-the-art values in
Table 2, and the alphabet size of every random variable is set to 4. In Table 2, our results are
rounded to ten decimal digits, and the last four digits are significant since the perturbations
for small probability values may lead to large absolute errors of entropy functions and
score results.

Table 2. Optimized Ingleton scores and Ingleton violation indices.

Objective Best-Known Results Our Results

infh I(h) −0.089373 [16] −0.0893733002
infh I(g) −0.0925000777 [35] −0.0925001031

suph ι(h) 0.028131604 [26] 0.0281316527
suph ι(g) N/A 0.0288304141
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As seen in Table 2, firstly, for the Ingleton score I, the upper bound−0.0925001031, which
is optimized with g, is returned (with negligible improvement compared to −0.0925000777
due to numerical stability). After the first discovery of this value [34,35], the method in [26]
obtained a close value of −0.092499 as well, and, thus, we reconfirm this upper bound
for the third time. Secondly, for the Ingleton violation index ι, we particularly optimize
it with g as well, and a new lower bound 0.0288304 is obtained, which beats the current
best value of 0.0281316. We observe that ι actually measures the sine of the angle between
the hyperplane I34h = 0 and h; thus, the obtained new lower bound finds an entropic
vector with a larger violation angle from the Ingleton hyperplane, bringing us closer to the
optimal ι and the complete characterization of Γ∗4 and Γ∗4 .

The corresponding convergence performances for results in Table 2 are presented in
Figure 4. From Figure 4, one can verify the obtained results listed in Table 2, and observe
that the proposed method successfully converges to the best known Ingleton score when
optimizing I(g), and converges to the Ingleton violation index, which exceeds the best-
known results when optimizing ι(g).
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Figure 4. The convergence results on the optimization of the Ingleton score and the Ingleton violation
index, where “via trans.” refers to what we optimized with a series of transformations g = T(h)
proposed by [21].

Remark 2. The pursuit of the Ingleton score −0.0925 appears to be difficult with no alternative
strategies in the literature. In [26], the search area is constrained using a strategy called hyper-
plane score reduction with the minimization of normalized distance with relatively large iterations.
Additionally, [35] reports that most experiments yield the value −0.09103635, while returning
−0.0925000777 very occasionally, even with millions of searches with massive computation re-
sources in parallel. Similarly, with our method, the direct minimization of I(g) yields the value
−0.09103635. However, by selecting the entropic point from [13] as the initial point of Algorithm 1
(by setting it as the target and minimizing the normalized distance first), we reproduced the value
−0.0925 in a single experiment, with less than 10,000 iterations (which approximately take 6 s).

5.3. Inner Bounding the Almost-Entropic Region

The complete characterization of Γ∗4 is difficult and open. However, as we find many
entropic vectors, a linear inner bound is immediately obtained. For example, for an entropic
vector h ∈ Λ∗,34

4,X , if we regard h as the top vertex, then the convex hull of the top h and
other 14 base vertices (refer to [16] (Section XI) for a complete list of these extreme rays)
yields an inner bound for Λ∗,34

4,X and Γ∗4 .
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In this paper, following [16] (Section XI), the quality of the inner bound is evaluated by
the volume ratio. Let Λ̃34

4,X denote the numerical inner bound obtained, and vol(·) denote
the polytope volume computation operation; the volume ratio is defined as

R ≜
vol(Λ̃34

4,X )

vol(Λ34
4,X )
× 100%. (32)

Intuitively, h needs to be closer to the boundary of Λ∗,34
4,X to obtain a larger volume

ratio R.
Because Algorithm 1 easily produces entropic vectors with large I and better ι, we

are inspired to exploit it to develop a new algorithm, i.e., Algorithm 2, to construct an
inner bound with a larger volume ratio, by optimizing entropic vectors that violate other
specific hyperplanes.

Algorithm 2: Construct inner bounds for the almost-entropic region with Algorithm 1
Require : Base entropic vectors B, top entropic vectors T
Ensure : V-representation of the inner bound Λ̃34

4,X , volume ratio R
1 Initialization
2 Number of iterations N, V-representation set V ← ∅, H-representation set

H ← ∅;
3 V ← B ∪ T ;
4 for i = 1 to N do
5 H ← the H-representation of V obtained using the implementation of the

double description method [51];
6 Vϕ ← ∅;
7 foreach c ∈ H do
8 Minimize the objective ch

h1234
using Algorithm 1, obtain corresponding hpϕ

;

9 if chpϕ

hpϕ

1234

< 0 and I34hpϕ

hpϕ

1234

< 0 then

10 Vϕ ← Vϕ ∪ {hpϕ};
11 end
12 end
13 V ← V ∪ Vϕ;
14 V ← the V-representation of the convex hull of V ;
15 end
16 vol(Λ̃34

4,X )← the polytope volume of V ;

17 R← vol(Λ̃34
4,X )

vol(Λ34
4,X )
× 100%;

18 return V , R;

Algorithm 2 can be interpreted as follows. First, starting from the 14 base entropic
vectors of Λ34

4,X , i.e., B, we construct an initial inner bound with (an) optimized entropic
vector(s), i.e., T , the initial inner bound can be represented by the set of vertices V = B ∪ T .
By transferring the V-representation of the initial inner bound with H-representation, we
obtain many hyperplanes with the set of coefficientsH. Then, for each of these hyperplanes,
we minimize their violation score similar to the Ingleton score using Algorithm 2, i.e., we
find entropic vectors Vϕ with large violations from the initial inner bound (violating
I34h ≥ 0 as well). Now, we have extended the vertices of the initial inner bound from V to
V ∪ Vϕ, and expanded the initial inner bound to an inner bound with a larger volume ratio.
This procedure can be repeated for inner bounds with larger volume ratios.
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Remark 3. Since ∥c∥2 < ∞, by Theorem 2 and its proof in Appendix B.2, the theoretical
guarantee for Algorithm 2, i.e., minimizing the hyperplane score ch

h1234
exploiting Algorithm 1,

immediately follows.

We present the volume ratio of the inner bound obtained with Algorithm 2 in Table 3,
comparing it with all existing results. For reference, the volume ratio of the outer bound
obtained with the non-Shannon-type inequalities in [16] (Section VII) (not tight) was
96.4682%, and the volume of the trivial inner bound obtained with I34h ≥ 0 was 0. From
Table 3, one can see that the volume ratio of the inner bound obtained by our method
is larger than existing results. Comparing with the state-of-the-art result [26], the ratio
62.4774% is improved to 72.0437%, leading to the current best inner bound of Γ∗4 measured
by volume ratio. Thus, our proposed method takes another step forward in the complete
characterization of Γ∗4 .

Table 3. Volume ratios of inner bounds of Λ∗,34
4,X .

Methods Volume Ratio R (%)

Newton’s method [16] 53.4815
Non-isomorphic supports [22] 57.8

Grid approach [26] 62.4774

Ours 1 66.1340
72.0437

1 For details of the results, refer to Remarks 4 and 5.

Remark 4. Here, we give details on how we obtained the two results listed in Table 3. For the
66.1340% result, the set T consisted of three entropic vectors that yielded the Ingleton score
−0.0925001031, the Ingleton violation indices 0.028131653 and 0.0288304141 in Table 2, re-
spectively, and the entropic vector that yielded the Ingleton score −0.09103635, as discussed in
Remark 2. Furthermore, after N = 1 iteration of Algorithm 2, we obtained 152 vertices. After the
convex hull operation, there were 121 entropic vectors, which gave us an inner bound with a volume
ratio of 66.1340%. For the 72.0437% result, the set T consisted of one entropic vector that yielded
the Ingleton score −0.0925001031 in Table 2. Furthermore, after N = 2 iterations of Algorithm 2,
we obtained 2585 vertices, and this inner bound yielded an estimated (as illustrated in Remark 5)
volume ratio of 72.0437%.

Remark 5. There are several algorithms available for polytope volume computation, as listed in [63];
we chose “Qhull” [64,65] and “lrs” [66,67], which only require the V-representation of a polytope,
while providing the convex hull operation as well. However, all existing numerical methods become
computationally intractable with high dimension and a large number of vertices (details of their
computation complexities can be found in [65,67]). In our case, “Qhull” was able to compute the
result 66.1340% from 152 entropic vectors in R15, but became intractable when computing another
result where the number of entropic vectors was 2585. Nevertheless, “lrs” provides a function called

“Estimate”, which allowed us to estimate the computational time and volume result, without diving
into the complete computation process. In this manner, it is estimated that the volume ratio computed
from 2585 entropic vectors is 72.0437%. The estimation process took several days, and it is suggested
that the complete computation will take more than one year.

6. Conclusions and Discussion

This paper introduced a novel architecture to parameterize and optimize PMFs to
verify entropic vectors with NNs. Given a target vector, an algorithm is proposed to identify
the entropic vector closest to it via NN training. Empirical results demonstrate smaller
normalized distances, and improved convergence performances. Optimized Ingleton scores
are presented, and a new lower bound on the Ingleton violation index was obtained. A
state-of-the-art inner bound of Γ∗4 was constructed, which was measured by the volume
ratio. However, there exist computation burdens in the proposed algorithms. Although
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Algorithm 1 achieves a larger feasible alphabet size than previous works, its efficiency
is still constrained by the alphabet size, as Figure 2 shows. Algorithm 2, which requires
auxiliary algorithms to calculate the polytope volume, is limited by the auxiliary algorithms
due to high dimensionality and the large number of entropic vectors, as Remark 5 discusses.

Future work includes developing a computer-aided approach to construct achievable
schemes for network coding problems using the proposed method. The Linear Programming
bound [68], which yields Shannon outer bounds for rate regions of network coding prob-
lems, is not tight in general due to Γn ̸= Γ∗n. However, with Algorithm 1, the corner
points obtained by the Linear Programming bound can be verified to be entropic or not.
Furthermore, if a corner point is verified to be entropic, the returned PMF indicates the
coding scheme. Similar arguments have been raised in [26] as well, where the network
instances are simple, and the largest alphabet size is small. Nevertheless, due to smaller
and more consistent normalized distances depicted in Figure 3 and the feasibility for large
alphabets discussed in Section 4.2, we believe that our proposed method can be applied to
network coding problems with larger alphabet sizes, and/or more random variables.
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Appendix A. The Decomposition and Linear Transformations Proposed in [21]

In [21], a decomposition and two linear transformations on a given entropic vector
are proposed to obtain another entropic vector that yields a better Ingleton score than the
four-atom conjecture in [16]. Here, we give an introduction to these techniques.

More specifically, for any vector h ∈ Γn, it is decomposed into two parts, i.e., the
modular part hmod and the tight part hti, where the element of hmod is

hmod
α ≜ ∑

i∈α

(
hNn − hNn\{i}

)
, ∀α ⊆ Nn \∅, (A1)

and the element of hti is

hti
α ≜ hα −∑

i∈α

(
hNn − hNn\{i}

)
, ∀α ⊆ Nn \∅, (A2)

such that h = hmod + hti. It is shown that, for any h ∈ Γ∗n, there is hti ∈ Γ∗n [21] (Section III).
Moreover, two linear transformations on vectors inH4 are proposed. We first introduce

notations to define these mappings. For any h ∈ Γn, it satisfies the submodularity of
polymatroidal axioms, i.e., for any α, β ⊆ Nn \∅, there is hα + hβ − hα∪β − hα∩β ≥ 0. We
further denote the submodularity as the inner product between the coefficient vector ∆α,β
and the vector h, i.e., ∆α,βh ≥ 0. For β ⊆ Nn and 0 ≤ s ≤ |Nn \ β|, s ∈ N, we define the
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vector rβ
s with the element (rβ

s )α = min{s, |α \ β|}, ∀α ⊆ Nn \ ∅. Now, for any h ∈ H4,
the two linear transformations proposed in [21] (Section VI) can be defined as

A3,4h ≜ h +
(

r{3}1 − r∅
1

)(
∆3,4h

)
, (A3)

and
B34,1h ≜ h +

(
r{1}2 − r∅

3

)(
∆134,234h

)
. (A4)

Given a vector h ∈ Γ∗4 , we define T(h) ≜ A3,4B34,1hti, where hti is the tight part of h
as (A2) defines, and A3,4B34,1 is the composition of the two linear transformations as (A3)
and (A4) define. Then, if we denote g ≜ T(h), it is shown that g ∈ Γ∗4 , i.e., g is still almost
entropic for any almost-entropic h [21] (Section VI).

Please refer to [21] for further details of these techniques.

Appendix B. Proofs of Theorem 1–3

Appendix B.1. Proof of Theorem 1

We first define an NN-based mapping which approximates the joint PMF of the
random vector X (similar definitions can be found in [45,46]). We define the continuous
mapping gϕ : U → ∆m

X . The set U ⊂ R is defined with |U | ≜ 1 such that a ∈ U , a < ∞,
and ∆m

X is the probability simplex of X. The output of the mapping is denoted as pϕ ≜ gϕ(a),
where pϕ ∈ ∆m

X .
In the defined mapping gϕ, the set U is compact and gϕ is continuous. Thus, we can

utilize the universal approximation theorem [56] to guarantee that there exists a parameter
set ϕ such that the output of NN pϕ = gϕ(a) is closed to any desired PMF p∗ = g∗(a). We
note that the universal approximation theorem holds regardless of whether l1 or l2 norm is
used. Thus, we have the following statement. For the random vector X with finite alphabet
X , given a desired joint PMF p∗ ∈ ∆m

X and ϵ > 0, there exists an NN with parameters
ϕ ∈ Φ, where Φ ⊂ Rd is the parameter space, and the parameterized mapping gϕ ∈ G(1,m)

generates the PMF pϕ = gϕ(a), such that∥∥pϕ − p∗
∥∥

1 < ϵ, (A5)

where ∥ · ∥1 is the l1 norm.
Then, we assume that h∗ is associated with PMF p∗; we need to prove that, when

pϕ → p∗ in l1 norm, we have hpϕ → h∗ in l2 norm.
We consider X with an index set Nn and a fixed finite alphabet X ; from [54] (Section

2.3), we have hpϕ

Nn
→ h∗Nn

in absolute value, as pϕ → p∗ in variational distance [54]
(Definition 2.23) (i.e.,

∥∥pϕ − p∗
∥∥

1 → 0). More specifically, for any η′ > 0, there exists ϵ′ > 0,
such that, for all ∥∥pϕ − p∗

∥∥
1 < ϵ′, (A6)

where ∥ · ∥1 is the l1 norm, there is ∣∣hpϕ

Nn
− h∗Nn

∣∣ < η′, (A7)

where | · | is the absolute value for scalars.
We note that, for any α ⊆ Nn \ ∅, there is

∥∥pϕ
α − p∗α

∥∥
1 ≤

∥∥pϕ − p∗
∥∥

1 < ϵ′ by [26]

(Corollary 1), and, thus, we have
∣∣hpϕ

α − h∗α
∣∣ ≤ ∣∣hpϕ

Nn
− h∗Nn

∣∣ < η′. Consequently, we have

∑
α⊆Nn\∅

∣∣hpϕ

α − h∗α
∣∣ = ∥∥hpϕ − h∗

∥∥
1 < (2n − 1) · η′, (A8)
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and, by the relationship between l1 and l2 norm, we have∥∥hpϕ − h∗
∥∥ ≤ ∥∥hpϕ − h∗

∥∥
1 < (2n − 1) · η′. (A9)

We note that h∗ yields the minimal normalized distance to ht, i.e., there exist h′t ∈ Rht
such that ∥h∗− h′t∥ = ∥h′t∥ ·D∗ by Definition 3. Then, by the triangular inequality, we have∥∥hpϕ − h′t

∥∥ ≤ ∥∥hpϕ − h∗
∥∥+ ∥∥h∗ − h′t

∥∥
< (2n − 1) · η′ +

∥∥h′t
∥∥ · D∗. (A10)

Thus, for any desired degree of accuracy η > 0, if we choose η′ =
∥h′t∥
2n−1 η and ϵ to be

equal to the corresponding ϵ′, then, there exists an NN, such that∥∥pϕ − p∗
∥∥

1 < ϵ, (A11)

and ∥∥hpϕ − h′t
∥∥∥∥h′t

∥∥ = dnorm(hpϕ
, ht) < D∗ + η. (A12)

Hence, the proof of Theorem 1 is complete.

Appendix B.2. Proof of Theorem 2

We recall the proof of Theorem 1; we assume that h∗ is associated with PMF p∗;
the main idea is to bound (30) as ∥pϕ − p∗∥1 < ϵ. The proof can be divided into two steps.

In the first step, we need to bound the term |I34hpϕ − I34h∗|. More specifically, fol-
lowing (A9) of Theorem 1, we have proved that, for any η′ > 0, there exists ϵ′ > 0, such
that, for all ∥pϕ − p∗∥1 < ϵ′, there is ∥hpϕ − h∗∥ < (2n − 1) · η′. Similarly, if we choose
η′ = η

23−1 and ϵ to be equal to the corresponding ϵ′, then, there exists an NN such that

∥pϕ − p∗∥1 < ϵ and ∥hpϕ − h∗∥ < η. Then, by the Cauchy–Schwarz inequality, we have

|I34hpϕ − I34h∗| = |I34(hpϕ − h∗)| ≤ ∥I34∥ · ∥hpϕ − h∗∥ < ∥I34∥ · η. (A13)

In the second step, to complete the rest of proof of (30), we need to bound the term∣∣∣∣∣ I34hpϕ

hpϕ

1234

− I34h∗
h∗1234

∣∣∣∣∣. More specifically, by the triangular inequality, we derive that

∣∣∣∣∣ I34hpϕ

hpϕ

1234

− I34h∗

h∗1234

∣∣∣∣∣ =
∣∣∣∣∣ I34hpϕ · (h∗1234 − hpϕ

1234) + hpϕ

1234 · (I34hpϕ − I34h∗)

hpϕ

1234 · h∗1234

∣∣∣∣∣ (A14)

≤
∣∣∣∣∣ I34hpϕ · (h∗1234 − hpϕ

1234)

hpϕ

1234 · h∗1234

∣∣∣∣∣+
∣∣∣∣∣h

pϕ

1234 · (I34hpϕ − I34h∗)

hpϕ

1234 · h∗1234

∣∣∣∣∣. (A15)

We note that, from (A15), following the proof of Theorem 1, in the first term, we already

have |h∗1234− hpϕ

1234| < η′ as ∥pϕ− p∗∥1 < ϵ′. In the second term, there is |I34hpϕ − I34h∗| <

∥I34∥ · η by (A13). Thus,

∣∣∣∣∣ I34hpϕ

hpϕ

1234

− I34h∗
h∗1234

∣∣∣∣∣ can be further bounded as

∣∣∣∣∣ I34hpϕ

hpϕ

1234

− I34h∗

h∗1234

∣∣∣∣∣ <
∣∣∣∣∣ I34hpϕ

hpϕ

1234 · h∗1234

∣∣∣∣∣ · η′ + ∥I34∥∣∣∣h∗1234

∣∣∣ · η (A16)

=
η∣∣∣h∗1234

∣∣∣
(∣∣∣∣∣ I34hpϕ

hpϕ

1234

∣∣∣∣∣ · 1
23 − 1

+ ∥I34∥
)

. (A17)
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Because for any entropic hpϕ
and h∗, we have hpϕ

1234 > 0 and h∗1234 > 0, while
∣∣∣I34hpϕ

∣∣∣ < ∞,

hpϕ

1234 < ∞ and h∗1234 < ∞ hold for a fixed and finite alphabet, and ∥I34∥ is a bounded
constant. Thus, for any desired degree of accuracy κ > 0, we choose κ to be equal to (A17).
Then, there always exists an NN such that∥∥pϕ − p∗

∥∥
1 < ϵ, (A18)

and ∣∣∣∣∣ I34hpϕ

hpϕ

1234

− I34h∗

h∗1234

∣∣∣∣∣ < κ. (A19)

With (A14) and (A19), by the permutation symmetry of the Ingleton inequality and Ingleton
score, (30) is immediately proved.

Hence, the proof of Theorem 2 is complete.

Appendix B.3. Proof of Theorem 3

Similar to the proof of Theorem 2, we recall the proof of Theorem 1; we assume that
h∗ is associated with PMF p∗; the main idea is to bound (30) as ∥pϕ − p∗∥1 < ϵ. The proof
can be divided into two steps.

In the first step, we bound the term |I34hpϕ − I34h∗|, which is already proved in the
first step of the proof of Theorem 3.

In the second step, similar to the proof of Theorem 2, we need to bound

∣∣∣∣∣ I34hpϕ

∥hpϕ∥
− I34h∗
∥h∗∥

∣∣∣∣∣.
We first need to bound the term

∣∣∣∥hpϕ∥ − ∥h∗∥
∣∣∣. By the triangular inequality and the proof

of Theorem 2, if we choose η′ = η

23−1 and ϵ to be equal to the corresponding ϵ′, we
can derive

∥hpϕ∥ = ∥hpϕ − h∗ + h∗∥ ≤ ∥hpϕ − h∗∥+ ∥h∗∥ < η + ∥h∗∥, (A20)

i.e., ∥hpϕ∥ − ∥h∗∥ < η. We can similarly prove that ∥h∗∥ − ∥hpϕ∥ < η, thus

−η < ∥hpϕ∥ − ∥h∗∥ < η, (A21)

and, equivalently, ∣∣∣∥hpϕ∥ − ∥h∗∥
∣∣∣ < η. (A22)

As we have bounded
∣∣∣∥hpϕ∥ − ∥h∗∥

∣∣∣, in the rest of the proof, following the same proof
strategy as Theorem 3 (i.e., (A14) to (A19)), it is straightforward to prove that, for any
desired degree of accuracy µ > 0, by properly choosing µ, there always exists an NN
such that ∥∥pϕ − p∗

∥∥
1 < ϵ, (A23)

and ∣∣∣∣∣ I34hpϕ

∥hpϕ∥
− I34h∗

∥h∗∥

∣∣∣∣∣ < µ. (A24)

With (A23) and (A24), by the permutation symmetry of the Ingleton inequality and Ingleton
score, (31) is immediately proved.

Thus, the proof of Theorem 3 is complete.



Entropy 2024, 26, 711 22 of 24

References
1. Yan, X.; Yeung, R.W.; Zhang, Z. An implicit characterization of the achievable rate region for acyclic multisource multisink

network coding. IEEE Trans. Inf. Theory 2012, 58, 5625–5639.
2. Hassibi, B.; Shadbakht, S. Normalized entropy vectors, network information theory and convex optimization. In Proceedings

of the 2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks, Bergen, Norway, 1–6 July 2007;
pp. 1–5.

3. Zhang, Z.; Yeung, R.W. A non-Shannon-type conditional inequality of information quantities. IEEE Trans. Inf. Theory 1997,
43, 1982–1986.

4. Matús, F. Piecewise linear conditional information inequality. IEEE Trans. Inf. Theory 2005, 52, 236–238.
5. Chen, Q.; Yeung, R.W. Characterizing the entropy function region via extreme rays. In Proceedings of the 2012 IEEE Information

Theory Workshop, Lausanne, Switzerland, 3–7 September 2012; pp. 272–276.
6. Tiwari, H.; Thakor, S. On characterization of entropic vectors at the boundary of almost entropic cones. In Proceedings of the

2019 IEEE Information Theory Workshop (ITW), Visby, Sweden, 25–28 August 2019; pp. 1–5.
7. Thakor, S.; Saleem, D. A Quasi-Uniform Approach to Characterizing the Boundary of the Almost Entropic Region. In Proceedings

of the 2022 IEEE Information Theory Workshop (ITW), Mumbai, India, 1–9 November 2022; pp. 541–545.
8. Zhang, Z.; Yeung, R.W. On characterization of entropy function via information inequalities. IEEE Trans. Inf. Theory 1998,

44, 1440–1452.
9. Chan, T.; Grant, A. Dualities between entropy functions and network codes. IEEE Trans. Inf. Theory 2008, 54, 4470–4487.
10. Matus, F. Infinitely many information inequalities. In Proceedings of the 2007 IEEE International Symposium on Information

Theory, Nice, France, 24–29 June 2007; pp. 41–44.
11. Li, C.T. The undecidability of conditional affine information inequalities and conditional independence implication with a binary

constraint. IEEE Trans. Inf. Theory 2022, 68, 7685–7701.
12. Li, C.T. Undecidability of network coding, conditional information inequalities, and conditional independence implication. IEEE

Trans. Inf. Theory 2023, 69, 3493–3510.
13. Hammer, D.; Romashchenko, A.; Shen, A.; Vereshchagin, N. Inequalities for Shannon entropy and Kolmogorov complexity.

J. Comput. Syst. Sci. 2000, 60, 442–464.
14. Dougherty, R.; Freiling, C.; Zeger, K. Six new non-Shannon information inequalities. In Proceedings of the 2006 IEEE International

Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006; pp. 233–236.
15. Dougherty, R.; Freiling, C.; Zeger, K. Linear rank inequalities on five or more variables. arXiv 2009, arXiv:0910.0284.
16. Dougherty, R.; Freiling, C.; Zeger, K. Non-Shannon information inequalities in four random variables. arXiv 2011, arXiv:1104.3602.
17. Dougherty, R. Computations of linear rank inequalities on six variables. In Proceedings of the 2014 IEEE International Symposium

on Information Theory, Honolulu, HI, USA, 29 June–4 July 2014; pp. 2819–2823.
18. Hassibi, B.; Shadbakht, S. On a construction of entropic vectors using lattice-generated distributions. In Proceedings of the 2007

IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 501–505.
19. Shadbakht, S.; Hassibi, B. MCMC methods for entropy optimization and nonlinear network coding. In Proceedings of the 2010

IEEE International Symposium on Information Theory, Austin, TX, USA, 13–18 June 2010; pp. 2383–2387.
20. Walsh, J.M.; Weber, S. A recursive construction of the set of binary entropy vectors and related algorithmic inner bounds for the

entropy region. IEEE Trans. Inf. Theory 2011, 57, 6356–6363.
21. Matúš, F.; Csirmaz, L. Entropy region and convolution. IEEE Trans. Inf. Theory 2016, 62, 6007–6018.
22. Liu, Y.; Walsh, J.M. Non-isomorphic distribution supports for calculating entropic vectors. In Proceedings of the 2015 53rd

Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–2
October 2015; pp. 634–641.

23. Liu, Y.; Walsh, J.M. Mapping the region of entropic vectors with support enumeration & information geometry. arXiv 2015,
arXiv:1512.03324.

24. Liu, Y. Extremal Entropy: Information Geometry, Numerical Entropy Mapping, and Machine Learning Application of Associated
Conditional Independences. Ph.D. Thesis, Drexel University, Philadelphia, PA, USA, 2016.

25. Walsh, J.M.; Trofimoff, A.E. On designing probabilistic supports to map the entropy region. In Proceedings of the 2019 IEEE
Information Theory Workshop (ITW), Visby, Sweden, 25–28 August 2019; pp. 1–5.

26. Alam, S.; Thakor, S.; Abbas, S. Inner bounds for the almost entropic region and network code construction. IEEE Trans. Commun.
2020, 69, 19–30.

27. Saleem, D.; Thakor, S.; Tiwari, A. Recursive algorithm to verify quasi-uniform entropy vectors and its applications. IEEE Trans.
Commun. 2020, 69, 874–883.

28. Liu, S.; Chen, Q. Entropy functions on two-dimensional faces of polymatroidal region of degree four. In Proceedings of the 2023
IEEE International Symposium on Information Theory (ISIT), Taipei, Taiwan, 25–30 June 2023; pp. 78–83.

29. Chan, H.L.; Yeung, R.W. A combinatorial approach to information inequalities. In Proceedings of the 1999 Information Theory
and Networking Workshop (Cat. No. 99EX371), Metsovo, Greece, 27 June–1 July 1999; p. 63.

30. Chan, T.H.; Yeung, R.W. On a relation between information inequalities and group theory. IEEE Trans. Inf. Theory 2002,
48, 1992–1995.



Entropy 2024, 26, 711 23 of 24

31. Chan, T.H. Group characterizable entropy functions. In Proceedings of the 2007 IEEE International Symposium on Information
Theory, Nice, France, 24–29 June 2007; pp. 506–510.

32. Mao, W.; Thill, M.; Hassibi, B. On Ingleton-violating finite groups. IEEE Trans. Inf. Theory 2016, 63, 183–200.
33. Boston, N.; Nan, T.T. Large violations of the Ingleton inequality. In Proceedings of the 2012 50th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), Monticello, IL, USA, 1–5 October 2012; pp. 1588–1593.
34. Nan, T.T. Entropy Regions and the Four-Atom Conjecture. Ph.D. Thesis, The University of Wisconsin-Madison, Madison, WI,

USA, 2015.
35. Boston, N.; Nan, T.T. Violations of the Ingleton inequality and revising the four-atom conjecture. Kybernetika 2020, 56, 916–933.
36. Dougherty, R.; Freiling, C.; Zeger, K. Networks, matroids, and non-Shannon information inequalities. IEEE Trans. Inf. Theory

2007, 53, 1949–1969.
37. Li, C.; Weber, S.; Walsh, J.M. Multilevel diversity coding systems: Rate regions, codes, computation, & forbidden minors. IEEE

Trans. Inf. Theory 2016, 63, 230–251.
38. Li, C.; Weber, S.; Walsh, J.M. On multi-source networks: Enumeration, rate region computation, and hierarchy. IEEE Trans. Inf.

Theory 2017, 63, 7283–7303.
39. Chen, Q.; Cheng, M.; Bai, B. Matroidal Entropy Functions: A Quartet of Theories of Information, Matroid, Design, and Coding.

Entropy 2021, 23, 323. [CrossRef] [PubMed]
40. Chen, Q.; Cheng, M.; Bai, B. Matroidal entropy functions: Constructions, characterizations and representations. IEEE Trans. Inf.

Theory 2024. [CrossRef]
41. Ingleton, A.W. Representation of matroids. Comb. Math. Its Appl. 1971, 23, 149–167.
42. Csirmaz, L. The dealer’s random bits in perfect secret sharing schemes. Stud. Sci. Math. Hung. 1996, 32, 429–438.
43. Shadbakht, S. Entropy Region and Network Information Theory. Ph.D. Thesis, California Institute of Technology, Pasadena, CA,

USA, 2011.
44. Tsur, D.; Aharoni, Z.; Goldfeld, Z.; Permuter, H. Neural estimation and optimization of directed information over continuous

spaces. IEEE Trans. Inf. Theory 2023, 69, 4777–4798.
45. Tsur, D.; Huleihel, B.; Permuter, H. Rate distortion via constrained estimated mutual information minimization. In Proceedings

of the 2023 IEEE International Symposium on Information Theory (ISIT), Taipei, Taiwan, 25–30 June 2023; pp. 695–700.
46. Tsur, D.; Aharoni, Z.; Goldfeld, Z.; Permuter, H. Data-driven optimization of directed information over discrete alphabets. IEEE

Trans. Inf. Theory 2023, 70, 1652–1670.
47. Wang, X.; Karimi, H.R.; Shen, M.; Liu, D.; Li, L.W.; Shi, J. Neural network-based event-triggered data-driven control of disturbed

nonlinear systems with quantized input. Neural Netw. 2022, 156, 152–159. [PubMed]
48. Wang, M.; Zhu, S.; Shen, M.; Liu, X.; Wen, S. Fault-Tolerant Synchronization for Memristive Neural Networks with Multiple

Actuator Failures. IEEE Trans. Cybern. 2024, 1–10. [CrossRef]
49. Ziegler, G.M. Lectures on Polytopes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 152.
50. Fukuda, K.; Prodon, A. Double description method revisited. In Proceedings of the Franco-Japanese and Franco-Chinese

Conference on Combinatorics and Computer Science, Brest, France, 3–5 July 1995; Springer: Berlin/Heidelberg, Germany, 1995;
pp. 91–111.

51. Fukuda, K. cdd, cddplus and cddlib. Available online: https://people.inf.ethz.ch/fukudak/cdd_home/ (accessed on 18 May
2024).

52. Troffaes, M. pycddlib. Available online: https://github.com/mcmtroffaes/pycddlib (accessed on 18 May 2024).
53. Motzkin, T.S.; Raiffa, H.; Thompson, G.L.; Thrall, R.M. The double description method. Contrib. Theory Games 1953, 2, 51–73.
54. Yeung, R.W. Information Theory and Network Coding; Springer Science & Business Media: New York, NY, USA, 2008.
55. Fujishige, S. Polymatroidal dependence structure of a set of random variables. Inf. Control 1978, 39, 55–72.
56. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366.
57. Bertsekas, D.P. Nonlinear Programming; Athena Scientific: Nashua, NH, USA, 1998.
58. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press:

Cambridge, UK, 2014.
59. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32.
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